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We review recent results on the homogenization in Sobolev spaces with variable exponents. In particular, we are dealing with the
Γ-convergence of variational functionals with rapidly oscillating coefficients, the homogenization of the Dirichlet and Neumann
variational problems in strongly perforated domains, as well as double porosity type problems.The growth functions also depend on
the small parameter characterizing the scale of the microstructure.The homogenization results are obtained by the method of local
energy characteristics. We also consider a parabolic double porosity type problem, which is studied by combining the variational
homogenization approach and the two-scale convergence method. Results are illustrated with periodic examples, and the problem
of stability in homogenization is discussed.

1. Introduction

In recent years, there has been an increasing interest in the
study of the functionals with variable exponents or nonstan-
dard 𝑝(𝑥)-growth and the corresponding Sobolev spaces, see
for instance [1–8] and the references therein. In particular,
the conditions under which𝐶∞

0
functions are dense in𝑊1,𝑝(⋅)

have been found. Also, Meyers estimates, which are used in
the homogenization process, have been obtained in [6]. Let us
mention that such partial differential equations arise in many
engineering disciplines, such as electrorheological fluids,
non-Newtonian fluids with thermoconvective effects, and
nonlinear Darcy flow of compressible fluids in heterogeneous
porous media, see for instance [1].

This paper discusses problems of homogenization in
Sobolev spaces with variable exponents. Attention is focussed
on the homogenization and minimization problems for
variational functionals in the framework of Sobolev spaces
with nonstandard growth.Thematerial is essentially a review
with some new results.

Γ-convergence and minimization problems for function-
als with periodic and locally periodic rapidly oscillating
Lagrangians of 𝑝-growth with a constant 𝑝 are well studied
now, see for instance [9, 10] and the bibliography therein.

The works [11–15] (see also [16]) focus on the variational
functionals with nonstandard growth conditions. In partic-
ular, the homogenization and Γ-convergence problems for
Lagrangians with variable rapidly oscillating exponents 𝑝(𝑥)
were considered in [13, 14]. It was shown that the energy
minimums and the homogenized Lagrangians in the spaces
𝑊

1,𝑟 might depend on the value of 𝑟 (the so-called Lavrentiev
phenomenon). For example, such a behavior can be observed
for the Lagrangian |∇𝑢|

𝑝(𝑥/𝜀) with a periodic “chess board”
exponent 𝑝(𝑦) and a small parameter 𝜀 > 0.

Another interesting example of Lagrangian with rapidly
oscillating exponent was considered in [11]. Namely, for the
functional

J
𝜀
[𝑢] = ∫ |∇𝑢|

𝑝(𝑥/𝜀)

𝑑𝑥 (1)
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with a smooth periodic 𝑝(𝑦) such that 𝑝(𝑦) > 1, it was shown
that the limit functional is bounded on Sobolev-Orlicz space
of functions with gradient in an 𝐿𝛼 log space, where 𝛼 is the
fiber percolation level of 𝑝(𝑥).

Variational functionals with nonstandard growth condi-
tions have also been considered in [9]. Chapter 21 of this
book focuses on the Γ-convergence of such functionals in 𝐿𝑝
spaces.

In this paper, we are dealing mainly with the Γ-con-
vergence of variational functionals with periodic rapidly
oscillating coefficients, the homogenization of the variational
problems in strongly perforated domains (Dirichlet and
Neumann problems), and nonlinear double porosity type
problems, that is, with the problems where the coefficient
of the differential operator asymptotically degenerates on a
some specially defined subset (e.g., the set of periodically
distributed inclusions) of the domain under consideration.
The paper is based on the results obtained in papers
[17–26].

The paper is organized as follows. In Section 2, for the
sake of completeness, we recall the definition and main
results on the Lebesgue and Sobolev spaces with variable
exponents which will be used in the sequel. Then in auxiliary
Section 3, we give some definitions which will be used in
the paper. In Section 4, we study the question of the Γ-
convergence and homogenization of functionals with rapidly
oscillating periodic coefficients. In Section 5, we are dealing
with the homogenization of theDirichlet variational problem
in strongly perforated domains.Themain result of the section
(see Theorem 8) is then applied to the study of nonlocal
effects in the homogenization (seeTheorem 9). In Section 5.3,
we give a periodic example, when all the conditions of
Theorems 8 and 9 are satisfied and all the coefficients of the
homogenized problem are calculated explicitly.Moreover, the
question of stability in homogenization is also discussed here.
Theorems 8 and 9 are proved by using the so-called method
of local energy characteristics proposed earlier by Marchenko
and Khruslov for linear homogenization problems (see [27]
and the references herein). This method is close to the Γ-
convergence method. Briefly, it is based on the derivation of
the lim-inf and lim-sup estimates for the variational func-
tional under consideration alongwith the assumptions on the
behavior of the local energy characteristics. In Section 6, the
homogenization of the Neumann problem in strongly perfo-
rated domains is considered. In this section, the closeness of
the method of local energy characteristics is shown directly.
In Section 7, we are dealing with a variational problem
with high contrast coefficients (nonlinear double porosity
type model). The main result of the section (Theorem 23) is
also obtained by the method of local energy characteristics.
As an application of this result, we consider the periodic
case, where we focus our attention on the question of
stability in homogenization. Finally, in Section 8, we are
dealing with the homogenization of a class of quasilinear
parabolic equations with nonstandard growth. The main
results of the section are obtained by combining the two-scale
convergence method and the variational homogenization
approach.

2. Sobolev Spaces with Variable Exponents

In this section, we introduce the function spaces used
throughout the paper and describe their basic properties. We
refer here to [1, 4, 5, 7, 8].

Let Ω be a bounded Lipschitz domain in R𝑛 (𝑛 ≥ 2).
We introduce the function 𝑝 = 𝑝(𝑥) and assume that this
function is bounded such that

1 < 𝑝
−

= inf
Ω

𝑝 (𝑥) ≤ 𝑝 (𝑥) ≤ sup
Ω

𝑝 (𝑥) = 𝑝
+

< +∞. (2)

We also assume that the function 𝑝(𝑥) satisfies the log-Hölder
continuity property. Namely, for all 𝑥, 𝑦 ∈ Ω,

󵄨󵄨󵄨󵄨𝑝 (𝑥) − 𝑝 (𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝜔 (

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨) with lim

𝜏→0

𝜔 (𝜏) ln(1
𝜏
) ≤ 𝐶.

(3)

Notice that this property was introduced by Zhikov to avoid
the so-called Lavrentiev phenomenon (see, e.g., [15]).

(1) By 𝐿𝑝(⋅)(Ω) we denote the space of measurable func-
tions 𝑓 in Ω such that

𝐴
𝑝(⋅),Ω

(𝑓) = ∫
Ω

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝(𝑥)

𝑑𝑥 < +∞. (4)

The space 𝐿𝑝(⋅)(Ω) equipped with the norm

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)(Ω)

= inf {𝜆 > 0 : 𝐴
𝑝(⋅),Ω

(
𝑓

𝜆
) ≤ 1} (5)

becomes a Banach space.
(2) The following inequalities hold:

min (󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝑝
−

𝐿
𝑝(⋅)

(Ω)

,
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝑝
+

𝐿
𝑝(⋅)

(Ω)

)

≤ 𝐴
𝑝(⋅),Ω

(𝑓)

≤ max (󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝑝
−

𝐿
𝑝(⋅)

(Ω)

,
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

𝑝
+

𝐿
𝑝(⋅)

(Ω)

) ,

min (𝐴1/𝑝
−

𝑝(⋅),Ω
, 𝐴

1/𝑝
+

𝑝(⋅),Ω
)

≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)(Ω)

≤ max (𝐴1/𝑝
−

𝑝(⋅),Ω
, 𝐴

1/𝑝
+

𝑝(⋅),Ω
) .

(6)

(3) Let 𝑓 ∈ 𝐿
𝑝(⋅)

(Ω), 𝑔 ∈ 𝐿𝑞(⋅)(Ω) with

1

𝑝 (𝑥)
+

1

𝑞 (𝑥)
= 1, 1 < 𝑝

−

≤ 𝑝 (𝑥) ≤ 𝑝
+

< ∞,

1 < 𝑞
−

≤ 𝑞 (𝑥) ≤ 𝑞
+

< +∞.

(7)

Then the Hölder’s inequality holds

∫
Ω

󵄨󵄨󵄨󵄨𝑓𝑔
󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ 2

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)(Ω)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿𝑞(⋅)(Ω)

. (8)
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(4) According to (8), for every 1 ≤ 𝑞 = const < 𝑝
−

≤

𝑝(𝑥) < +∞

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑞(Ω)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)(Ω)

with the constant 𝐶 = 2‖1‖
𝑝(⋅)/(𝐿

𝑝(⋅)−𝑞
(Ω))

.

(9)

It is straightforward to check that for domainsΩ such
that measΩ < +∞,

‖1‖
𝐿
𝑝(⋅)

(Ω)
≤ 2max {[measΩ]2/𝑝

−

, [measΩ]1/2𝑝
+

} . (10)

(5) The space 𝑊1,𝑝(⋅)

(Ω), 𝑝(⋅) ∈ [𝑝
−

, 𝑝
+

] ⊂ ]1, +∞[, is
defined by

𝑊
1,𝑝(⋅)

(Ω) = {𝑓 ∈ 𝐿
𝑝(⋅)

(Ω) :
󵄨󵄨󵄨󵄨∇𝑓

󵄨󵄨󵄨󵄨 ∈ 𝐿
𝑝(⋅)

(Ω)} . (11)

If condition (3) is satisfied,𝑊1,𝑝(⋅)

0
(Ω) is the closure of

the set𝐶∞

0
(Ω)with respect to the norm of 𝑊1,𝑝(⋅)

(Ω).
If the boundary ofΩ is Lipschitz continuous and 𝑝(𝑥)
satisfies (3), then 𝐶∞

0
(Ω) is dense in 𝑊1,𝑝(⋅)

0
(Ω). The

norm in the space𝑊1,𝑝(⋅)

0
is defined by

‖𝑢‖
𝑊
1,𝑝(⋅)

0

= ∑

𝑖

󵄩󵄩󵄩󵄩𝐷𝑖
𝑢
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)(Ω)

+ ‖𝑢‖
𝐿
𝑝(⋅)

(Ω)
. (12)

If the boundary ofΩ is Lipschitz and 𝑝 ∈ 𝐶0

(Ω), then
the norm ‖ ⋅ ‖

𝑊
1,𝑝(⋅)

0
(Ω)

is equivalent to the norm

‖̃𝑢‖
𝑊
1,𝑝(𝑥)

0
(Ω)

= ∑

𝑖

󵄩󵄩󵄩󵄩𝐷𝑖
𝑢
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)(Ω)

. (13)

(6) If 𝑝 ∈ 𝐶
0

(Ω), then 𝑊
1,𝑝(⋅)

(Ω) is separable and
reflexive.

(7) If 𝑝, 𝑞 ∈ 𝐶0

(Ω),

𝑝
∗
(𝑥)

=

{{{{{{

{{{{{{

{

𝑝 (𝑥) 𝑛

𝑛 − 𝑝 (𝑥)
if𝑝 (𝑥) < 𝑛,

and 1 < 𝑞 (𝑥) ≤ sup
Ω

𝑞 (𝑥)

< inf
Ω

𝑝
∗
(𝑥) ,

+∞ if𝑝 (𝑥) > 𝑛,
(14)

then the embedding𝑊1,𝑝(⋅)

0
(Ω) 󳨅→ 𝐿

𝑞(⋅)

(Ω) is contin-
uous and compact.

(8) Friedrich’s inequality is valid in the following form: if
𝑝(𝑥) satisfies conditions (2) and (3), then there exists
a constant 𝐶 > 0 such that for every 𝑓 ∈ 𝑊

1,𝑝(⋅)

0
(Ω)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)(Ω)

≤ 𝐶
󵄩󵄩󵄩󵄩∇𝑓

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)(Ω)
. (15)

3. Definitions

In this auxiliary section, we introduce the necessary defini-
tions that will be used in the paper. We start by introducing
the class of the variable exponents 𝑝

𝜀
, where 𝜀 is a small

positive parameter characterizing the microscopic length
scale.

Definition 1 (class L𝜀

𝑝0(⋅)
). A sequence of functions {𝑝

𝜀
}
(𝜀>0)

is
said to belong to the class L𝜀

𝑝0(⋅)
if this sequence possesses the

following properties:

(i) for any 𝜀 > 0, 𝑝
𝜀
is bounded in the following sense:

1 < 𝑝
−

≤ 𝑝
−

𝜀
≡ min

𝑥∈Ω

𝑝
𝜀
(𝑥) ≤ 𝑝

𝜀
(𝑥) ≤ max

𝑥∈Ω

𝑝
𝜀
(𝑥)

≡ 𝑝
+

𝜀
≤ 𝑝

+

< +∞ in Ω;

(16)

(ii) for any 𝜀 > 0, 𝑝
𝜀
satisfies the log-Hölder continuity

property;
(iii) the function 𝑝

𝜀
converges uniformly in Ω to a func-

tion 𝑝
0
, where the limit function 𝑝

0
is assumed to

satisfy the log-Hölder continuity property.

We also recall the definition of the Γ-convergence (see,
e.g., [9, 10, 28] and the bibliography therein). In our case this
definition takes the following form.

Definition 2 (Γ
𝑝(⋅)

-convergence). The functional 𝐼𝜀 : 𝐿
𝑝𝜀(⋅)

(Ω) → R ∪ {∞} is said to Γ
𝑝0(⋅)

-converge to a functional
𝐼 : 𝐿

𝑝0(⋅)(Ω) → R ∪ {∞} if

(a) (“lim inf”-inequality) for any 𝑢 ∈ 𝐿
𝑝0(⋅)(Ω) and any

sequence {𝑢𝜀}
𝜀>0

⊂ 𝐿
𝑝0(⋅)(Ω) which converges to the

function 𝑢 strongly in the space 𝐿𝑝0(⋅)(Ω) we have

lim
𝜀→0

𝐼
𝜀

[𝑢
𝜀

] ≥ 𝐼 [𝑢] , (17)

(b) (“lim sup”-inequality) for any 𝑢 ∈ 𝐿
𝑝0(⋅)(Ω), there

exists a sequence {𝑤𝜀

}
𝜀>0

⊂ 𝐿
𝑝0(⋅)(Ω) such that {𝑤𝜀

}
𝜀>0

converges to the function 𝑢(⋅) strongly in the space
𝐿
𝑝0(⋅)(Ω), and

lim
𝜀→0

𝐼
𝜀

[𝑤
𝜀

] ≤ 𝐼 [𝑢] . (18)

We define the strong convergence in 𝐿
𝑝0(⋅)(Ω

𝜀

) in the
following way.

Definition 3 (strong convergence in 𝐿𝑝0(⋅)(Ω𝜀

)). The sequence
{𝜔

𝜀

}
𝜀>0

∈ 𝐿
𝑝0(⋅)(Ω

𝜀

) is said to converge strongly in the space
𝐿
𝑝0(⋅)(Ω

𝜀

) to a function 𝜔 ∈ 𝐿
𝑝0(⋅)(Ω) if

lim
𝜀→0

󵄩󵄩󵄩󵄩𝜔
𝜀

− 𝜔
󵄩󵄩󵄩󵄩𝐿𝑝0(⋅)(Ω𝜀)

= 0. (19)

Finally, we recall the definition of the two-scale conver-
gence (see, e.g., [29]).
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Definition 4. Let 𝑌 = ]0, 1[
𝑛 be a basic cell and Ω

𝑇
=

Ω× ]0, 𝑇[. A function, 𝜑 ∈ 𝐿
2

(Ω
𝑇
; 𝐶

∞

# (𝑌)), which is 𝑌-
periodic in 𝑦 and which satisfies

lim
𝜀→0

∫
Ω𝑇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜑 (𝑥,

𝑥

𝜀
, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 𝑑𝑡 = ∫
Ω𝑇×𝑌

󵄨󵄨󵄨󵄨𝜑 (𝑥, 𝑦, 𝑡)
󵄨󵄨󵄨󵄨

2

𝑑𝑦𝑑𝑥 𝑑𝑡

(20)

is called an admissible test function.

Definition 5 (two-scale convergence). A sequence of func-
tions V𝜀 ∈ 𝐿

2

(Ω
𝑇
) two-scale converges to V ∈ 𝐿

2

(Ω
𝑇
× 𝑌)

if for any admissible test function 𝜑(𝑥, 𝑦, 𝑡),

lim
𝜀→0

∫
Ω𝑇

V
𝜀

(𝑥, 𝑡) 𝜑 (𝑥,
𝑥

𝜀
, 𝑡) 𝑑𝑥 𝑑𝑡

= ∫
Ω𝑇×𝑌

V (𝑥, 𝑦, 𝑡) 𝜑 (𝑥, 𝑦, 𝑡) 𝑑𝑦 𝑑𝑥 𝑑𝑡.

(21)

This convergence is denoted by V𝜀(𝑥, 𝑡) 2𝑠

⇀ V(𝑥, 𝑦, 𝑡).

The method of the local energy characteristics, generally
speaking, deals with nonperiodic structures. We often make
use of the following definition.

Definition 6 (distribution in an asymptotically regular way).
The set F𝜀 is said to be distributed in an asymptotically
regular way inΩ, if for any ball𝑉(𝑦, 𝑟) of radius 𝑟 centered at
𝑦 ∈ Ω and 𝜀 > 0 small enough (𝜀 ≤ 𝜀

0
(𝑟)), 𝑉(𝑦, 𝑟) ∩F𝜀

̸= 0

and 𝑉(𝑦, 𝑟) ∩ (Ω \F𝜀

) ̸= 0.

4. Γ-Convergence and Homogenization
of Functionals with Rapidly Oscillating
Coefficients in Sobolev Spaces with
Variable Exponents

Let Ω be a bounded domain in R𝑛 (𝑛 ≥ 2) with a sufficiently
smooth boundary and denote that 𝑌 = ]0, 1[

𝑛. We assume
that a family of continuous functions {𝑝

𝜀
}
(𝜀>0)

belongs to the
class, L𝜀

𝑝0(⋅)
, and we also suppose that

(H.1) 𝑎 = 𝑎(𝑦) and 𝑏 = 𝑏(𝑦) are 𝑌-periodic measurable
functions such that

0 < 𝑎
0
≤ 𝑎 (𝑦) ≤ 𝑎

1
, 0 < 𝑏

0
≤ 𝑏 (𝑦) ≤ 𝑏

1
. (22)

(H.2) 𝑓 ∈ 𝐶(Ω).

For the notational convenience, we set

𝑎
𝜀

𝑝𝜀
(𝑥) =

1

𝑝
𝜀
(𝑥)

𝑎 (
𝑥

𝜀
) ,

𝑏
𝜀

𝑝𝜀
(𝑥) =

1

𝑝
𝜀
(𝑥)

𝑏 (
𝑥

𝜀
) .

(23)

In the space 𝐿𝑝𝜀(⋅)(Ω), we define the functional 𝐽𝜀 : 𝐿𝑝𝜀(⋅)
(Ω) → R:
𝐽
𝜀

[𝑢]

def
=

{{{{

{{{{

{

∫
Ω

{𝑎
𝜀

𝑝𝜀
(𝑥) |∇𝑢|

𝑝𝜀(𝑥) + 𝑏
𝜀

𝑝𝜀
(𝑥) |𝑢|

𝑝𝜀(𝑥)

−𝑓 (𝑥) 𝑢} 𝑑𝑥, if 𝑢∈𝑊1,𝑝𝜀(⋅)(Ω),

+∞, otherwise.
(24)

We study the asymptotic behavior of 𝐽𝜀 and itsminimizers
as 𝜀 → 0. Our analysis relies on the Γ-convergence approach
in Sobolev spaces with variable exponents.Themain result of
the section is the following.

Theorem 7. Let assumptions (𝐻.1) and (𝐻.2) be fulfilled.
Then

(i) The functional 𝐽𝜀, Γ
𝑝0(⋅)

-converges to the functional
𝐽
ℎ𝑜𝑚

: 𝐿
𝑝0(⋅)(Ω) → R ∪ {+∞} given by

𝐽
ℎ𝑜𝑚

[𝑢]

=

{{{

{{{

{

∫
Ω

{T (𝑥, ∇𝑢) + 𝛽
𝑝
(𝑥) |𝑢|

𝑝0(𝑥)

−𝑓 (𝑥) 𝑢} 𝑑𝑥, 𝑖𝑓 𝑢∈𝑊
1,𝑝0(Ω) ,

+∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(25)

where
T (𝑥, b)

= inf { 1

𝑝
0
(𝑥)

∫
𝑌

𝑎 (𝑦)
󵄨󵄨󵄨󵄨∇V (𝑦)

+b󵄨󵄨󵄨󵄨
𝑝0(𝑥)

𝑑𝑦 : V ∈ 𝑊
1,𝑝0(𝑥)

# (𝑌) } ,

𝛽
𝑝
(𝑥)

=
1

𝑝
0
(𝑥)

∫
𝑌

𝑏 (𝑦) 𝑑𝑦.

(26)

(ii) The minimizer 𝑢𝜀 of the functional 𝐽𝜀 converges to the
minimizer 𝑢 of the functional 𝐽

ℎ𝑜𝑚
strongly in the space

𝐿
𝑝0(⋅)(Ω).

The Scheme of the Proof of Theorem 7 (See [18] for More
Details) Is as Follows. We start our analysis by proving the
“lim inf”-inequality. The proof of this inequality is done in
two main steps. First we introduce an auxiliary functional
𝐽̃
𝜀

: 𝐿
𝜋𝜀(⋅)(Ω) → R:

𝐽̃
𝜀

[𝑢]

=

{{{

{{{

{

∫
Ω

{𝑎
𝜀

𝑝𝜀
(𝑥) |∇𝑢|

𝜋𝜀(𝑥) + 𝑏
𝜀

𝑝𝜀
(𝑥) |𝑢|

𝑝𝜀(𝑥)

−𝑓 (𝑥) 𝑢} 𝑑𝑥, if 𝑢∈𝑊1,𝜋𝜀(⋅)(Ω);

+∞, otherwise,
(27)
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where 𝜋
𝜀
(𝑥) = min{𝑝

𝜀
(𝑥), 𝑝

0
(𝑥)} and prove the “lim inf”-

inequality for this functional. Then, at the second step, we
show that the “lim inf”-inequality for the auxiliary functional
𝐽̃
𝜀 implies the “lim inf”-inequality for 𝐽𝜀.Then, using a special
test function and the Meyers estimate (see [6]), we obtain the
“lim sup”-inequality. Finally, we prove the convergence of the
minimizers. This completes the proof of Theorem 7.

5. Homogenization of the Dirichlet
Problem and Related Questions

5.1. Homogenization of the Dirichlet Problem. Let Ω be a
bounded domain in R𝑛

(𝑛 ≥ 2) with sufficiently smooth
boundary. Let F𝜀 be an open subset in Ω. Here 𝜀 is a small
parameter characterizing the scale of the microstructure. We
assume that F𝜀 is distributed in an asymptotically regular
way inΩ and we set

Ω
𝜀

= Ω \F
𝜀

. (28)

Let 𝑝
𝜀
= 𝑝

𝜀
(𝑥) be a continuous function defined in the

domain Ω. We assume that, for any 𝜀 > 0, it satisfies the
following conditions:

(A.1.1) the function 𝑝
𝜀
(𝑥) is bounded in the following sense:

1 < 𝑝
−

≤ 𝑝
−

𝜀
≡ min

𝑥∈Ω

𝑝
𝜀
(𝑥) ≤ 𝑝

𝜀
(𝑥) ≤ max

𝑥∈Ω

𝑝
𝜀
(𝑥)

≡ 𝑝
+

𝜀
≤ 𝑝

+

≤ 𝑛 inΩ;
(29)

(A.1.2) the function 𝑝
𝜀
satisfies the log-Hölder continuity

property;
(A.1.3) the function 𝑝

𝜀
converges uniformly in Ω to a func-

tion 𝑝
0
, where the limit function 𝑝

0
is assumed to

satisfy the log-Hölder continuity property;
(A.1.4) the function 𝑝

𝜀
is such that 𝑝

𝜀
(𝑥) ≥ 𝑝

0
(𝑥) inΩ.

We consider the following variational problem:

𝐽
𝜀

[𝑢]
def
= ∫

Ω
𝜀

F
𝜀
(𝑥, 𝑢, ∇𝑢) 𝑑𝑥 󳨀→ min, 𝑢 ∈ 𝑊

1,𝑝𝜀(⋅)

0
(Ω

𝜀

) ,

(30)

where

F
𝜀
(𝑥, 𝑢, ∇𝑢) =

1

𝑝
𝜀
(𝑥)

|∇𝑢|
𝑝𝜀(𝑥) +

1

𝑝
𝜀
(𝑥)

|𝑢|
𝑝𝜀(𝑥) − 𝑓 (𝑥) 𝑢,

(31)

and 𝑓 ∈ 𝐶
1

(Ω). It is known from [1–3, 6] that for each 𝜀 > 0,
there exists a unique solution (minimizer) 𝑢𝜀 ∈ 𝑊

1,𝑝𝜀(⋅)(Ω
𝜀

)

of problem (30). Let us extend 𝑢
𝜀 in F𝜀 by zero (keeping

for it the same notation). Then we obtain the family {𝑢𝜀} ⊂
𝑊

1,𝑝𝜀(⋅)(Ω). We study the asymptotic behavior of 𝑢𝜀 as 𝜀 →

0.
Instead of the classical periodicity assumption on the

microstructure of the perforated domain Ω
𝜀, we impose

certain conditions on the local energy characteristic of the set

F𝜀. To this end we introduce 𝐾𝑧

ℎ
an open cube centered at

𝑧 ∈ Ω with length equal to ℎ (0 < 𝜀 ≪ ℎ < 1), and we set

𝑐
𝜀,ℎ

(𝑧, 𝑏)

= inf
V𝜀
∫
𝐾
𝑧

ℎ

{
1

𝑝
𝜀
(𝑥)

󵄨󵄨󵄨󵄨∇V
𝜀󵄨󵄨󵄨󵄨

𝑝𝜀(𝑥)

+ ℎ
−𝑝
+
−𝛾󵄨󵄨󵄨󵄨V

𝜀

− 𝑏
󵄨󵄨󵄨󵄨

𝑝𝜀(𝑥)

}𝑑𝑥,

(32)

where 𝛾 > 0, and the infimum is taken over V𝜀 ∈ 𝑊1,𝑝𝜀(⋅)(Ω)

that equal zero inF𝜀. We assume that

(C.1.1) there exists a continuous function 𝑐(𝑥, 𝑏) such that for
any 𝑥 ∈ Ω, any 𝑏 ∈ R, and a certain 𝛾 = 𝛾

0
> 0,

lim
ℎ→0

lim
𝜀→0

ℎ
−𝑛

𝑐
𝜀,ℎ

(𝑧, 𝑏) = lim
ℎ→0

lim
𝜀→0

ℎ
−𝑛

𝑐
𝜀,ℎ

(𝑧, 𝑏) = 𝑐 (𝑥, 𝑏) ;

(33)

(C.1.2) there exists a constant 𝐴 independent of 𝜀 such that
for any 𝑥 ∈ Ω,

lim
ℎ→0

lim
𝜀→0

ℎ
−𝑛

𝑐
𝜀,ℎ

(𝑧, 𝑏) ≤ 𝐴 (1 + |𝑏|
𝑝0(𝑥)) . (34)

The first main result of Section 5 is the following.

Theorem 8. Let conditions (A.1.1)–(A.1.4) on the function 𝑝
𝜀

and conditions (C.1.1) and (C.1.2) on the local characteristic be
satisfied. Then 𝑢𝜀 the solution (minimizer) of the variational
problem (30) (extended by zero in F𝜀) converges weakly in
𝑊

1,𝑝0(⋅)(Ω) to 𝑢 the solution (minimizer) of

𝐽
ℎ𝑜𝑚

[𝑢]
def
= ∫

Ω

{F
0
(𝑥, 𝑢, ∇𝑢) + 𝑐 (𝑥, 𝑢)−𝑓 (𝑥) 𝑢} 𝑑𝑥 󳨀→ min,

𝑢 ∈ 𝑊
1,𝑝0(⋅)

0
(Ω) ,

(35)

where

F
0
(𝑥, 𝑤, ∇𝑤)

def
=

1

𝑝
0
(𝑥)

|∇𝑤|
𝑝0(𝑥) +

1

𝑝
0
(𝑥)

|𝑤|
𝑝0(𝑥) − 𝑔 (𝑥)𝑤.

(36)

TheScheme of the Proof ofTheorem8 (See [19] forMoreDetails)
Is as Follows. First, it follows from (6), (30), and the regularity
properties of the functions 𝑓, 𝑝

𝜀
that ‖𝑢𝜀‖

𝑊
1,𝑝𝜀(⋅)(Ω

𝜀
)
≤ 𝐶. We

extend𝑢𝜀 by zero to the setF𝜀 and consider {𝑢𝜀} as a sequence
in 𝑊

1,𝑝𝜀(⋅)(Ω). Then ‖𝑢
𝜀

‖
𝑊
1,𝑝𝜀(⋅)(Ω)

≤ 𝐶. Condition (A.1.4)
immediately implies that

󵄩󵄩󵄩󵄩𝑢
𝜀󵄩󵄩󵄩󵄩𝑊1,𝑝0(⋅)(Ω)

≤ 𝐶. (37)

Hence, one can extract a subsequence {𝑢𝜀, 𝜀 = 𝜀
𝑘
→ 0}

that converges weakly to a function 𝑢 ∈ 𝑊1,𝑝0(⋅)(Ω). We will
show that𝑢 is the solution of the variational problem (35).The
proof is done in two mains steps. On the first step, we prove
the “lim sup”-inequality (the upper bound for the functional
𝐽
𝜀). To this end, we cover the domain Ω by the cubes 𝐾𝛼

ℎ

of length ℎ > 0 centered at the points 𝑥𝛼, where {𝑥𝛼} be a
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periodic grid inΩ with a period ℎ󸀠 = ℎ− ℎ1+𝛾/𝑝
+

(𝜀 ≪ ℎ ≪ 1,
0 < 𝛾 < 𝑝

+). We associate with this covering a partition
of unity {𝜑

𝛼
}: 0 ≤ 𝜑

𝛼
(𝑥) ≤ 1; 𝜑

𝛼
(𝑥) = 0 for 𝑥 ∉ 𝐾

𝛼

ℎ
;

𝜑
𝛼
(𝑥) = 1 for 𝑥 ∈ 𝐾

𝛼

ℎ
\ ∪

𝛽 ̸= 𝛼
𝐾

𝛽

ℎ
; ∑

𝛼
𝜑
𝛼
(𝑥) = 1 for 𝑥 ∈ Ω;

|∇𝜑
𝛼
(𝑥)| ≤ 𝐶ℎ

−1−𝛾/𝑝
+

. Then we construct the function 𝑤
𝜀

ℎ

using the minimizers V𝜀
𝛼
= V𝜀

𝛼
(𝑥) of (32) for 𝑧 = 𝑥𝛼. We show

that, for any 𝑤 ∈ 𝑊
1,𝑝0(⋅)

0
(Ω),

lim
ℎ→0

lim
𝜀→0

𝐽
𝜀

[𝑤
𝜀

ℎ
] ≤ 𝐽hom [𝑤] , (38)

and, therefore,

lim
𝜀→0

𝐽
𝜀

[𝑢
𝜀

] ≤ 𝐽hom [𝑤] . (39)

On the second step, we prove the “lim inf”-inequality (the
lower bound for the functional 𝐽𝜀) using the definition of
the local energy characteristic and the convexity of our
functional:

lim
𝜀=𝜀𝑘→0

𝐽
𝜀

[𝑢
𝜀

] ≥ 𝐽hom [𝑢] . (40)

Finally it follows from (39) and (40) that

𝐽hom [𝑢] ≤ 𝐽hom [𝑤] , (41)

for any 𝑤 ∈ 𝑊
1,𝑝0(⋅)(Ω) such that 𝑤 = 0 on 𝜕Ω. This means

that any weak limit of the solution of problem (30) extended
to the set F𝜀 by zero is the solution of the homogenized
problem (35). This completes the proof of Theorem 8. The
generalization of Theorem 8 is given in [17].

5.2. Nonlocal Effects in Homogenization of 𝑝
𝜀
(𝑥)-Laplacian

in Perforated Domains. Let Ω be a domain in R𝑛 (𝑛 ≥ 3)
defined in the previous section. LetF𝜀 be an open connected
subset inΩ like a net. We assume that the setF𝜀 satisfies the
following conditions:

(F.1.1) F𝜀

⋐ Ω
𝑑
, where Ω

𝑑
= {𝑥 ∈ Ω : dist(𝑥, 𝜕Ω) ≥ 𝑑} with

𝑑 > 0 independent of 𝜀;
(F.1.2) F𝜀 is distributed in an asymptotically regular way in

Ω
𝑑
;

(F.1.3) the subdomainΩ𝜀
def
= Ω \F𝜀 is a connected set.

We assume that for any 𝜀 > 0, the function 𝑝
𝜀

=

𝑝
𝜀
(𝑥) satisfies the conditions (A.1.1)–(A.1.4) from Section 5.1.

In the space 𝑊
1,𝑝𝜀(⋅)(Ω

𝜀

), we define the functional 𝐽𝜀 :

𝑊
1,𝑝𝜀(⋅)(Ω

𝜀

) → R,

𝐽
𝜀

[𝑢] =

{

{

{

∫
Ω
𝜀

F
𝜀
(𝑥, 𝑢, ∇𝑢) 𝑑𝑥 if 𝑢 ∈ 𝑊1,𝑝𝜀(⋅) (Ω

𝜀

) ,

+∞ otherwise,
(42)

where F
𝜀
(𝑥, 𝑢, ∇𝑢) is defined in (31) and we consider the

following variational problem:

𝐽
𝜀

[𝑢
𝜀

] 󳨀→ inf , 𝑢
𝜀

∈ 𝑊
1,𝑝𝜀(⋅) (Ω

𝜀

) ;

𝑢
𝜀

= 𝐴
𝜀 on 𝜕F

𝜀

, 𝑢
𝜀

= 0 on 𝜕Ω,

(43)

where𝐴𝜀 is an unknown constant. It is known from [1, 2] that
for each 𝜀 > 0, there exists a unique solution 𝑢𝜀 ∈ 𝑊1,𝑝𝜀(⋅)(Ω

𝜀

)

of the variational problem (43). We extend 𝑢𝜀 by the equality
𝑢
𝜀

= 𝐴
𝜀 in F𝜀 and keep for it the same notation. Thus,

we obtain the family {𝑢𝜀}
(𝜀>0)

⊂ 𝑊
1,𝑝𝜀(⋅)(Ω). We study the

asymptotic behavior of the family {𝑢𝜀}
(𝜀>0)

as 𝜀 → 0.
Let us introduce the functional 𝐽hom : 𝑊

1,𝑝0(⋅)(Ω) → R,

𝐽hom [𝑢, 𝐴]

=

{{{

{{{

{

∫
Ω

{F
0
(𝑥, 𝑢, ∇𝑢)

+1
𝑑
(𝑥) 𝑐 (𝑥, 𝑢−𝐴) 𝑑𝑥} if 𝑢∈𝑊1,𝑝0(⋅) (Ω) ,

+∞ otherwise,

(44)

where 1
𝑑
= 1

𝑑
(𝑥) is the characteristic function of the domain

Ω
𝑑
and F

0
(𝑥, 𝑢, ∇𝑢) is defined in (36).

The main result of the section is the following.

Theorem 9. Let 𝑢𝜀 be a solution of (43) extended by the
equality 𝑢𝜀(𝑥) = 𝐴𝜀 inF𝜀. Assume that the conditions (F.1.1)–
(F.1.3), (A.1.1)–(A.1.4), and(C.1.1)-(C.1.2) on the set F𝜀, the
functions 𝑝

𝜀
, and the local characteristic 𝑐𝜀,ℎ(𝑥, 𝑏) are satisfied.

Then there is a subsequence {𝑢𝜀, 𝜀 = 𝜀
𝑘
→ 0} that converges

weakly in𝑊1,𝑝0(⋅)(Ω) to a function 𝑢 such that the pair {𝑢, 𝐴}
is a solution of

𝐽
ℎ𝑜𝑚

[𝑢, 𝐴] 󳨀→ inf , 𝑢 ∈ 𝑊
1,𝑝0(⋅)

0
(Ω) w𝑖𝑡ℎ 𝐴 = lim

𝜀→0

𝐴
𝜀

.

(45)

Remark 10. It is important to notice that the constant 𝐴
in (45) remains unknown. Suppose, in addition, that the
function 𝑐(𝑥, 𝑏) is differentiable with respect to the argument
𝑏. Then it is easy to see that Euler’s equation for the homoge-
nized problem (45) reads

− div (|∇𝑢|𝑝0(𝑥)−2∇𝑢) + |𝑢|𝑝0(𝑥)−2𝑢 + 1
𝑑
(𝑥) 𝑐

󸀠

𝑢
(𝑥, 𝑢 − 𝐴)

= 𝑓 (𝑥) inΩ;

𝑢 = 0 on 𝜕Ω, ∫
Ω𝑑

𝑐
󸀠

𝑢
(𝑥, 𝑢 − 𝐴) 𝑑𝑥 = 0,

(46)

where 𝑐󸀠
𝑢
denotes the partial derivative of the function 𝑐 with

respect to 𝑢. This means that the homogenized problem (45)
is nonlocal.

Theorem 9 is proved by arguments similar to those from
the proof of Theorem 8.

5.3. A Periodic Example. Theorems 8 and 9 provide sufficient
conditions for the existence of the homogenized problem
(45). The goal of this section is to prove that, for appropriate
examples, all the conditions ofTheorems 8 and 9 are satisfied
and to compute the function 𝑐(𝑥, 𝑢) and the constant𝐴 in the
homogenized problem (45) explicitly.

LetΩ be a bounded Lipschitz domain inR3 and let Ω
𝑑
be

the subdomain ofΩ defined in condition (F.1.1). LetF𝜀 be an
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𝜀-periodic coordinate lattice inR3 formed by the intersecting
circular cylinders of radius 𝑟

𝜀
,

𝑟
𝜀
= 𝑒

−1/𝜀
2

. (47)

We setF𝜀

= F𝜀

∩ Ω
𝑑
andΩ𝜀

= Ω \F𝜀.
Let {𝑝

𝜀
}
(𝜀>0)

be a class of continuous functions defined in
the domain Ω. We assume that, for any 𝜀 > 0, 𝑝

𝜀
satisfies

the log-Hölder continuity condition and the following con-
dition:

(B.1.2) the functions 𝑝
𝜀
are given by

𝑝
𝜀
(𝑥) = {

2 + ℓ (𝑥) 𝜀
2 in N (F𝜀

, 𝜀
2

) ,

2 + ℓ
𝜀
(𝑥) elsewhere, (48)

whereN(O, 𝛿) denotes the cylindrical 𝛿-neighborhood of the
setO andwhere ℓ and ℓ

𝜀
are smooth strictly positive functions

inΩ, moreover, max
𝑥∈Ω

ℓ
𝜀
(𝑥) = 𝑜(1) as 𝜀 → 0.

Consider the boundary value problem

− div (󵄨󵄨󵄨󵄨∇𝑢
𝜀󵄨󵄨󵄨󵄨

𝑝𝜀(𝑥)−2

∇𝑢
𝜀

) +
󵄨󵄨󵄨󵄨𝑢

𝜀󵄨󵄨󵄨󵄨

𝑝𝜀(𝑥)−2

𝑢
𝜀

= 𝑓 (𝑥) inΩ𝜀

,

𝑢
𝜀

= 𝐴
𝜀 on 𝜕F

𝜀

; 𝑢
𝜀

= 0 on 𝜕Ω,

∫
𝜕F𝜀

󵄨󵄨󵄨󵄨∇𝑢
𝜀󵄨󵄨󵄨󵄨

𝑝𝜀(𝑥)−2
𝜕𝑢

𝜀

𝜕]⃗
𝑑𝑠 = 0,

(49)

where𝐴𝜀 is an unknown constant. It is known from [1, 2] that,
for each 𝜀 > 0, there exists a unique solution 𝑢𝜀 ∈ 𝑊1,𝑝𝜀(⋅)(Ω

𝜀

)

of problem (49). We extend 𝑢𝜀 by the equality 𝑢𝜀 = 𝐴𝜀 inF𝜀

and keep for it the same notation.The asymptotic behavior of
the solutions of problem (49) is given now by the following
theorem.

Theorem 11. Let 𝑢𝜀 be a solution of (49) extended by the
equality 𝑢𝜀(𝑥) = 𝐴

𝜀 in F𝜀. Assume that the condition (B.1.2)
on the function 𝑝

𝜀
is satisfied. Then the sequence {𝑢𝜀}

(𝜀>0)

converges weakly in𝐻1

(Ω) to a function 𝑢 solution of

−Δ𝑢 + 𝑢 + 𝜇 (𝑥) (𝑢 − A
ℓ
(𝑢)) = 𝑔 (𝑥) 𝑖𝑛Ω,

𝑢 = 0 𝑜𝑛 𝜕Ω,

(50)

where

𝜇 (𝑥) = 6𝜋 1
𝑑
(𝑥)

𝑒
ℓ(𝑥)

− 1

ℓ (𝑥)
,

A
ℓ
(𝑢) = (∫

Ω𝑑

𝜇 (𝑥) 𝑑𝑥)

−1

∫
Ω𝑑

𝜇 (𝑥) 𝑢 (𝑥) 𝑑𝑥.

(51)

Theorem 11 is proved in [23] and is based essentially
on the calculation of the local energy characteristic for this
periodic structure.

Remark 12. It is easy to see from the proof ofTheorem 11 that
if in (48) we replace ℓ(𝑥)𝜀2 by a function ℓ̃

𝜀
with max

𝑥∈Ω
ℓ̃
𝜀
=

𝑜(𝜀
2

), then 𝜇(𝑥) = 6𝜋 1
𝑑
(𝑥) as in the linear case.

Remark 13. It is shown in [27] Paragraph 3.3 that for the
integrands of growth |∇𝑢𝜀|2 ln |∇𝑢𝜀|, the 3D lattice becomes
extremely thin. Moreover, for the integrands of growth
|∇𝑢

𝜀

|
2+𝛿, where 𝛿 > 0 is a parameter independent of 𝜀, there is

no 3D lattice which admits nontrivial homogenization result,
because the capacity of the lattice goes to infinity as 𝜀 → 0.
Theorem 11 shows the maximal possible polynomial growth
of the integrand (in a small neighborhood of the lattice)
which admits a nontrivial homogenization result.

6. Homogenization of the Neumann Problem

6.1. Statement of the Problem and Main Results. Let Ω be a
bounded Lipschitz domain in R𝑛 (𝑛 ≥ 2). Let {F𝜀

}
(𝜀>0)

be a
family of open subsets inΩ; in the sequel 𝜀 is a small positive
parameter characterizing the microscopic length scale. We
assume that the setF𝜀 consists of𝑁

𝜀
(𝑁

𝜀
→ +∞ as 𝜀 → 0)

small isolated components such that their diameters go to
zero as 𝜀 → 0 and F𝜀 is distributed in an asymptotically
regular way inΩ. We set

Ω
𝜀

= Ω \F𝜀. (52)

We assume that a family of continuous functions {𝑝
𝜀
}
(𝜀>0)

belongs to the class L𝜀

𝑝0(⋅)
. On the space 𝐿𝑝𝜀(⋅)(Ω𝜀

), we define
the functional 𝐽𝜀 : 𝐿𝑝𝜀(⋅)(Ω𝜀

) → R ∪ {+∞}:

𝐽
𝜀

[𝑢] =

{

{

{

∫
Ω
𝜀

F
𝜀
(𝑥, 𝑢, ∇𝑢) 𝑑𝑥, if 𝑢 ∈ 𝑊1,𝑝𝜀(⋅) (Ω

𝜀

) ,

+∞, otherwise,
(53)

where F
𝜀
(𝑥, 𝑢, ∇𝑢) is defined in (31) and 𝑓 ∈ 𝐶(Ω).

We study the asymptotic behavior of 𝐽𝜀 and their mini-
mizers as 𝜀 → 0. The classical periodicity assumption is here
substituted by an abstract one covering a variety of concrete
behaviors, such as the periodicity, the almost periodicity, and
many more besides. For this, we assume that Ω𝜀

⊂ Ω is a
disperse medium; that is, the following assumptions hold:

(C.2.1) the local concentration of the set Ω𝜀 has a positive
continuous limit, that is, the indicator ofΩ𝜀 converges
weakly in 𝐿2(Ω) to a continuous positive limit. This
implies that there exists a continuous positive func-
tion 𝜌 = 𝜌(𝑥) such that

lim
ℎ→0

lim
𝜀→0

ℎ
−𝑛 meas (𝐾𝑥

ℎ
∩ Ω

𝜀

) = 𝜌 (𝑥) , (54)

for any open cube 𝐾𝑥

ℎ
centered at 𝑥 ∈ Ω with lengths

equal to ℎ > 0;
(C.2.2) for any 𝑞 ∈ [𝑝−

, 𝑝
+

], there exists a family of extension
operators P𝜀

𝑞
: 𝑊

1,𝑞

(Ω
𝜀

) → 𝑊
1,𝑞

(Ω) such that.

global: for any 𝑢𝜀 ∈ 𝑊1,𝑞

(Ω
𝜀

),

󵄩󵄩󵄩󵄩u
𝜀󵄩󵄩󵄩󵄩𝐿𝑞(Ω)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑢

𝜀󵄩󵄩󵄩󵄩𝐿𝑞(Ω𝜀)
,

󵄩󵄩󵄩󵄩∇u
𝜀󵄩󵄩󵄩󵄩𝐿𝑞(Ω)

≤ 𝐶
󵄩󵄩󵄩󵄩∇𝑢

𝜀󵄩󵄩󵄩󵄩𝐿𝑞(Ω𝜀)
,

(55)
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uniformly in 𝜀 > 0, where u𝜀 = P𝜀𝑢𝜀 and u𝜀 = 𝑢
𝜀 in

Ω
𝜀;

local: for any ℎ > 0 there is 𝜀
0
(ℎ) > 0 such that for

all 𝜀 < 𝜀
0
(ℎ), 𝑧 ∈ Ω and any function 𝑢 ∈ 𝑊

1,𝑞

((𝑧 +

[−2ℎ, 2ℎ]
𝑛

) ∩ Ω
𝜀

), the estimates hold

󵄩󵄩󵄩󵄩u
𝜀󵄩󵄩󵄩󵄩𝐿𝑞((𝑧+[−ℎ,ℎ]𝑛)∩Ω)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑢

𝜀󵄩󵄩󵄩󵄩𝐿𝑞((𝑧+[−2ℎ,2ℎ]𝑛)∩Ω𝜀)
,

󵄩󵄩󵄩󵄩∇u
𝜀󵄩󵄩󵄩󵄩𝐿𝑞((𝑧+[−ℎ,ℎ]𝑛)∩Ω)

≤ 𝐶
󵄩󵄩󵄩󵄩∇𝑢

𝜀󵄩󵄩󵄩󵄩𝐿𝑞((𝑧+[−2ℎ,2ℎ]𝑛)∩Ω𝜀)
.

(56)

Remark 14. Notice that in condition (C.2.2), we require the
existence of extension operators only in usual Sobolev spaces
𝑊

1,𝑞 with constant 𝑞. In this case, the extension condition is
well studied in the mathematical literature (see, e.g., [27, 30–
32]). For instance, it holds for a wide class of disperse media
(see, for instance, [27]).

Onemore condition is imposed on the local characteristic
of the set F𝜀 associated to the functional (53). In order to
formulate this condition, we denote by 𝐾

𝑧

ℎ
an open cube

centered at 𝑧 ∈ Ω with edge length ℎ (0 < 𝜀 ≪ ℎ ≪ 1)
and introduce the functional

𝑐
𝜀,ℎ

𝑝𝜀(⋅)
(𝑧, b)= inf

V𝜀
∫
𝐾
𝑧

ℎ
∩Ω
𝜀

{
1

𝑝
𝜀
(𝑥)

󵄨󵄨󵄨󵄨∇V
𝜀󵄨󵄨󵄨󵄨

𝑝𝜀(𝑥)

+ℎ
−𝑝𝜀(𝑥)−𝛾󵄨󵄨󵄨󵄨V

𝜀

−(𝑥−𝑧, b)󵄨󵄨󵄨󵄨
𝑝𝜀(𝑥)

}𝑑𝑥,

(57)

where 𝛾 > 0, b ∈ R𝑛, and the infimum is taken over V𝜀 ∈
𝑊

1,𝑝𝜀(⋅)(𝐾
𝑧

ℎ
∩ Ω

𝜀

). Here (⋅, ⋅) stands for the scalar product in
R𝑛. We assume that

(C.2.3) there is a continuous, with respect to 𝑥 ∈ Ω, function
𝑇(𝑥, b) and 𝛾 = 𝛾

0
(0 < 𝛾

0
< 𝑝

−) such that for any
{𝑝

𝜀
}
(𝜀>0)

⊂ L𝜀

𝑝0(⋅)
, any 𝑥 ∈ Ω and any b ∈ R𝑛,

lim
ℎ→0

lim
𝜀→0

ℎ
−𝑛

𝑐
𝜀,ℎ

𝑝𝜀(⋅)
(𝑥, b) = lim

ℎ→0

lim
𝜀→0

ℎ
−𝑛

𝑐
𝜀,ℎ

𝑝𝜀(⋅)
(𝑥, b) = 𝑇 (𝑥, b) .

(58)

Remark 15. Condition (C.2.3) is always fulfilled for periodic
and locally periodic structures.

Remark 16. It is crucial in condition (C.2.3) that the limit
function 𝑇(𝑥, b) does not depend on the particular choice of
the sequence 𝑝

𝜀
→ 𝑝

0
. Notice that this is always the case for

periodic and locally periodic perforated media. These media
will be considered in detail in the last section of the paper.

Now we are in position to formulate the first convergence
result of the section.

Theorem 17. Assume that {𝑝
𝜀
}
(𝜀>0)

⊂ L𝜀

𝑝0(⋅)
, and let conditions

(C.2.1)–(C.2.3) be satisfied. Then the functionals 𝐽𝜀 defined in

(53), Γ
𝑝0(⋅)

-converge to the functional 𝐽
ℎ𝑜𝑚

: 𝐿
𝑝0(⋅)(Ω) → R ∪

{+∞} given by

𝐽
ℎ𝑜𝑚

[𝑢]

=

{{{{{

{{{{{

{

∫
Ω

{𝑇 (𝑥, ∇𝑢) +
𝜌 (𝑥)

𝑝
0
(𝑥)

|𝑢|
𝑝0(𝑥)

−𝜌 (𝑥) 𝑓 (𝑥) 𝑢} 𝑑𝑥, 𝑖𝑓 𝑢∈𝑊
1,𝑝0(⋅) (Ω) ,

+∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(59)

Now let us formulate the convergence result for the
minimizers of the functionals 𝐽𝜀. Consider the variational
problem

𝐽
𝜀

[𝑢
𝜀

] 󳨀→ min, 𝑢
𝜀

∈ 𝑊
1,𝑝𝜀(⋅) (Ω

𝜀

) . (60)

According to [1–3, 6], for each 𝜀 > 0, problem (60) has a
unique solution 𝑢𝜀 ∈ 𝑊1,𝑝𝜀(⋅)(Ω

𝜀

).
The following convergence result holds.

Theorem 18. Under the assumptions of Theorem 17, the
solution 𝑢𝜀 of the variational problem (60) converges strongly
in 𝐿𝑝0(⋅)(Ω𝜀

) to a solution of the problem

𝐽
ℎ𝑜𝑚

[𝑢] 󳨀→ min, 𝑢 ∈ 𝑊
1,𝑝0(⋅)

(Ω) . (61)

The Scheme of the Proof of Theorems 17 and 18 (See [22]
for More Details) Is as Follows. The “lim inf”-inequality is
proved in two steps as in Theorem 7 by introducing an
auxiliary functional.The “lim sup”-inequality is proved by the
arguments similar to those from the proof of Theorem 8.

6.2. A Periodic Example. Theorems 17 and 18 of Section 6.1
provide sufficient conditions for the existence of the Γ-
limit functional (59) and for the convergence of minimizers
of the variational problem (60) to the minimizer of the
homogenized variational problem (61). It is important to
show that the class of functions which satisfy the conditions
of these theorems is not empty. The goal of this section is
to prove that for periodic and locally periodic media all
conditions of the above-mentioned theorems are satisfied and
to compute the coefficients of the homogenized functional
(59) in terms of solutions of auxiliary cell problems. In
fact, conditions (C.2.1) and (C.2.3) are always satisfied in
the periodic case if the boundary of inclusions is regular
enough, and that the extension condition (C.2.2) can also
be replaced with the assumption on the regularity of the
inclusions geometry.

Let Ω be a bounded domain in R𝑛 (𝑛 ≥ 2) with
sufficiently smooth boundary.We assume that in the periodic
cell 𝑌 = ]0, 1[

𝑛, there is an obstacle 𝐹 ⋐ 𝑌 being an open
set with a sufficiently smooth boundary 𝜕𝐹. We assume that
this geometry is repeated periodically in the whole R𝑛. The
geometric structure within the domain Ω is then obtained
by intersecting the 𝜀-multiple of this geometry with Ω. Let
{𝑥

k,𝜀
} be an 𝜀-periodic grid inR𝑛: 𝑥k,𝜀 = 𝜀k, k ∈ Z𝑛. Then we
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defineF𝜀 as the union of setsF𝜀

k ⊂ 𝐾
k
𝜀
obtained from 𝜀𝐹 by

translations with vectors 𝜀k, k ∈ Z𝑛, that is,

F
𝜀

k = 𝜀k + 𝜀𝐹, F
𝜀

= ⋃

k
(F

𝜀

k ∩ Ω) , (62)

and𝐾k
𝜀
= 𝜀k + 𝜀𝑌. Notice that the geometry of the inclusions

having a nontrivial intersection with the domain boundary
might be rather complicated. In particular, the extension
condition (C.2.2) might be violated for these inclusions. To
avoid these technical difficulties, we assume that the domain
Ω is not perforated in a small neighborhood of its boundary
𝜕Ω. We set

Ω
𝜀 def
= Ω \F

𝜀

. (63)

Let a family of continuous functions {𝑝
𝜀
}
(𝜀>0)

belongs to
the class L𝜀

𝑝0(⋅)
. On the space 𝐿𝑝𝜀(⋅)(Ω𝜀

), we define the func-
tional 𝐽𝜀 : 𝐿𝑝𝜀(⋅)(Ω𝜀

) → R ∪ {+∞}:

𝐽
𝜀

[𝑢]

=

{{{{{

{{{{{

{

∫
Ω
𝜀

{
1

𝑝
𝜀
(𝑥)

(|∇𝑢|
𝑝𝜀(𝑥) + |𝑢|

𝑝𝜀(𝑥))

−𝑓 (𝑥) 𝑢} 𝑑𝑥, if 𝑢∈𝑊1,𝑝𝜀(⋅) (Ω
𝜀

) ,

+∞, otherwise,
(64)

where 𝑓 ∈ 𝐶(Ω).
We study the asymptotic behavior of the functional 𝐽𝜀 and

its minimizer as 𝜀 → 0. To formulate the main result of this
section we will introduce some notation. We denote by 𝑈b

=

𝑈
b
(𝑝, 𝑦) a minimizer of the following variational problem:

∫
𝑌
⋆

1

𝑝

󵄨󵄨󵄨󵄨󵄨
∇
𝑦
𝑈

b
− b󵄨󵄨󵄨󵄨󵄨

𝑝

𝑑𝑦 󳨀→ min, 𝑢 ∈ 𝑊
1,𝑝

per (𝑌
⋆

) , (65)

where 𝑌⋆

= 𝑌 \ 𝐹, and b = (𝑏
1
, 𝑏

2
, . . . , 𝑏

𝑛
) is a vector in R𝑛,

and 𝑝 > 1 is a parameter.
If 𝑝 ≥ 2, then the solution 𝑈b coincides with a unique

solution in𝑊1,𝑝

per (𝑌
⋆

) of the following cell problem:

div
𝑦
(
󵄨󵄨󵄨󵄨󵄨
∇
𝑦
𝑈

b󵄨󵄨󵄨󵄨󵄨
𝑝−2

∇
𝑦
𝑈

b
) = 0 in𝑌⋆

,

(
󵄨󵄨󵄨󵄨󵄨
∇
𝑦
𝑈

b󵄨󵄨󵄨󵄨󵄨
𝑝−2

∇
𝑦
𝑈

b
− b, ]⃗) = 0 on 𝜕𝐹,

𝑦 󳨀→ 𝑈
b
(𝑦) 𝑌-periodic,

(66)

here ]⃗ is the outward normal to 𝜕𝐹.
The following result holds.

Theorem 19. The sequence of functionals {𝐽𝜀}
(𝜀>0)

defined in
(64) Γ

𝑝0(⋅)
-converges to the functional 𝐽

ℎ𝑜𝑚
: 𝐿

𝑝0(⋅)(Ω) → R ∪

{+∞} given by

𝐽
ℎ𝑜𝑚

[𝑢]

=

{{{{{

{{{{{

{

∫
Ω

{𝑇 (𝑥, ∇𝑢) +
𝜌

𝑝
0
(𝑥)

|𝑢|
𝑝0(𝑥)

−𝜌𝑓 (𝑥) 𝑢} 𝑑𝑥, 𝑖𝑓 𝑢∈𝑊
1,𝑝0(⋅) (Ω) ,

+∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(67)

where

𝜌 = meas 𝑌⋆

,

𝑇 (𝑥, b) = ∫
𝑌
⋆

1

𝑝
0
(𝑥)

󵄨󵄨󵄨󵄨󵄨
∇
𝑦
𝑈

b
(𝑝

0
(𝑥) , 𝑦) − b󵄨󵄨󵄨󵄨󵄨

𝑝0(𝑥)

𝑑𝑦.

(68)

Moreover, a minimizer 𝑢𝜀 of the functional (64) converges
strongly in the space 𝐿

𝑝0(⋅)(Ω
𝜀

) to 𝑢 the minimizer of the
homogenized functional (67).

Notice that Theorem 19 (see [22]) can be proved in two
different ways. One of them is to check that under the
assumptions of Theorem 19 conditions (C.2.1)–(C.2.3) are
satisfied and that the characteristics introduced in conditions
(C.2.1) and (C.2.3) coincide with those defined in (68). On
the other hand, in the periodic case, the direct Γ-convergence
techniques can be applied. This allows us to obtain formula
(68) by means of Γ-convergence approach used in periodic
homogenization.

7. Homogenization of Quasilinear Elliptic
Equations with Nonstandard Growth in
High-Contrast Media

7.1. Statement of the Problem and the Main Result. Let Ω =

Ω
𝜀

𝑓
∪ Ω𝜀

𝑚
be a bounded domain of R𝑛 (𝑛 ≥ 2) with Lipschitz

boundary 𝜕Ω. Here {Ω𝜀

𝑚
}
(𝜀>0)

is a family of open subsets inΩ.
We assume that the setΩ𝜀

𝑚
is distributed in an asymptotically

regular way in Ω; moreover, for the sake of simplicity, we
suppose thatΩ𝜀

𝑚
∩ 𝜕Ω = 0.

Remark 20. In the framework of the method of local energy
characteristics presented in the section, we do not specify the
geometrical structure of the set Ω𝜀

𝑚
. Generally speaking, it

may consist of 𝑁
𝜀
(𝑁

𝜀
→ +∞ as 𝜀 → 0) small isolated

components such that their diameters go to zero as 𝜀 → 0

or it may be defined as fibres becomingmore andmore dense
as 𝜀 → 0, such that the diameters of the fibers go to zero as
𝜀 → 0.

We assume that the family of functions {𝑝
𝜀
}
(𝜀>0)

belongs
to the class L𝜀

𝑝0(⋅)
. Let 𝜎 ∈ 𝐶(Ω) be such that
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(A.3.4) there exist two real numbers 𝜎− and 𝜎+ such that the
function 𝜎 is bounded in the following sense:

0 < 𝜎
−

≡ min
𝑥∈Ω

𝜎 (𝑥) ≤ 𝜎 (𝑥) ≤ max
𝑥∈Ω

𝜎 (𝑥)

≡ 𝜎
+

< min
𝑥∈Ω

𝑝
0
(𝑥) 𝑛

𝑛 − 𝑝
0
(𝑥)

inΩ,
(69)

(A.3.5) the function 𝜎 satisfies the log-Hölder continuity
property.

Let us now define the variational problem under con-
sideration. To this end, we consider the functional 𝐽𝜀 :

𝑊
1,𝑝𝜀(⋅)(Ω) → R ∪ {+∞},

𝐽
𝜀

[𝑢]
def
=

{

{

{

∫
Ω

G
𝜀
(𝑥, 𝑢, ∇𝑢) 𝑑𝑥 if 𝑢 ∈ 𝑊1,𝑝𝜀(⋅) (Ω) ,

+∞ otherwise,
(70)

where

G
𝜀
(𝑥, 𝑢, ∇𝑢)

def
= 𝜘

𝜀
(𝑥) |∇𝑢|

𝑝𝜀(𝑥) +
1

𝜎 (𝑥)
|𝑢|

𝜎(𝑥)

− 𝑔
𝜀

(𝑥) 𝑢 with 𝜘
𝜀
(𝑥)

def
=
𝐾

𝜀
(𝑥)

𝑝
𝜀
(𝑥)

.

(71)

Here the function 𝑔𝜀 is defined by 𝑔𝜀(𝑥) def= 1𝜀
𝑓
(𝑥) 𝑔(𝑥), 𝑔 ∈

𝐶(Ω). We denote by 1𝜀
𝑘
the characteristic function of the set

Ω
𝜀

𝑘
, 𝑘 = 𝑓,𝑚. 𝐾

𝜀
is a measurable function inΩ such that

(K.1) there exists a real number 𝑘
0
such that 0 < 𝑘

0
≤

𝐾
𝜀
(𝑥) ≤ 𝑘

−1

0
inΩ𝜀

𝑓
;

(K.2) for any 𝜀 > 0, there exists a real number k
𝜀
such that

sup
𝑥∈Ω
𝜀
𝑚
𝐾

𝜀
(𝑥) = k

𝜀
> 0 and k

𝜀
→ 0 as 𝜀 → 0.

We consider the following variational problem:

𝐽
𝜀

[𝑢
𝜀

] 󳨀→ min, 𝑢
𝜀

∈ 𝑊
1,𝑝𝜀(⋅)

0
(Ω) . (72)

It is known from [1] that for each 𝜀 > 0, there exists a unique
solution 𝑢𝜀 ∈ 𝑊1,𝑝𝜀(⋅)

0
(Ω) of the variational problem (72). We

aim to study the asymptotic behavior of the family {𝑢𝜀} as
𝜀 → 0, bearing in mind that the geometry of Ω = Ω

𝜀

𝑓
∪ Ω

𝜀

𝑚

depends on 𝜀. So, we have to specify this geometry. Most of
the papers dealing with homogenization assume that Ω is a
periodic repetition of a standard cell.This classical periodicity
assumption is here substituted by an abstract one covering
a variety of concrete behaviors including periodicity and
almost periodicity.We thusmake the following assumptions:

(C.3.1) the local concentration of the set Ω𝜀

𝑓
has a positive

continuous limit; that is, the indicator of Ω𝜀

𝑓
con-

verges weakly in 𝐿2(Ω) to a continuous positive limit.
This implies that there exists a continuous positive
function 𝜌 = 𝜌(𝑥) such that

lim
ℎ→0

lim
𝜀→0

ℎ
−𝑛 meas (𝐾𝑥

ℎ
∩ Ω

𝜀

𝑓
) = 𝜌 (𝑥) (73)

for any open cube 𝐾𝑥

ℎ
centered at 𝑥 ∈ Ω with lengths

equal to ℎ > 0;

(C.3.2) for any {𝑝
𝜀
}
(𝜀>0)

⊂ L𝜀

𝑝0(⋅)
, there is a constant 𝐶

𝑝𝜀
≥ 0

such that if the function 𝑝
⋆

𝜀
is defined by 𝑝⋆

𝜀
(𝑥) =

𝑝
𝜀
(𝑥) − 𝐶

𝑝𝜀
in Ω, then:

(i) the sequence {𝑝
⋆

𝜀
}
(𝜀>0)

belongs to L𝜀

𝑝0(⋅)
, that is,

lim
𝜀→0

𝐶
𝑝𝜀
= 0;

(ii) there exists a family of extension operators P𝜀 :
𝑊

1,𝑝
⋆

𝜀
(⋅)

(Ω
𝜀

𝑓
) → 𝑊

1,𝑝
⋆

𝜀
(⋅)

(Ω) such that, for any V𝜀 ∈

𝑊
1,𝑝𝜀(⋅)(Ω

𝜀

𝑓
),

P𝜀

V
𝜀

= V
𝜀 in Ω

𝜀

𝑓
,

󵄩󵄩󵄩󵄩P
𝜀

V
𝜀󵄩󵄩󵄩󵄩𝑊1,𝑝

⋆
𝜀 (⋅)(Ω)

≤ Φ(
󵄩󵄩󵄩󵄩V

𝜀󵄩󵄩󵄩󵄩𝑊1,𝑝𝜀(⋅)(Ω𝜀
𝑓
)
) ,

(74)

where Φ = Φ(𝑡) is a strictly monotone continuous
function in R+ such that Φ(0) = 0 and Φ(𝑡) → +∞

as 𝑡 → +∞.

We also impose several conditions on the local character-
istic of the set Ω𝜀

𝑓
and Ω𝜀

𝑚
associated to the functional (70).

Let 𝐾𝑧

ℎ
be an open cube centered at 𝑧 ∈ Ω with lengths equal

to ℎ (0 < 𝜀 ≪ ℎ ≪ 1).We introduce the following functionals:

(i) the functional 𝑐𝜀,ℎ
𝑝𝜀(⋅)

associated to the energy in Ω𝜀

𝑓
is

defined in Ω ×R𝑛 by

𝑐
𝜀,ℎ

𝑝𝜀(⋅)
(𝑧; a)

def
= inf

V𝜀
∫
𝐾
𝑧

ℎ
∩Ω
𝜀

𝑓

{𝜘
𝜀
(𝑥)

󵄨󵄨󵄨󵄨∇V
𝜀

(𝑥)
󵄨󵄨󵄨󵄨

𝑝𝜀(𝑥)

+ℎ
−𝑝𝜀(𝑥)−𝛾󵄨󵄨󵄨󵄨V

𝜀

(𝑥)−(𝑥−𝑧, a)󵄨󵄨󵄨󵄨
𝑝𝜀(𝑥)

} 𝑑𝑥,

(75)

for 𝑧 ∈ Ω, a ∈ R𝑛, where 𝛾 > 0 and the infimum is
taken over V𝜀 ∈ 𝑊1,𝑝𝜀(⋅)(𝐾

𝑧

ℎ
∩ Ω

𝜀

𝑓
).

(ii) The functional 𝑏𝜀,ℎ
𝑝𝜀(⋅)

associated to the energy exchange
between Ω𝜀

𝑓
andΩ𝜀

𝑚
is defined in Ω ×R𝑛 by

𝑏
𝜀,ℎ

𝑝𝜀(⋅)
(𝑧; 𝛽)

def
= inf

𝑤
𝜀
∫
𝐾
𝑧

ℎ

{𝜘
𝜀
(𝑥)

󵄨󵄨󵄨󵄨∇𝑤
𝜀󵄨󵄨󵄨󵄨

𝑝𝜀(𝑥)

+
1𝜀
𝑚
(𝑥)

𝜎 (𝑥)

󵄨󵄨󵄨󵄨𝑤
𝜀󵄨󵄨󵄨󵄨

𝜎(𝑥)

+ℎ
−𝑝𝜀(𝑥)−𝛾1𝜀

𝑓
(𝑥)

󵄨󵄨󵄨󵄨𝑤
𝜀

− 𝛽
󵄨󵄨󵄨󵄨

𝑝𝜀(𝑥)

}𝑑𝑥,

(76)

for 𝑧 ∈ Ω, 𝛽 ∈ R, the infimum being taken over 𝑤𝜀

∈

𝑊
1,𝑝𝜀(⋅)(𝐾

𝑧

ℎ
).

We assume that the local characteristics ofΩ are such that
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(C.3.3) for any 𝑥 ∈ Ω and any a ∈ R𝑛, there is a continuous
function 𝑇(𝑥, a) and a real number 𝛾 = 𝛾

0
(0 < 𝛾

0
<

𝑝
−) such that, for any {𝑝

𝜀
}
(𝜀>0)

⊂ L𝜀

𝑝0(⋅)
,

lim
ℎ→0

lim
𝜀→0

ℎ
−𝑛

𝑐
𝜀,ℎ

𝑝𝜀(⋅)
(𝑥, a) = lim

ℎ→0

lim
𝜀→0

ℎ
−𝑛

𝑐
𝜀,ℎ

𝑝𝜀(⋅)
(𝑥, a) = 𝑇 (𝑥, a) .

(77)

(C.3.4) for any 𝑥 ∈ Ω and any 𝛽 ∈ R, there is a continuous
function b(𝑥, 𝛽) and a real number 𝛾 = 𝛾

1
(0 < 𝛾

1
<

𝑝
−) such that, for any {𝑝

𝜀
}
(𝜀>0)

⊂ L𝜀

𝑝0(⋅)
,

lim
ℎ→0

lim
𝜀→0

ℎ
−𝑛

𝑏
𝜀,ℎ

𝑝𝜀(⋅)
(𝑥, 𝛽) = lim

ℎ→0

lim
𝜀→0

ℎ
−𝑛

𝑏
𝜀,ℎ

𝑝𝜀(⋅)
(𝑥, 𝛽) = b (𝑥, 𝛽) .

(78)

Remark 21. It is crucial in conditions (C.3.3) and (C.3.4) that
the limit functions 𝑇(𝑥, b) and b(𝑥, 𝛽) do not depend on
the particular choice of the sequence {𝑝

𝜀
}
(𝜀>0)

⊂ L𝜀

𝑝0(⋅)
. It is

proved in [26] that these assumptions are fulfilled for periodic
and locally periodic media.

Remark 22. Contrary to the standard growth setting as
considered in [20, 32], the local characteristic 𝑏𝜀,ℎ

𝑝𝜀(⋅)
(𝑧; 𝛽) is

not homogeneous with respect to the parameter 𝛽. This
induces the appearance of a nonlinear function b(𝑥, 𝑢) in the
homogenized functional (see Theorem 23 below).

The main result of the section is the following.

Theorem 23. Let 𝑢𝜀 be a solution of (72). Assume that
𝑝
𝜀

∈ L𝜀

𝑝0(⋅)
and conditions (A.3.4)–(A.3.5), (K.1)-(K.2), and

(C.3.1)–(C.3.4) are satisfied.Then𝑢𝜀, solution of the variational
problem (72), converges strongly in 𝐿𝑝0(⋅)(Ω𝜀

𝑓
) to 𝑢, solution of

the following variational problem:

𝐽
ℎ𝑜𝑚

[𝑢] 󳨀→ min, 𝑢 ∈ 𝑊
1,𝑝0(⋅)

0
(Ω) , (79)

the homogenized functional 𝐽
ℎ𝑜𝑚

: 𝑊
1,𝑝0(⋅)

0
(Ω) → R ∪ {+∞}

being defined by

𝐽
ℎ𝑜𝑚

[𝑢]
def
=

{

{

{

∫
Ω

G
0
(𝑥, 𝑢, ∇𝑢) 𝑑𝑥 𝑖𝑓 𝑢 ∈ 𝑊

1,𝑝0(⋅)

0
(Ω) ,

+∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(80)

where

G
0
(𝑥, 𝑢, ∇𝑢)

def
= 𝑇 (𝑥, ∇𝑢) +

𝜌 (𝑥)

𝜎 (𝑥)
|𝑢|

𝜎(𝑥)

+ b (𝑥, 𝑢) − 𝑔 (𝑥) 𝜌 (𝑥) 𝑢.

(81)

Moreover, for any smooth function 𝜁 in Ω, we have

lim
𝜀→0

∫
Ω
𝜀
𝑚

{
1

𝑝
𝜀
(𝑥)

󵄨󵄨󵄨󵄨𝑢
𝜀󵄨󵄨󵄨󵄨

𝜎(𝑥)−2

(𝑢 (𝑥) 𝑢
𝜀

−
󵄨󵄨󵄨󵄨𝑢

𝜀󵄨󵄨󵄨󵄨

2

)

+
1

𝜎 (𝑥)

󵄨󵄨󵄨󵄨𝑢
𝜀󵄨󵄨󵄨󵄨

𝜎(𝑥)

} 𝜁 (𝑥) 𝑑𝑥 = ∫
Ω

b (𝑥, 𝑢) 𝜁 (𝑥) 𝑑𝑥.

(82)

The scheme of the proof of Theorem 23 (see [26] for more
details) is similar to the scheme of the proof of Theorems 17
and 18.

7.2. Periodic Examples. Theorem 23 of Section 7.1 provides
sufficient conditions for the existence of the homogenized
functional (80) and for the convergence of minimizers of
the variational problem (72) to the minimizer of the homog-
enized variational problem (79) under conditions (A.3.4)-
(A.3.5), (K.1)-(K.2), and (C.3.1)–(C.3.4). It is important to
show that the “intersection” of these conditions is not empty.
The goal of this section is to prove that for periodic media
all the conditions of the above-mentioned theorem are
satisfied and to compute the coefficients of the homogenized
functional (80) either in an explicit form or as usually by the
solution of a corresponding cell problem.

Let Ω be a bounded domain in R𝑛 (𝑛 ≥ 2) with Lipschitz
boundary. We assume that in the standard periodic cell 𝑌 def

=

]0, 1[
𝑛, there is an obstacle𝑀 ⊂ 𝑌 with Lipschitz boundary

𝜕𝑀. We assume that this geometry is repeated periodically in
thewholeR𝑛.The geometric structurewithin the domainΩ is
then obtained by intersecting the 𝜀-multiple of this geometry
with Ω. Let {𝑥𝑖,𝜀} be an 𝜀-periodic grid in Ω. Then we define
Ω

𝜀

𝑚
as the union of sets𝑀𝜀

𝑖
⊂ 𝐾

𝑖

𝜀
(𝑖 = 1, 2, . . . , 𝑁

𝜀
) obtained

from 𝜀𝑀 by translations of vectors 𝜀∑𝑛

𝑗=1
𝑘
𝑗
e
𝑗
, that is,

Ω
𝜀

𝑚
=

𝑁𝜀

⋃

𝑖

𝑀
𝜀

𝑖
, Ω

𝜀

𝑓
= Ω \ Ω𝜀

𝑚
, (83)

where 𝐾𝑖

𝜀
is the cube centered at the point 𝑥𝑖,𝜀 and of length

𝜀, 𝑘
𝑗
∈ Z, {e

𝑗
}
𝑛

𝑗=1

is the canonical basis ofR𝑛, and𝑁
𝜀
→ +∞

as 𝜀 → 0.
Let 𝑝

0
= 𝑝

0
(𝑥) be a log-Hölder continuous function such

that

2 < 𝑝
−

≡ min
𝑥∈Ω

𝑝
0
(𝑥) ≤ 𝑝

0
(𝑥) ≤ max

𝑥∈Ω

𝑝
0
(𝑥)

≡ 𝑝
+

< +∞ inΩ.
(84)

Let {𝑝
𝜀
}
(𝜀>0)

⊂ L𝜀

𝑝0(⋅)
be a sequence defined by

𝑝
𝜀
(𝑥)

def
= 𝑝

0
(𝑥) + d

𝜀
(𝑥) , (85)

where the function d
𝜀
is such that d

𝜀
= 𝑜(1) as 𝜀 → 0.

The asymptotic behavior of d
𝜀
will be specified below. On the

space𝑊1,𝑝𝜀(⋅)(Ω), we define the functional 𝐽𝜀 : 𝑊1,𝑝𝜀(⋅)(Ω) →

R ∪ {+∞},

𝐽
𝜀

[𝑢]

def
=

{{{{{

{{{{{

{

∫
Ω

{
𝐾

𝜀
(𝑥)

𝑝
𝜀
(𝑥)

|∇𝑢|
𝑝𝜀(𝑥)+

1

𝜎 (𝑥)
|𝑢|

𝜎(𝑥)

−𝑔
𝜀

(𝑥) 𝑢} 𝑑𝑥 if 𝑢∈𝑊1,𝑝𝜀(⋅) (Ω) ,

+∞ otherwise,
(86)
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where

𝐾
𝜀

(𝑥) = {
𝑘
𝑓

in Ω
𝜀

𝑓
,

𝑘
𝑚
𝜀
𝑝0(𝑥) in Ω

𝜀

𝑚
,

(87)

the function 𝜎 satisfies conditions (A.3.4) with 𝜎
−

> 2,
(A.3.5), the function 𝑔𝜀 is defined by 𝑔𝜀(𝑥) def

= 1𝜀
𝑓
(𝑥) 𝑔(𝑥),

𝑔 ∈ 𝐶(Ω). Here 𝑘
𝑓
and 𝑘

𝑚
are strictly positive constants

independent of 𝜀.
Consider the following variational problem:

𝐽
𝜀

[𝑢
𝜀

] 󳨀→ min, 𝑢
𝜀

∈ 𝑊
1,𝑝𝜀(⋅)

0
(Ω) . (88)

We aim to study the asymptotic behavior of 𝑢𝜀 the solution of
(88).

To formulate the main result of this section, we introduce
some notations. We denote by u𝑎 = u𝑎(𝑥, 𝑦) the unique
solution in𝑊1,𝑝0(⋅)

# (𝐹) of the following cell problem:

div
𝑦
{𝑘

𝑓

󵄨󵄨󵄨󵄨󵄨
∇
𝑦
u
𝑎
󵄨󵄨󵄨󵄨󵄨

𝑝0(𝑥)−2

∇
𝑦
u
𝑎

} = 0 in𝐹,

(𝑘
𝑓

󵄨󵄨󵄨󵄨󵄨
∇
𝑦
u
𝑎
󵄨󵄨󵄨󵄨󵄨

𝑝0(𝑥)−2

∇
𝑦
u
𝑎

− a, ]⃗) = 0 on 𝜕𝑀,

𝑦 󳨀→ u
𝑎

(𝑦) 𝑌-periodic,

(89)

where 𝐹 = 𝑌 \𝑀, ]⃗ is the outward normal vector to 𝜕𝑀, and
a ∈ R𝑛. We denote by w𝛽

= w𝛽

(𝑥, 𝑦) the unique solution in
𝑊

1,𝑝0(⋅)

# (𝑀) of the following cell problem:

− div
𝑦
{𝑘

𝑚
d (𝑥) 󵄨󵄨󵄨󵄨󵄨∇𝑦w

𝛽
󵄨󵄨󵄨󵄨󵄨

𝑝0(𝑥)−2

∇
𝑦
w

𝛽

}

+
󵄨󵄨󵄨󵄨󵄨
w

𝛽
󵄨󵄨󵄨󵄨󵄨

𝜎(𝑥)−2

w
𝛽

= 0 in𝑀,

w
𝛽

(𝑦) = 𝛽 on 𝜕𝑀,

𝑦 󳨀→ w
𝛽

(𝑦) 𝑌-periodic.

(90)

Notice that in (89) and (90) 𝑥 is a parameter. Regularity
results for u𝑎 and w𝛽 are thus easily deduced from [33] and
[34]. We also introduce the homogenized functional 𝐽hom :

𝑊
1,𝑝0(⋅)(Ω) → R ∪ {+∞}:

𝐽hom [𝑢]

def
=

{{{{{

{{{{{

{

∫
Ω

{𝑇 (𝑥, ∇𝑢) +
𝜌
⋆

𝜎 (𝑥)
|𝑢|

𝜎(𝑥)

+b (𝑥, 𝑢)−𝑔 (𝑥) 𝜌
⋆

𝑢}𝑑𝑥 if 𝑢∈𝑊1,𝑝0(⋅)

0
(Ω) ,

+∞ otherwise,
(91)

the following results hold.

Theorem 24. Let 𝑢𝜀 be a solution of (88). Assume that

lim
𝜀→0

𝜀
−d𝜀(⋅) = d (⋅) (92)

uniformly in Ω. Then 𝑢𝜀 converges strongly in 𝐿𝑝0(⋅)(Ω𝜀

𝑓
) to 𝑢

the solution of the variational problem:

𝐽
ℎ𝑜𝑚

[𝑢] 󳨀→ min, 𝑢 ∈ 𝑊
1,𝑝0(⋅)

0
(Ω) , (93)

where

𝜌
⋆ def
= meas𝐹, (94)

𝑇 (𝑥, a) def
=

1

𝑝
0
(𝑥)

∫
𝐹

󵄨󵄨󵄨󵄨󵄨
∇
𝑦
u
𝑎

(𝑥, 𝑦) − a󵄨󵄨󵄨󵄨󵄨
𝑝0(𝑥)

𝑑𝑦, (95)

b (𝑥, 𝛽)
def
= ∫

M

{
1

𝑝
0
(𝑥)

[𝛽w
𝛽
󵄨󵄨󵄨󵄨󵄨
w

𝛽
󵄨󵄨󵄨󵄨󵄨

𝜎(𝑥)−2

−
󵄨󵄨󵄨󵄨󵄨
w

𝛽
󵄨󵄨󵄨󵄨󵄨

𝜎(𝑥)

]

+
1

𝜎 (𝑥)

󵄨󵄨󵄨󵄨󵄨
w

𝛽
󵄨󵄨󵄨󵄨󵄨

𝜎(𝑥)

}𝑑𝑦.

(96)

Theorem25. Let 𝑢𝜀 be a solution of (88). Assume that, for any
𝑥 ∈ Ω,

lim
𝜀→0

𝜀
−d𝜀(𝑥) = +∞. (97)

Then 𝑢𝜀 converges strongly in 𝐿𝑝0(⋅)(Ω𝜀

𝑓
) to 𝑢 the solution of the

variational problem (93), where 𝜌⋆ and the function𝑇(𝑥, a) are
given in (94), (95), and

b (𝑥, 𝛽)
def
=

meas𝑀
𝜎(𝑥)

󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨

𝜎(𝑥)

. (98)

Theorem26. Let 𝑢𝜀 be a solution of (88). Assume that, for any
𝑥 ∈ Ω,

lim
𝜀→0

𝜀
−d𝜀(𝑥) = 0. (99)

Then 𝑢𝜀 converges strongly in 𝐿𝑝0(⋅)(Ω𝜀

𝑓
) to 𝑢 the solution of the

variational problem (93), where 𝜌⋆ and the function𝑇(𝑥, a) are
given in (94), (95), and b(𝑥, 𝛽) = 0.

Remark 27. Notice that if 𝐾
𝜀
(𝑥) = 1𝜀

𝑓
𝑘
𝑓
+ 1𝜀

𝑚
𝑘
𝑚
𝜀
𝑝𝜀(𝑥) then

Theorem 24 holds true with d(𝑥) ≡ 1.

8. Homogenization of a Class of
Quasilinear Parabolic Equations
with Nonstandard Growth

8.1. Statement of the Problem and Assumptions. In this sec-
tion, we describe a mesoscopic double porosity model in a
periodic fractured medium. We consider a reservoir Ω ⊂

R𝑛 (𝑛 ≥ 2) to be a bounded connected domain with a
periodic structure. More precisely, we will scale this periodic
structure by a parameter 𝜀 which represents the ratio of
the cell size to the size of the whole region Ω, and we will
assume that 𝜀 is a parameter tending to zero. Let 𝑌 def

=

]0, 1[
𝑛 represent the mesoscopic domain of the basic cell of

a fractured porous medium. For the sake of simplicity and
without loss of generality, we assume that𝑌 is made up of two
homogeneous porous media 𝑀 ⋐ 𝑌 and 𝐹 corresponding
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to parties of the mesoscopic domain occupied by the matrix
block and the fracture, respectively. Thus 𝑌 = 𝑀 ∪ Γ

𝑚,𝑓
∪ 𝐹,

where Γ
𝑚,𝑓

denotes the interface between the two media
and the subscripts 𝑚 and 𝑓 refer to the matrix and fracture,
respectively. LetΩ𝜀

𝑖
with 𝑖 = 𝑚 or𝑓 denotes the open set filled

with the porous medium 𝑖. ThenΩ = Ω
𝜀

𝑚
∪ Γ

𝜀

𝑚,𝑓
∪Ω

𝜀

𝑓
, where

Γ
𝜀

𝑚,𝑓
= 𝜕Ω

𝜀

𝑚
∩ 𝜕Ω

𝜀

𝑓
. For the sake of simplicity, we will assume

that 𝜕Ω ∩ Ω
𝜀

𝑚
= 0.

Let us introduce the nonstandard growth function used in
this section.We assume that a family of continuous functions
𝑝
𝜀
= 𝑝

𝜀
(𝑥), 𝜀 > 0, is defined in Ω and satisfies the following

conditions:

(A.4.1) functions 𝑝
𝜀
are bounded from below such that:

𝑝
𝜀
(𝑥) ≥ 2 i𝑛 Ω;

(A.4.2) the function 𝑝
𝜀
(𝑥) satisfies the log-Hölder continuity

property;

(A.4.3) the function 𝛾
𝜀
(𝑥)

def
= 𝑝

𝜀
(𝑥) − 2 converges uniformly

to zero in Ω.

Now let us introduce the permeability coefficient and the
porosity of the porous mediumΩ. We set

𝑘
𝜀

(𝑥) = 𝑘
𝑚
𝜀
2 1𝜀

𝑚
(𝑥) + 𝑘

𝑓
1𝜀
𝑓
(𝑥) ,

𝜔
𝜀

(𝑥) = 𝜔
𝑚
1𝜀
𝑚
(𝑥) + 𝜔

𝑓
1𝜀
𝑓
(𝑥) ,

(100)

where 𝑘
𝑓
is the permeability or the hydraulic conductivity of

fissures, 𝑘
𝑚
is the permeability or the hydraulic conductivity

of blocks, 𝜔
𝑓

is the porosity of fissures, and 𝜔
𝑚

is the
porosity of blocks; 1𝜀

𝑓
= 1𝜀

𝑓
(𝑥) and 1𝜀

𝑚
= 1𝜀

𝑚
(𝑥) denote the

characteristic functions of the sets Ω𝜀

𝑓
and Ω𝜀

𝑚
, respectively.

Here 0 < 𝑘
𝑓
, 𝑘

𝑚
, 𝜔

𝑓
, 𝜔

𝑚
< +∞.

We consider the following initial boundary value problem
for the function 𝑢𝜀 : 𝑄 󳨃→ R:

𝜔
𝜀

(𝑥)
𝜕𝑢

𝜀

𝜕𝑡
− div (𝑘𝜀 (𝑥) ∇𝑢𝜀󵄨󵄨󵄨󵄨∇𝑢

𝜀󵄨󵄨󵄨󵄨

𝑝𝜀(𝑥)−2

) = 𝑔 (𝑡, 𝑥) in𝑄,

𝑢
𝜀

= 0 on (0, 𝑇) × 𝜕Ω,

𝑢
𝜀

(0, 𝑥) = 𝑢
0
(𝑥) inΩ,

(101)

where 𝑄 denotes the cylinder (0, 𝑇) × Ω, 𝑇 > 0 is given, and
𝑔, 𝑢

0
are given functions.

For simplicity and without loss of generality, we restrict
the presentation to a homogeneous Dirichlet boundary con-
dition on 𝜕Ω, but it is easy to see that all results also hold for
other boundary conditions.

Throughout the section, 𝐶 will denote a generic positive
constant, independent of 𝜀, and may take different values for
different occurrences.

8.2. Preliminary Results. Thegoal of this section is to obtain a
priori estimates for the solution 𝑢𝜀 of problem (101). We start
by formulating the existence and uniqueness result for (101).
It is given by the following theorem (see [35]).

Theorem 28. Let 𝑔 ∈ 𝐶 (0, 𝑇; 𝐿
2

(Ω)) and 𝑢
0
∈ 𝐻

2

(Ω).
Then, for any 𝜀 > 0, there exists a unique solution 𝑢

𝜀

=

𝑢
𝜀

(𝑡, 𝑥) of the boundary value problem (101) in the space
𝐿
∞

(0, 𝑇;𝑊
1,𝑝𝜀(⋅)(Ω)). Furthermore, this solution satisfies the

following a priori estimates, for a.e. 𝑡 ∈ (0, 𝑇):

󵄩󵄩󵄩󵄩𝑢
𝜀

(𝑡)
󵄩󵄩󵄩󵄩

2

𝐿
2
(Ω)
+∫

𝑡

0

𝑑𝑡∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢
𝜀

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥+∫
Ω

𝑘
𝜀

(𝑥)
󵄨󵄨󵄨󵄨∇𝑢

𝜀󵄨󵄨󵄨󵄨

𝑝𝜀(𝑥)𝑑𝑥

≤ 𝐶,

(102)
󵄩󵄩󵄩󵄩𝑢

𝜀

(𝑡 + 𝛿𝑡) − 𝑢
𝜀

(𝑡)
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝐶 (𝛿𝑡)
𝜅

𝑤𝑖𝑡ℎ 0 < 𝜅 < 1,

(103)

where 𝛿𝑡 > 0 is a time step which tends to zero.

We study the asymptotic behavior of the solution 𝑢
𝜀 of

problem (101) as 𝜀 → 0. For this it is convenient to introduce
the following notation:

𝑢
𝜀

= {
𝜌
𝜀 in Ω

𝜀

𝑓
,

𝜎
𝜀 in Ω

𝜀

𝑚
,

(104)

and to rewrite (101) separately in the domains Ω𝜀

𝑓
, Ω

𝜀

𝑚
with

appropriate interface conditions. Namely, in the domain Ω𝜀

𝑓

(101) reads

𝜔
𝑓

𝜕𝜌
𝜀

𝜕𝑡
− div (𝑘

𝑓
∇𝜌

𝜀󵄨󵄨󵄨󵄨∇𝜌
𝜀󵄨󵄨󵄨󵄨

𝑝𝜀(𝑥)−2

)

= 𝑔 (𝑡, 𝑥) in (0, 𝑇) × Ω
𝜀

𝑓
,

𝑘
𝑓
∇𝜌

𝜀󵄨󵄨󵄨󵄨∇𝜌
𝜀󵄨󵄨󵄨󵄨

𝑝𝜀(𝑥)−2

⋅ ]⃗

= 𝑘
𝑚
𝜀
𝑝𝜀(𝑥)∇𝜎

𝜀󵄨󵄨󵄨󵄨∇𝜎
𝜀󵄨󵄨󵄨󵄨

𝑝𝜀(𝑥)−2

⋅ ]⃗ on (0, 𝑇) × Γ
𝜀

𝑚,𝑓
,

𝜌
𝜀

= 0 on (0, 𝑇) × 𝜕Ω,

𝜌
𝜀

(0, 𝑥) = 𝑢
0
(𝑥) inΩ𝜀

𝑓
,

(105)

where ]⃗ is the outward normal vector to Γ𝜀
𝑚𝑓
. In the domain

Ω
𝜀

𝑚
(101) reads

𝜔
𝑚

𝜕𝜎
𝜀

𝜕𝑡
− div (𝑘

𝑚
𝜀
2

∇𝜎
𝜀󵄨󵄨󵄨󵄨∇𝜎

𝜀󵄨󵄨󵄨󵄨

𝑝𝜀(𝑥)−2

)

= 𝑔 (𝑡, 𝑥) in (0, 𝑇) × Ω
𝜀

𝑚
,

𝜎
𝜀

= 𝜌
𝜀 on (0, 𝑇) × Γ

𝜀

𝑚𝑓
,

𝜎
𝜀

(0, 𝑥) = 𝑢
0
(𝑥) in Ω

𝜀

𝑚
.

(106)

To establish some preliminary compactness result, first
we notice that the a priori estimate (102), conditions (A.4.1),
(A.4.3) along with (110), and inequalities (106), and (107)
imply the bound for a.e. 𝑡 ∈ (0, 𝑇):

󵄩󵄩󵄩󵄩𝑢
𝜀

(𝑡)
󵄩󵄩󵄩󵄩𝐿2(Ω)

+ ∫

𝑡

0

𝑑𝑡∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢
𝜀

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

+ ∫
Ω
𝜀

𝑓

󵄨󵄨󵄨󵄨∇𝑢
𝜀󵄨󵄨󵄨󵄨

2

𝑑𝑥 + 𝜀
2

∫
Ω
𝜀
𝑚

󵄨󵄨󵄨󵄨∇𝑢
𝜀󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝐶.

(107)
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Therefore, from (105), (106) and (107), we have for a.e. 𝑡 ∈
(0, 𝑇):

󵄩󵄩󵄩󵄩𝜌
𝜀

(𝑡)
󵄩󵄩󵄩󵄩𝐿2(Ω𝜀

𝑓
)
+ ∫

𝑡

0

𝑑𝑡∫
Ω
𝜀

𝑓

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝜌
𝜀

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 + ∫
Ω
𝜀

𝑓

󵄨󵄨󵄨󵄨∇𝜌
𝜀󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝐶,

󵄩󵄩󵄩󵄩𝜎
𝜀

(𝑡)
󵄩󵄩󵄩󵄩𝐿2(Ω𝜀

𝑚
)
+ ∫

𝑡

0

𝑑𝑡∫
Ω
𝜀
𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝜎
𝜀

𝜕𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 + 𝜀
2

∫
Ω
𝜀
𝑚

󵄨󵄨󵄨󵄨∇𝜎
𝜀󵄨󵄨󵄨󵄨

2

𝑑𝑥 ≤ 𝐶.

(108)

Now using the bounds (108), along with the extension
result [30], it is easy to prove the following compactness
result.

Lemma 29. Let 𝑢𝜀 = ⟨𝜌𝜀, 𝜎𝜀⟩ be the solution of problem (101).
Then there exists a subsequence, still denoted by {𝑢𝜀}

𝜀>0
, and

functions 𝑢
𝑓
= 𝑢

𝑓
(𝑡, 𝑥), V

𝑓
= V

𝑓
(𝑥, 𝑦), 𝑢

𝑚
= 𝑢

𝑚
(𝑡, 𝑥, 𝑦) such

that

(a.1) 𝑢
𝑓

∈ 𝐻
1

(0, 𝑇; 𝐿
2

(Ω)) ∩ 𝐿
∞

(0, 𝑇;𝐻
1

(Ω)), V
𝑓

∈

𝐿
2

(Ω;𝐻
1

# (𝐹) \R),
(a.2) 𝑢

𝑚
∈ 𝐻

1

(0, 𝑇; 𝐿
2

(Ω × 𝑌)) ∩ 𝐿
∞

(0, 𝑇; 𝐿
2

(Ω;𝐻
1

(𝑀))),
with 𝑢

𝑚
(𝑡, 𝑥, 𝑦) = 𝑢

𝑓
(𝑡, 𝑥) for 𝑦 ∈ 𝜕𝑀,

(b) for any 𝑡 ∈ (0, 𝑇), 𝜌𝜀 2𝑠

⇀ 𝑢
𝑓
and 𝜎𝜀 2𝑠

⇀ 𝑢
𝑚
,

(c) for any 𝜑 ∈ 𝐿∞(0, 𝑇; 𝐿2(Ω; 𝐶#(𝑌))),

∫

𝑇

0

𝑑𝑡∫
Ω
𝜀

𝑓

𝜕𝑢
𝜀

𝜕𝑡
𝜑 (𝑡, 𝑥,

𝑥

𝜀
) 𝑑𝑥

󳨀→ ∫

𝑇

0

𝑑𝑡∫
Ω×𝐹

𝜕𝑢
𝑓

𝜕𝑡
𝜑 (𝑡, 𝑥, 𝑦) 𝑑𝑥 𝑑𝑦,

∫

𝑇

0

𝑑𝑡∫
Ω
𝜀
𝑚

𝜕𝑢
𝜀

𝜕𝑡
𝜑 (𝑡, 𝑥,

𝑥

𝜀
) 𝑑𝑥

󳨀→ ∫

𝑇

0

𝑑𝑡∫
Ω×𝑀

𝜕𝑢
𝑚

𝜕𝑡
𝜑 (𝑡, 𝑥, 𝑦) 𝑑𝑥 𝑑𝑦,

(109)

(d) for a.e. 𝑡 ∈ (0, 𝑇), ∇𝜌𝜀 2𝑠

⇀ (∇
𝑥
𝑢
𝑓
+ ∇

𝑦
V
𝑓
)1

𝑓
(𝑦) and

∇𝜎
𝜀

2𝑠

⇀ ∇
𝑦
𝑢
𝑚
1
𝑚
(𝑦).

8.3. Homogenization Results. In this section, we formulate
the main results of the section. We give homogenization
results for the problem (101). The convergence of the homog-
enization process is obtained by combining the technique of
two-scale convergence and the variational homogenization
method (see, e.g., [9, 16, 27] and the references therein).

The idea of the proof is the following. First we will
reduce our parabolic problem to an elliptic one depending
on the time variable as a parameter. Then we introduce a
functional corresponding to this elliptic problem and study
the minimization problem for it in the limit of small 𝜀.
Then we obtain the limit functional corresponding to the
homogenized problem. Regarding the variational technique,
it is worth to mention one trick used in the paper. In order
to obtain the lower bound for the original functional, we first

replace the original exponent 𝑝
𝜀
(𝑥) by a new one 𝑝

0
= 2 and

consider the corresponding family of auxiliary functionals.
Then the lower semicontinuity property of convex function-
als with respect to the two-scale convergence implies the
desired inequality. Finally, it is not difficult to show that the
limit functional for the auxiliary family does not exceed the
limiting functional for the original one.

Nowwe are in position to formulate the first homogeniza-
tion result of the section.

Theorem 30. Let 𝑢𝜀 = 𝑢𝜀(𝑡, 𝑥) be the solution of the boundary
value problem (101) and let conditions (A.4.1)–(A.4.3) be
satisfied. Moreover, we assume that there exists a function 𝛼 ∈
𝐶(Ω) such that uniformly in 𝑥 ∈ Ω,

lim
𝜀→0

𝜀
−𝛾𝜀(𝑥) = 𝛼 (𝑥) . (110)

Then, for a.e. 𝑡 ∈ (0, 𝑇), 𝑢𝜀 two-scale converges to 𝑢
∗

∈

𝐿
2

((0, 𝑇) × Ω × 𝑌) such that

𝑢
∗

(𝑡, 𝑥, 𝑦) = {
𝑢
𝑓
(𝑡, 𝑥) 𝑖𝑛𝑄 × 𝐹,

𝑢
𝑚
(𝑡, 𝑥, 𝑦) 𝑖𝑛𝑄 ×𝑀,

(111)

where the couple (𝑢
𝑓
, 𝑢

𝑚
) ∈ 𝐿

2

(0, 𝑇;𝐻
1

(Ω)) × 𝐿
∞

(0, 𝑇;

𝐿
2

(Ω;𝐻
1

(𝑀))) is the unique solution of the homogenized
problem

𝜔
𝑓
|𝐹|

𝜕𝑢
𝑓

𝜕𝑡
− div

𝑥
(𝐾

∗

∇
𝑥
𝑢
𝑓
) = S (𝑥, 𝑢

𝑚
) 𝑖𝑛 𝑄,

𝑢
𝑓
= 0 on (0, 𝑇) × 𝜕Ω, 𝑢

𝑓
(0, 𝑥) = 𝑢

0
(𝑥) 𝑖𝑛 Ω,

𝜔
𝑚

𝜕𝑢
𝑚

𝜕𝑡
− 𝐾̃

∗

(𝑥) Δ
𝑦
𝑢
𝑚
= 𝑔 (𝑡, 𝑥) 𝑖𝑛 𝑄 ×𝑀,

𝑢
𝑚
(𝑡, 𝑥, 𝑦) = 𝑢

𝑓
(𝑡, 𝑥) 𝑜𝑛 𝑄 × 𝜕𝑀,

𝑢
𝑚
(0, 𝑥, 𝑦) = 𝑢

0
(𝑥) 𝑖𝑛 Ω ×𝑀,

(112)

where |𝐹| is the measure of the set 𝐹 and 𝐾∗

= {𝑘
∗

𝑖𝑗
} is the

homogenized permeability tensor defined by

𝑘
∗

𝑖𝑗
= 𝑘

𝑓
∫
𝐹

( ⃗𝑒
𝑖
+ ∇

𝑦
𝑤
𝑖
) ⋅ ( ⃗𝑒

𝑗
+ ∇

𝑦
𝑤
𝑗
) 𝑑𝑦 (113)

with { ⃗𝑒
1
, ⃗𝑒

2
, . . . , ⃗𝑒

𝑛
} the canonical basis of R𝑛 and 𝑤

𝑖
being the

unique solution in𝐻1

# (𝐹) \R of

−𝑘
𝑓
Δ

𝑦
𝑤
𝑖
= 0 𝑖𝑛 𝐹,

( ⃗𝑒
𝑖
+ ∇

𝑦
𝑤
𝑖
) ⋅ ]⃗ = 0 𝑜𝑛 𝜕𝑀,

𝑦 󳨀→ 𝑤
𝑖
(𝑥, 𝑦) 𝑌-𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐,

(114)

where ]⃗ = ]⃗(𝑦) is the outer normal vector at 𝜕𝑀, and the
coefficient 𝐾̃∗ in the local problem is given by

𝐾̃
∗

(𝑥) = 𝛼 (𝑥) 𝑘
𝑚
, (115)
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and the effective source term S(𝑥, 𝑢
𝑚
) is given by

S (𝑥, 𝑢
𝑚
) = |𝐹| 𝑔 (𝑡, 𝑥) − 𝐾̃

∗

(𝑥) ∫
𝜕𝑀

(∇
𝑦
𝑢
𝑚
⋅ ]⃗) 𝑑𝑠

𝑦
. (116)

Remark 31. The source term which appears in the right-
hand side of the first equation in (112) is well defined, since
𝑢
𝑚
∈ 𝐿

∞

(0, 𝑇; 𝐿
2

(Ω;𝐻
1

(𝑀))), and it follows from the third
equation of (112) that

−Δ
𝑦
𝑢
𝑚
∈ 𝐿

2

(0, 𝑇;𝐻
−1/2

(𝜕𝑀)) , (117)

which allows one to define (∇
𝑦
𝑢
𝑚
⋅ ]⃗) as an element of

𝐿
2

(0, 𝑇;𝐻
−1/2

(𝜕𝑀)).

The Scheme of the Proof of Theorem 30 Is as Follows. We
consider our parabolic boundary value problem (101) as an
elliptic one depending on the time variable 𝑡 as a parameter.
Namely, we consider the following boundary value problem,
for a.e. 𝑡 ∈]0, 𝑇[,

− div (𝑘𝜀 (𝑥) ∇𝑢𝜀󵄨󵄨󵄨󵄨∇𝑢
𝜀󵄨󵄨󵄨󵄨

𝑝𝜀(𝑥)−2

) = 𝐺
𝜀 in 𝑄,

𝑢
𝜀

= 0 on ] 0, 𝑇 [ × 𝜕Ω,

(118)

where the function 𝐺𝜀,

𝐺
𝜀

= 𝐺
𝜀

(𝑡, 𝑥)
def
= 𝑔 (𝑡, 𝑥) − 𝜔

𝜀

(𝑥)
𝜕𝑢

𝜀

𝜕𝑡
(𝑡, 𝑥) , (119)

is considered as a given function. Then, for any Δ
𝑡
⊂ [0, 𝑇],

𝑢
𝜀 minimizes the functional

𝐽
𝜀

[𝑢]
def
= ∫

Δ 𝑡

𝑑𝑡∫
Ω

{
𝑘
𝜀

(𝑥)

𝑝
𝜀
(𝑥)

|∇𝑢|
𝑝𝜀(𝑥) − 𝐺

𝜀

𝑢}𝑑𝑥 (120)

over 𝑢 ∈ 𝐿
∞

(0, 𝑇;𝑊
1,𝑝𝜀(⋅)(Ω)). Using the two-scale con-

vergence arguments, we obtain the “lim sup”-inequality for
the functional 𝐽𝜀. The “lim inf”-inequality is obtained in two
steps. First, we introduce the auxiliary functional

𝐽̃
𝜀

[𝑢]
def
= ∫

Δ 𝑡

𝑑𝑡∫
Ω

{
𝑘̃
𝜀

(𝑥)

𝑝
𝜀
(𝑥)

|∇𝑢|
2

− 𝐺
𝜀

𝑢}𝑑𝑥

with 𝑘̃
𝜀

(𝑥) = 𝛼 (𝑥) 𝑘
𝑚
𝜀
2 1𝜀

𝑚
(𝑥) + 𝑘

𝑓
1𝜀
𝑓
(𝑥)

(121)

and obtain the inequality

lim
𝜀→0

𝐽̃
𝜀

[𝑢
𝜀

] ≥ 𝐽hom [𝑢𝑓, 𝑢𝑚] , (122)

where

𝐽hom [𝑢𝑓, 𝑢𝑚]

= ∫
Δ 𝑡

𝑑𝑡∫
Ω

{
1

2
(𝐾

∗

∇
𝑥
𝑢
𝑓
⋅ ∇

𝑥
𝑢
𝑓
)

− |𝐹| (𝑔 (𝑡, 𝑥) − 𝜔
𝑓

𝜕𝑢
𝑓

𝜕𝑡
) 𝑢

𝑓
}𝑑𝑥

+ ∫
Δ 𝑡

𝑑𝑡∫
Ω×𝑀

{𝛼 (𝑥)
𝑘
𝑚

2

󵄨󵄨󵄨󵄨󵄨
∇
𝑦
𝑢
𝑚

󵄨󵄨󵄨󵄨󵄨

2

−(𝑔 (𝑡, 𝑥) − 𝜔
𝑚

𝜕𝑢
𝑚

𝜕𝑡
) 𝑢

𝑚
}𝑑𝑥𝑑𝑦.

(123)

Then in the second step, we obtain the desired “lim inf”-
inequality for the initial functional. This completes the proof
of Theorem 30.

The macroscopic model corresponding to the second
situation is given by the following convergence result.

Theorem 32. Let 𝑢𝜀 = ⟨𝜌𝜀, 𝜎𝜀⟩ be the solution of the boundary
value problem (101) and let conditions (A.4.1)–(A.4.3) be
satisfied. Moreover, we assume that for any 𝑥 ∈ Ω,

lim
𝜀→0

𝜀
−𝛾𝜀(𝑥) = +∞. (124)

Then, for a.e. 𝑡 ∈ (0, 𝑇), 𝑢𝜀 converges in 𝐿2(Ω), as 𝜀 → 0, to
𝑢
0

∈ 𝐿
2

(0, 𝑇;𝐻
1

(Ω)), the solution of

(𝜔
𝑓
|𝐹| + 𝜔

𝑚
|𝑀|)

𝜕𝑢
0

𝜕𝑡
− div

𝑥
(𝐾

∗

∇
𝑥
𝑢
0

)= 𝑔 (𝑡, 𝑥) 𝑖𝑛 𝑄,

𝑢
0

= 0 on (0, 𝑇) × 𝜕Ω, 𝑢
0

(0, 𝑥) = 𝑢
0
(𝑥) 𝑖𝑛 Ω,

(125)

where 𝐾∗

= {𝑘
∗

𝑖𝑗
} is the homogenized permeability tensor

defined in (113)-(114).

The proof ofTheorem 32 is similar to that ofTheorem 30.

Remark 33. Notice that the structure of the limit problem
depends crucially on the rate of convergence of (𝑝

𝜀
(⋅) − 2)

to zero. The critical rate of convergence is

(𝑝
𝜀
(⋅) − 2) ∼

1

|ln 𝜀|
. (126)

More precisely, if lim
𝜀→0

| ln 𝜀|(𝑝
𝜀
(𝑥) − 2) < +∞,

then the limit model is of a double porosity type. If
lim

𝜀→0
| ln 𝜀| (𝑝

𝜀
(𝑥) − 2) = +∞, then in the limit we obtain a

single porosity model.

The proofs of Theorems 30 and 32 are given in [21].
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