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The purpose of this paper is to introduce the concept of total asymptotically nonexpansive mappings and to prove some Δ-
convergence theorems of the iteration process for this kind of mappings in the setting of hyperbolic spaces. The results presented in
the paper extend and improve some recent results announced in the current literature.

1. Introduction and Preliminaries

Most of the problems in various disciplines of science are
nonlinear in nature whereas fixed point theory proposed in
the setting of normed linear spaces or Banach spaces majorly
depends on the linear structure of the underlying spaces. A
nonlinear framework for fixed point theory is a metric space
embedded with a “convex structure.” The class of hyperbolic
spaces, nonlinear in nature, is a general abstract theoretic
setting with rich geometrical structure for metric fixed point
theory. The study of hyperbolic spaces has been largely
motivated and dominated by questions about hyperbolic
groups, one of the main objects of study in geometric group
theory.

Throughout this paper, we work in the setting of hyper-
bolic spaces introduced by Kohlenbach [1], defined below,
which is more restrictive than the hyperbolic type introduced
in [2] and more general than the concept of hyperbolic space
in [3].

A hyperbolic space is a metric space (𝑋, 𝑑) together with
a mapping𝑊: 𝑋

2
× [0, 1] → 𝑋 satisfying

(i) 𝑑(𝑢,𝑊(𝑥, 𝑦, 𝛼)) ≤ (1 − 𝛼)𝑑(𝑢, 𝑥) + 𝛼𝑑(𝑢, 𝑦);

(ii) 𝑑(𝑊(𝑥, 𝑦, 𝛼),𝑊(𝑥, 𝑦, 𝛽)) = |𝛼 − 𝛽|𝑑(𝑥, 𝑦);

(iii) 𝑊(𝑥, 𝑦, 𝛼) = 𝑊(𝑦, 𝑥, (1 − 𝛼));

(iv) 𝑑(𝑊(𝑥, 𝑧, 𝛼),𝑊(𝑦, 𝑤, 𝛼)) ≤ (1−𝛼)𝑑(𝑥, 𝑦)+𝛼𝑑(𝑧, 𝑤),

for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋 and 𝛼, 𝛽 ∈ [0, 1]. A nonempty subset
𝐾 of a hyperbolic space 𝑋 is convex if 𝑊(𝑥, 𝑦, 𝛼) ∈ 𝐾

for all 𝑥, 𝑦 ∈ 𝐾 and 𝛼 ∈ [0, 1]. The class of hyperbolic
spaces contains normed spaces and convex subsets thereof,
the Hilbert ball equipped with the hyperbolic metric [4],
Hadamard manifolds, and CAT(0) spaces in the sense of
Gromov (see [5]).

A hyperbolic space is uniformly convex [6] if for any 𝑟 >
0 and 𝜖 ∈ (0, 2] there exists a 𝛿 ∈ (0, 1], such that, for all
𝑢, 𝑥, 𝑦 ∈ 𝑋, we have

𝑑(𝑊(𝑥, 𝑦,
1

2
) , 𝑢) ≤ (1 − 𝛿) 𝑟, (1)

provided 𝑑(𝑥, 𝑢) ≤ 𝑟, 𝑑(𝑦, 𝑢) ≤ 𝑟 and 𝑑(𝑥, 𝑦) ≥ 𝜖𝑟.
A map 𝜂 : (0,∞) × (0, 2] → (0, 1], which provides such

a 𝛿 = 𝜂(𝑟, 𝜖) for given 𝑟 > 0 and 𝜖 ∈ (0, 2], is known as a
modulus of uniform convexity of 𝑋. We call 𝜂 monotone if
it decreases with 𝑟 (for a fixed 𝜖), that is, for all 𝜖 > 0, for all
𝑟
2
≥ 𝑟
1
> 0 (𝜂(𝑟

2
, 𝜖) ≤ 𝜂(𝑟

1
, 𝜖)).

In the sequel, let (𝑋, 𝑑) be a metric space and let 𝐾 be a
nonempty subset of𝑋. We will denote the fixed point set of a
mapping 𝑇 by 𝐹(𝑇) = {𝑥 ∈ 𝐾 : 𝑇𝑥 = 𝑥}.

A mapping 𝑇 : 𝐾 → 𝐾 is said to be nonexpansive, if

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑑 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝐾. (2)
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A mapping 𝑇 : 𝐾 → 𝐾 is said to be asymptotically
nonexpansive if there exists a sequence {𝑘

𝑛
} ⊂ [1,∞) with

𝑘
𝑛
→ 1 such that

𝑑 (𝑇
𝑛
𝑥, 𝑇
𝑛
𝑦) ≤ 𝑘

𝑛
𝑑 (𝑥, 𝑦) , ∀𝑛 ≥ 1, 𝑥, 𝑦 ∈ 𝐾. (3)

A mapping 𝑇 : 𝐾 → 𝐾 is said to be uniformly L-
Lipschitzian if there exists a constant 𝐿 > 0 such that

𝑑 (𝑇
𝑛
𝑥, 𝑇
𝑛
𝑦) ≤ 𝐿𝑑 (𝑥, 𝑦) , ∀𝑛 ≥ 1, 𝑥, 𝑦 ∈ 𝐾. (4)

Definition 1. A mapping 𝑇 : 𝐾 → 𝐾 is said to be
({𝜇
𝑛
}, {𝜉
𝑛
}, 𝜙)-total asymptotically nonexpansive, if there exist

nonnegative sequences {𝜇
𝑛
}, {𝜉
𝑛
}with𝜇

𝑛
→ 0, 𝜉

𝑛
→ 0 and a

strictly increasing continuous function 𝜙 : [0,∞) → [0,∞)

with 𝜙(0) = 0 such that

𝑑 (𝑇
𝑛
𝑥, 𝑇
𝑛
𝑦) ≤ 𝑑 (𝑥, 𝑦) + 𝜇

𝑛
𝜙 (𝑑 (𝑥, 𝑦)) + 𝜉

𝑛
,

∀𝑛 ≥ 1, 𝑥, 𝑦 ∈ 𝐾.

(5)

Remark 2. From the definitions, it is clear that each non-
expansive mapping is an asymptotically nonexpansive map-
ping with a sequence {𝑘

𝑛
= 1} and each asymptotically

nonexpansivemapping is a ({𝜇
𝑛
}, {𝜉
𝑛
}, 𝜙)-total asymptotically

nonexpansive mapping with 𝜉
𝑛
= 0, 𝜇

𝑛
= 𝑘
𝑛
− 1, 𝑛 ≥ 1 and

𝜙(𝑡) = 𝑡, 𝑡 ≥ 0.

The existence of fixed points of various nonlinear map-
pings has relevant applications inmany branches of nonlinear
analysis and topology. On the other hand, there are certain
situations where it is difficult to derive conditions for the
existence of fixed points for certain types of nonlinear
mappings. It is worth mentioning that fixed point theory
for nonexpansive mappings, a limit case of a contraction
mapping when the Lipschitz constant is allowed to be 1,
requires tools far beyond from metric fixed point theory.
Iteration schemas are the only main tool for analysis of
generalized nonexpansive mappings. Fixed point theory has
a computational flavor as one can define effective iteration
schemas for the computation of fixed points of various
nonlinear mappings.The problem of finding a common fixed
point of some nonlinear mappings acting on a nonempty
convex domain often arises in applied mathematics.

The purpose of this paper is to introduce the concept
of total asymptotically nonexpansive mappings and to prove
some Δ-convergence theorems of the iteration process for
the approximation of total asymptotically nonexpansivemap-
pings in hyperbolic spaces.The results presented in the paper
extend and improve some recent results given in [6–18].

In order to define the concept Δ-convergence in the
general setup of hyperbolic spaces, we first collect some basic
concepts.

Let {𝑥
𝑛
} be a bounded sequence in a hyperbolic space 𝑋.

For𝑥 ∈ 𝑋, we define a continuous functional 𝑟(⋅, {𝑥
𝑛
}) : 𝑋 →

[0,∞) by

𝑟 (𝑥, {𝑥
𝑛
}) = lim sup

𝑛→∞

𝑑 (𝑥, 𝑥
𝑛
) . (6)

The asymptotic radius 𝑟({𝑥
𝑛
}) of {𝑥

𝑛
} is given by

𝑟 ({𝑥
𝑛
}) = inf {𝑟 (𝑥, {𝑥

𝑛
}) : 𝑥 ∈ 𝑋} . (7)

The asymptotic center 𝐴
𝑘
({𝑥
𝑛
}) of a bounded sequence {𝑥

𝑛
}

with respect to 𝐾 ⊂ 𝑋 is the set

𝐴
𝐾
({𝑥
𝑛
}) = {𝑥 ∈ 𝑋 : 𝑟 (𝑥, {𝑥

𝑛
}) ≤ 𝑟 (𝑦, {𝑥

𝑛
}) , ∀𝑦 ∈ 𝐾} .

(8)

This is the set of minimizers of the functional 𝑟(⋅, {𝑥
𝑛
}). If

the asymptotic center is taken with respect to 𝑋, then it is
simply denoted by𝐴({𝑥

𝑛
}). It is known that uniformly convex

Banach spaces and CAT(0) spaces enjoy the property that
“bounded sequences have unique asymptotic centers with
respect to closed convex subsets.”The following lemma is due
to Leuştean [19] and ensures that this property also holds in
a complete uniformly convex hyperbolic space.

Lemma 3 (see [19]). Let (𝑋, 𝑑,𝑊) be a complete uniformly
convex hyperbolic space with monotone modulus of uniform
convexity. Then, every bounded sequence {𝑥

𝑛
} in 𝑋 has a

unique asymptotic center with respect to any nonempty closed
convex subset 𝐾 of𝑋.

Recall that a sequence {𝑥
𝑛
} in 𝑋 is said to Δ-converge to

𝑥 ∈ 𝑋 if 𝑥 is the unique asymptotic center of {𝑢
𝑛
} for every

subsequence {𝑢
𝑛
} of {𝑥

𝑛
}. In this case, we writeΔ-lim

𝑛→∞
𝑥
𝑛
=

𝑥 and call 𝑥 the Δ-𝑙𝑖𝑚𝑖𝑡 of {𝑥
𝑛
}.

A mapping 𝑇 : 𝐾 → 𝐾 is semicompact if every bounded
sequence {𝑥

𝑛
} ⊂ 𝐾, satisfying 𝑑(𝑥

𝑛
, 𝑇𝑥
𝑛
) → 0, has a

convergent subsequence.

Lemma 4 (see [8]). Let {𝑎
𝑛
}, {𝑏
𝑛
}, and {𝛿

𝑛
} be sequences of

nonnegative real numbers satisfying

𝑎
𝑛+1

≤ (1 + 𝛿
𝑛
) 𝑎
𝑛
+ 𝑏
𝑛
, ∀𝑛 ≥ 1. (9)

If ∑∞
𝑛=1

𝛿
𝑛
< ∞ and ∑

∞

𝑛=1
𝑏
𝑛
< ∞, then the limit lim

𝑛→∞
𝑎
𝑛

exists. If there exists a subsequence {𝑎
𝑛𝑖
} ⊂ {𝑎

𝑛
} such that 𝑎

𝑛𝑖
→

0, then lim
𝑛→∞

𝑎
𝑛
= 0.

Lemma 5 (see [11]). Let (𝑋, 𝑑,𝑊) be a uniformly convex
hyperbolic space with monotone modulus of uniform convexity
𝜂. Let 𝑥 ∈ 𝑋 and {𝛼

𝑛
} be a sequence in [𝑎, 𝑏] for some 𝑎, 𝑏 ∈

(0, 1). If {𝑥
𝑛
} and {𝑦

𝑛
} are sequences in𝑋 such that

lim sup
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥) ≤ 𝑐, lim sup

𝑛→∞

𝑑 (𝑦
𝑛
, 𝑥) ≤ 𝑐,

lim
𝑛→∞

𝑑 (𝑊 (𝑥
𝑛
, 𝑦
𝑛
, 𝛼
𝑛
) , 𝑥) = 𝑐,

(10)

for some 𝑐 ≥ 0, then lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑦
𝑛
) = 0.

Lemma 6 (see [11]). Let𝐾 be a nonempty closed convex subset
of uniformly convex hyperbolic space and {𝑥

𝑛
} a bounded

sequence in𝐾 such that𝐴({𝑥
𝑛
}) = {𝑦} and 𝑟({𝑥

𝑛
}) = 𝜌. If {𝑦

𝑚
}

is another sequence in 𝐾 such that lim
𝑚→∞

𝑟(𝑦
𝑚
, {𝑥
𝑛
}) = 𝜌,

then lim
𝑚→∞

𝑦
𝑚
= 𝑦.

2. Main Results

Theorem 7. Let 𝐾 be a nonempty closed convex subset of a
complete uniformly convex hyperbolic space 𝑋 with monotone
modulus of uniform convexity 𝜂. Let 𝑇

𝑖
: 𝐾 → 𝐾, 𝑖 =

1, 2, be uniformly 𝐿
𝑖
-Lipschitzian and ({𝜇

𝑖𝑛
}, {𝜉
𝑖𝑛
}, 𝜙
𝑖
)-total
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asymptotically nonexpansive mappings with sequences {𝜇
𝑖𝑛
}

and {𝜉
𝑖𝑛
} satisfying lim

𝑛→∞
𝜇
𝑖𝑛

= 0, lim
𝑛→∞

𝜉
𝑖𝑛

= 0, and
strictly increasing function 𝜙

𝑖
: [0,∞) → [0,∞) with 𝜙

𝑖
(0) =

0, 𝑖 = 1, 2. Assume that 𝐹 := ⋂
2

𝑖=1
𝐹(𝑇
𝑖
) ̸= 0, and for arbitrarily

chosen 𝑥
1
∈ 𝐾, {𝑥

𝑛
} is defined as follows:

𝑥
𝑛+1

= 𝑊(𝑥
𝑛
, 𝑇
𝑛

1
𝑦
𝑛
, 𝛼
𝑛
) ,

𝑦
𝑛
= 𝑊(𝑥

𝑛
, 𝑇
𝑛

2
𝑥
𝑛
, 𝛽
𝑛
) ,

(11)

where {𝜇
𝑖𝑛
}, {𝜉
𝑖𝑛
}, 𝜙
𝑖
, 𝑖 = 1, 2, {𝛼

𝑛
}, and {𝛽

𝑛
} satisfy the

following conditions:

(1) ∑∞
𝑛=1

𝜇
𝑖𝑛
< ∞, ∑

∞

𝑛=1
𝜉
𝑖𝑛
< ∞, 𝑖 = 1, 2;

(2) there exist constants 𝑎, 𝑏 ∈ (0, 1) with 0 < 𝑏(1 − 𝑎) ≤

1/2 such that {𝛼
𝑛
} ⊂ [𝑎, 𝑏] and {𝛽

𝑛
} ⊂ [𝑎, 𝑏];

(3) there exist a constant 𝑀∗ > 0 such that 𝜙
𝑖
(𝑟) ≤

𝑀
∗
𝑟, 𝑟 > 0, 𝑖 = 1, 2.

Then, the sequence {𝑥
𝑛
} defined by (11) Δ-converges to a

common fixed point of 𝐹 := ⋂
2

𝑖=1
𝐹(𝑇
𝑖
).

Proof. The proof of Theorem 7 is divided into four steps.

Step 1. First, we prove that lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑝) exists for each𝑝 ∈

𝐹.
Set 𝜇
𝑛

= max{𝜇
1𝑛
, 𝜇
2𝑛
}, 𝜉
𝑛

= max{𝜉
1𝑛
, 𝜉
2𝑛
}, and 𝐿 =

max{𝐿
1
, 𝐿
2
}. Since ∑∞

𝑛=1
𝜇
𝑖𝑛

< ∞, ∑
∞

𝑛=1
𝜉
𝑖𝑛

< ∞, 𝑖 = 1, 2,
∑
∞

𝑛=1
𝜇
𝑛
< ∞, ∑

∞

𝑛=1
𝜉
𝑛
< ∞. For any 𝑝 ∈ 𝐹(𝑇

1
) ∩ 𝐹(𝑇

2
), by

(11) we have

𝑑 (𝑥
𝑛+1

, 𝑝)

= 𝑑 (𝑊 (𝑥
𝑛
, 𝑇
𝑛

1
𝑦
𝑛
, 𝛼
𝑛
) , 𝑝)

≤ (1 − 𝛼
𝑛
) 𝑑 (𝑥
𝑛
, 𝑝) + 𝛼

𝑛
𝑑 (𝑇
𝑛

1
𝑦
𝑛
, 𝑝)

≤ (1 − 𝛼
𝑛
) 𝑑 (𝑥
𝑛
, 𝑝) + 𝛼

𝑛
[𝑑 (𝑦
𝑛
, 𝑝) + 𝜇

𝑛
𝜙
1
(𝑑 (𝑦
𝑛
, 𝑝)) + 𝜉

𝑛
]

≤ (1 − 𝛼
𝑛
) 𝑑 (𝑥
𝑛
, 𝑝) + 𝛼

𝑛
[(1 + 𝜇

𝑛
𝑀
∗
) 𝑑 (𝑦
𝑛
, 𝑝) + 𝜉

𝑛
] ,

(12)

where

𝑑 (𝑦
𝑛
, 𝑝)

= 𝑑 (𝑊 (𝑥
𝑛
, 𝑇
𝑛

2
𝑥
𝑛
, 𝛽
𝑛
) , 𝑝)

≤ (1 − 𝛽
𝑛
) 𝑑 (𝑥
𝑛
, 𝑝) + 𝛽

𝑛
𝑑 (𝑇
𝑛

2
𝑥
𝑛
, 𝑝)

≤ (1 − 𝛽
𝑛
) 𝑑 (𝑥
𝑛
, 𝑝) + 𝛽

𝑛
[𝑑 (𝑥
𝑛
, 𝑝) + 𝜇

𝑛
𝜙
2
(𝑑 (𝑥
𝑛
, 𝑝)) + 𝜉

𝑛
]

≤ (1 − 𝛽
𝑛
) 𝑑 (𝑥
𝑛
, 𝑝) + 𝛽

𝑛
[(1 + 𝜇

𝑛
𝑀
∗
) 𝑑 (𝑥
𝑛
, 𝑝) + 𝜉

𝑛
]

≤ (1 + 𝛽
𝑛
𝜇
𝑛
𝑀
∗
) 𝑑 (𝑥
𝑛
, 𝑝) + 𝛽

𝑛
𝜉
𝑛
.

(13)

Substituting (13) into (12), we have

𝑑 (𝑥
𝑛+1

, 𝑝)

≤ (1 − 𝛼
𝑛
) 𝑑 (𝑥
𝑛
, 𝑝)

+ 𝛼
𝑛
[(1 + 𝜇

𝑛
𝑀
∗
) ((1 + 𝛽

𝑛
𝜇
𝑛
𝑀
∗
) 𝑑 (𝑥
𝑛
, 𝑝) + 𝛽

𝑛
𝜉
𝑛
) + 𝜉
𝑛
]

≤ [1 + (1 + 𝛽
𝑛
+ 𝛽
𝑛
𝜇
𝑛
𝑀
∗
) 𝛼
𝑛
𝜇
𝑛
𝑀
∗
] 𝑑 (𝑥
𝑛
, 𝑝)

+ (1 + 𝛽
𝑛
+ 𝛽
𝑛
𝜇
𝑛
𝑀
∗
) 𝛼
𝑛
𝜉
𝑛
.

(14)

Applying Lemma 4 to the inequality, we get that
lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑝) exist for 𝑝 ∈ 𝐹(𝑇

1
) ∩ 𝐹(𝑇

2
).

Step 2. We show that lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑇
1
𝑥
𝑛
) =

lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑇
2
𝑥
𝑛
) = 0.

For each 𝑝 ∈ 𝐹(𝑇
1
) ∩ 𝐹(𝑇

2
), from the proof of Step 1,

we know that lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑝) exists. We may assume that

lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑝) = 𝑐 ≥ 0. The case 𝑐 = 0 is trivial. Next, we

deal with the case 𝑐 > 0. From (13), we have

𝑑 (𝑦
𝑛
, 𝑝) ≤ (1 + 𝛽

𝑛
𝜇
𝑛
𝑀
∗
) 𝑑 (𝑥
𝑛
, 𝑝) + 𝛽

𝑛
𝜉
𝑛
. (15)

Taking limsup on both sides in (15), we have

lim sup
𝑛→∞

𝑑 (𝑦
𝑛
, 𝑝) ≤ 𝑐. (16)

In addition, since

𝑑 (𝑇
𝑛

1
𝑦
𝑛
, 𝑝) ≤ 𝑑 (𝑦

𝑛
, 𝑝) + 𝜇

𝑛
𝜙
1
(𝑑 (𝑦
𝑛
, 𝑝)) + 𝜉

𝑛

≤ (1 + 𝜇
𝑛
𝑀
∗
) 𝑑 (𝑦
𝑛
, 𝑝) + 𝜉

𝑛
,

(17)

we have

lim sup
𝑛→∞

𝑑 (𝑇
𝑛

1
𝑦
𝑛
, 𝑝) ≤ 𝑐. (18)

Since lim
𝑛→∞

𝑑(𝑥
𝑛+1

, 𝑝) = 𝑐, it is easy to prove that

lim
𝑛→∞

𝑑 (𝑊 (𝑥
𝑛
, 𝑇
𝑛

1
𝑦
𝑛
, 𝛼
𝑛
) , 𝑝) = 𝑐. (19)

It follows from Lemma 5 that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑇
𝑛

1
𝑦
𝑛
) = 0. (20)

On the other hand, since

𝑑 (𝑥
𝑛
, 𝑝) ≤ 𝑑 (𝑥

𝑛
, 𝑇
𝑛

1
𝑦
𝑛
) + 𝑑 (𝑇

𝑛

1
𝑦
𝑛
, 𝑝)

≤ 𝑑 (𝑥
𝑛
, 𝑇
𝑛

1
𝑦
𝑛
) + 𝑑 (𝑦

𝑛
, 𝑝) + 𝜇

𝑛
𝜙
1
(𝑑 (𝑦
𝑛
, 𝑝)) + 𝜉

𝑛

≤ 𝑑 (𝑥
𝑛
, 𝑇
𝑛

1
𝑦
𝑛
) + (1 + 𝜇

𝑛
𝑀
∗
) 𝑑 (𝑦
𝑛
, 𝑝) + 𝜉

𝑛
,

(21)

we have lim inf
𝑛→∞

𝑑(𝑦
𝑛
, 𝑝) ≥ 𝑐. Combined with (16), it

yields that

lim
𝑛→∞

𝑑 (𝑦
𝑛
, 𝑝) = 𝑐. (22)
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This implies that

lim
𝑛→∞

𝑑 (𝑊 (𝑥
𝑛
, 𝑇
𝑛

2
𝑥
𝑛
, 𝛽
𝑛
) , 𝑝) = 𝑐. (23)

Since

𝑑 (𝑇
𝑛

2
𝑥
𝑛
, 𝑝) ≤ 𝑑 (𝑥

𝑛
, 𝑝) + 𝜇

𝑛
𝜙
2
(𝑑 (𝑥
𝑛
, 𝑝)) + 𝜉

𝑛

≤ (1 + 𝜇
𝑛
𝑀
∗
) 𝑑 (𝑥
𝑛
, 𝑝) + 𝜉

𝑛
,

(24)

we have

lim sup
𝑛→∞

𝑑 (𝑇
𝑛

2
𝑥
𝑛
, 𝑝) ≤ 𝑐. (25)

So, it follows from (25) and Lemma 5 that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑇
𝑛

2
𝑥
𝑛
) = 0. (26)

Observe that

𝑑 (𝑥
𝑛
, 𝑇
𝑛

1
𝑥
𝑛
)

≤ 𝑑 (𝑥
𝑛
, 𝑇
𝑛

1
𝑦
𝑛
) + 𝑑 (𝑇

𝑛

1
𝑦
𝑛
, 𝑇
𝑛

1
𝑥
𝑛
)

≤ 𝑑 (𝑥
𝑛
, 𝑇
𝑛

1
𝑦
𝑛
) + 𝑑 (𝑦

𝑛
, 𝑥
𝑛
) + 𝜇
𝑛
𝜙
1
(𝑑 (𝑦
𝑛
, 𝑥
𝑛
)) + 𝜉
𝑛

= 𝑑 (𝑥
𝑛
, 𝑇
𝑛

1
𝑦
𝑛
) + (1 + 𝜇

𝑛
𝑀
∗
) 𝑑 (𝑦
𝑛
, 𝑥
𝑛
) + 𝜉
𝑛
,

(27)

where

𝑑 (𝑦
𝑛
, 𝑥
𝑛
) = 𝑑 (𝑊 (𝑥

𝑛
, 𝑇
𝑛

2
𝑥
𝑛
, 𝛽
𝑛
) , 𝑥
𝑛
) ≤ 𝛽
𝑛
𝑑 (𝑥
𝑛
, 𝑇
𝑛

2
𝑥
𝑛
) .

(28)

It follows from (26) that

lim
𝑛→∞

𝑑 (𝑦
𝑛
, 𝑥
𝑛
) = 0. (29)

Thus, from (20), (27), and (29), we have

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑇
𝑛

1
𝑥
𝑛
) = 0. (30)

In addition, since

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) = 𝑑 (𝑊 (𝑥

𝑛
, 𝑇
𝑛

1
𝑦
𝑛
, 𝛼
𝑛
) , 𝑥
𝑛
)

≤ 𝛼
𝑛
𝑑 (𝑥
𝑛
, 𝑇
𝑛

1
𝑦
𝑛
) ,

(31)

from (20), we have

lim
𝑛→∞

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) = 0. (32)

Finally, since

𝑑 (𝑥
𝑛
, 𝑇
1
𝑥
𝑛
) ≤ 𝑑 (𝑥

𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝑇
𝑛+1

1
𝑥
𝑛+1

)

+ 𝑑 (𝑇
𝑛+1

1
𝑥
𝑛+1

, 𝑇
𝑛+1

1
𝑥
𝑛
) + 𝑑 (𝑇

𝑛+1

1
𝑥
𝑛
, 𝑇
1
𝑥
𝑛
)

≤ (1 + 𝐿) 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝑇
𝑛+1

1
𝑥
𝑛+1

)

+ 𝐿𝑑 (𝑇
𝑛

1
𝑥
𝑛
, 𝑥
𝑛
) ,

(33)

it follows from (30) and (32) that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑇
1
𝑥
𝑛
) = 0. (34)

Similarly, we also can show that

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑇
2
𝑥
𝑛
) = 0. (35)

Step 3. Now we prove that the sequence {𝑥
𝑛
} Δ-converges to

a common fixed point of 𝐹(𝑇
1
) ∩ 𝐹(𝑇

2
).

In fact, since, for each 𝑝 ∈ 𝐹, lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑝) exists,

this implies that the sequence {𝑑(𝑥
𝑛
, 𝑝)} is bounded, so is

the sequence {𝑥
𝑛
}. Hence, by virtue of Lemma 3, {𝑥

𝑛
} has a

unique asymptotic center 𝐴
𝐾
({𝑥
𝑛
}) = {𝑥}.

Let {𝑢
𝑛
} be any subsequence of {𝑥

𝑛
} with 𝐴

𝐾
({𝑢
𝑛
}) = {𝑢}.

It follows from (34) that

lim
𝑛→∞

𝑑 (𝑢
𝑛
, 𝑇
1
𝑢
𝑛
) = 0. (36)

Now, we show that 𝑢 ∈ 𝐹(𝑇
1
). For this, we define a sequence

{𝑧
𝑛
} in 𝐾 by 𝑧

𝑘
= 𝑇
𝑘

1
𝑢. So, we calculate

𝑑 (𝑧
𝑘
, 𝑢
𝑛
)

≤ 𝑑 (𝑇
𝑘

1
𝑢, 𝑇
𝑘

1
𝑢
𝑛
) + 𝑑 (𝑇

𝑘

1
𝑢
𝑛
, 𝑇
𝑘−1

1
𝑢
𝑛
) + ⋅ ⋅ ⋅ + 𝑑 (𝑇

1
𝑢
𝑛
, 𝑢
𝑛
)

≤ 𝑑 (𝑢, 𝑢
𝑛
) + 𝜇
𝑛
𝜙
1
(𝑑 (𝑢, 𝑢

𝑛
)) + 𝜉
𝑛
+

𝑘

∑

𝑖=1

𝑑 (𝑇
𝑖

1
𝑢
𝑛
, 𝑇
𝑖−1

1
𝑢
𝑛
)

≤ (1 + 𝜇
𝑛
𝑀
∗
) 𝑑 (𝑢, 𝑢

𝑛
) + 𝜉
𝑛
+

𝑘

∑

𝑖=1

𝑑 (𝑇
𝑖

1
𝑢
𝑛
, 𝑇
𝑖−1

1
𝑢
𝑛
) .

(37)

Since 𝑇
1
is uniformly 𝐿-Lipschitzian, from (37) we have

𝑑 (𝑧
𝑘
, 𝑢
𝑛
) ≤ (1 + 𝜇

𝑛
𝑀
∗
) 𝑑 (𝑢, 𝑢

𝑛
) + 𝜉
𝑛
+ 𝑘𝐿𝑑 (𝑇

1
𝑢
𝑛
, 𝑢
𝑛
) .

(38)

Taking limsup on both sides of the previous estimate and
using (36), we have

𝑟 (𝑧
𝑘
, {𝑢
𝑛
}) = lim sup

𝑛→∞

𝑑 (𝑧
𝑘
, 𝑢
𝑛
) ≤ lim sup
𝑛→∞

𝑑 (𝑢, 𝑢
𝑛
)

= 𝑟 (𝑢, {𝑢
𝑛
}) .

(39)

Since 𝐴
𝐾
({𝑢
𝑛
}) = {𝑢}, by the definition of asymptotic center

𝐴
𝐾
({𝑢
𝑛
}) of a bounded sequence {𝑢

𝑛
} with respect to 𝐾 ⊂

𝑋 and (8), this implies that 𝑟(𝑧
𝑘
, {𝑢
𝑛
}) = 𝑟(𝑢, {𝑢

𝑛
}), for

all 𝑘 ≥ 1. Therefore, |𝑟(𝑧
𝑘
, {𝑢
𝑛
}) − 𝑟(𝑢, {𝑢

𝑛
})| → 0 as

𝑘 → ∞. It follows from Lemma 6 that lim
𝑘→∞

𝑇
𝑘

1
𝑢 = 𝑢.

As 𝑇
1
is uniformly continuous, 𝑇

1
𝑢 = 𝑇

1
(lim
𝑘→∞

𝑇
𝑘

1
𝑢) =

lim
𝑘→∞

𝑇
𝑘+1

1
𝑢 = 𝑢. That is, 𝑢 ∈ 𝐹(𝑇

1
). Similarly, we also can

show that 𝑢 ∈ 𝐹(𝑇
2
). Hence, 𝑢 is the common fixed point

of 𝑇
1
and 𝑇

2
. Reasoning as previously mentioned by utilizing

the uniqueness of asymptotic centers, we get that 𝑥 = 𝑢. Since
{𝑢
𝑛
} is an arbitrary subsequence of {𝑥

𝑛
}, 𝐴({𝑢

𝑛
}) = {𝑢} for all

subsequence {𝑢
𝑛
} of {𝑥

𝑛
}. This proves that {𝑥

𝑛
} Δ-converges

to a common fixed point of 𝑇
1
and 𝑇

2
. This completes the

proof.



Journal of Applied Mathematics 5

The following theorem can be obtained from Theorem 7
immediately.

Theorem 8. Let 𝐾 be a nonempty closed convex subset of a
complete uniformly convex hyperbolic space 𝑋 with monotone
modulus of uniform convexity 𝜂. Let 𝑇

𝑖
: 𝐾 → 𝐾, 𝑖 =

1, 2, be asymptotically nonexpansive mappings with sequence
{𝑡
𝑖𝑛
} ⊂ [1,∞) satisfying lim

𝑛→∞
𝑡
𝑖𝑛

= 1. Assume that 𝐹 :=

⋂
2

𝑖=1
𝐹(𝑇
𝑖
) ̸= 0; for arbitrarily chosen 𝑥

1
∈ 𝐾, {𝑥

𝑛
} is defined as

follows:

𝑥
𝑛+1

= 𝑊(𝑥
𝑛
, 𝑇
𝑛

1
𝑦
𝑛
, 𝛼
𝑛
) ,

𝑦
𝑛
= 𝑊(𝑥

𝑛
, 𝑇
𝑛

2
𝑥
𝑛
, 𝛽
𝑛
) ,

(40)

where {𝑡
𝑖𝑛
}, 𝑖 = 1, 2, {𝛼

𝑛
} and {𝛽

𝑛
} satisfy the following

conditions:

(1) ∑∞
𝑛=1

(𝑡
𝑖𝑛
− 1) < ∞, 𝑖 = 1, 2;

(2) there exist constants 𝑎, 𝑏 ∈ (0, 1)with 0 < 𝑏(1−𝑎) ≤

1/2 such that {𝛼
𝑛
} ⊂ [𝑎, 𝑏] and {𝛽

𝑛
} ⊂ [𝑎, 𝑏].

Then, the sequence {𝑥
𝑛
} defined in (40) Δ-converges to a

common fixed point of 𝐹 := ⋂
2

𝑖=1
𝐹(𝑇
𝑖
).

Proof. Take 𝜙
𝑖
(𝑡) = 𝑡, 𝑡 ≥ 0, 𝜉

𝑖𝑛
= 0, 𝜇

𝑖𝑛
= 𝑡
𝑖𝑛
− 1 in

Theorem 7. Since all conditions in Theorem 7 are satisfied, it
follows from Theorem 7 that the sequence {𝑥

𝑛
} Δ-converges

to a common fixed point of 𝐹 := ⋂
2

𝑖=1
𝐹(𝑇
𝑖
).

This completes the proof of Theorem 8.
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