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Consensus algorithm for networked dynamic systems is an important research problem for data fusion in sensor networks. In
this paper, the distributed filter with consensus strategies known as Kalman consensus filter and information consensus filter is
investigated for state estimation of distributed sensor networks. Firstly, an in-depth comparison analysis betweenKalman consensus
filter and information consensus filter is given, and the result shows that the information consensus filter performs better than
the Kalman consensus filter. Secondly, a novel optimization process to update the consensus weights is proposed based on the
information consensus filter. Finally, some numerical simulations are given, and the experiment results show that the proposed
method achieves better performance than the existing consensus filter strategies.

1. Introduction

In recent years, there has been a surge of interests in the area
of distributed sensor networks.The advantages of distributed
sensor networks lie in their low processing power, cheap
memory, scalable sensing features, and fault tolerance capa-
bilities.

One of the most basic problems for distributed sensor
networks is to develop distributed algorithms [1] for the state
estimation of a process of interest.When a process is observed
by a group of sensors organized in a network, the goal of
each sensor node is to obtain the accurate state estimation
for the process. Kalman filtering has been proved to be an
effective algorithm for state estimation of dynamic processes
[2, 3]. Because of this, most papers focusing on distributed
estimation propose different mechanisms by combining the
Kalman filter with a consensus filter in order to ensure that
the estimates asymptotically converge to the same value,
schemes which will be henceforth called consensus based
distributed filtering algorithms. Based on the idea mentioned
above, a scheme for distributed Kalman filtering (DKF) was
proposed in [4] based on reaching an average-consensus [5,
6], and in [7]Olfati-Saber proposed a scalable and distributed
Kalman filtering algorithm based on reaching a dynamic
average consensus [8]. Olfati-Saber’s algorithm [7] has been

further developed by other researchers [9] with similar algo-
rithms. However, methods based on such kind of algorithms
produce relatively weak performances. According to [10],
the performance is compared with the collective estimation
error of 𝑛 noncooperative local Kalman filters, which is a
trivial base performance level for distributed estimation in
sensor networks. To solve this, Olfati-Saber developed the
Kalman consensus filter (KCF) in [11], where a consensus
filter runs directly on the estimator state space variables.
In addition, a formal derivation followed by optimality and
stability analysis of KCF in discrete-time has been elaborated
in [10]. However, in distributed implementations, there is a
correlation between local estimates [12] in KCF. In general
distributed networks, it is not possible to exactly determine
this correlation [13] and it results in nonoptimal local esti-
mates.Other techniques to accomplish distributed estimation
for dynamic systems that rely on the inverse covariance filter
or information filter have been around formany years [14, 15].
An information consensus filter (ICF) is presented in [16] that
applies consensus filters to an information filter.This method
does not exactly solve the problem of correlation between
local estimates but it gives insight into the statistical effects
of the correlation and is working much well in distributed
sensor networks. Based on the ICF, we focus on designing the
consensus weights to improve its performance.
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In this paper, we firstly describe the existing distributed
filter with consensus strategies. Then we make an in-depth
comparison between the KCF and the ICF. Based on the
ICF, we propose the consensus weights optimization for
better performance of the system and refer this method as
weights optimized information consensus filter (WO-ICF). We
show experimentally that the proposed method achieves the
best performance and it is closest to the optimal centralized
performance.

The structure of this paper is organized as follows. In
Section 2, the background knowledge on Kalman filter and
the centralized information filter are provided. In Section 3,
the consensus strategies are discussed. In Section 4, Kalman
consensus filter is presented. In Section 5 we discuss the
information consensus filter, and an ICF based weights opti-
mization method is proposed. Simulation results and perfor-
mance comparisons between the KCF and ICF algorithm are
provided in Section 6. In Section 7, wemake a brief summary.

2. Kalman Filter: Information Form

2.1. Kalman Filter. Consider a dynamic process with the line-
ar time-varying model as follows:

𝑥 (𝑘 + 1) = 𝐴 (𝑘) 𝑥 (𝑘) + 𝐵 (𝑘)𝑤 (𝑘) ;

𝑥 (0) ∈ 𝑁 (𝑥 (0) , 𝑃0
) ,

(1)

where 𝑥(𝑘) ∈ 𝑅
𝑛 and 𝑤(𝑘) ∈ 𝑅

𝑚 are the state and input noise
of the process at time 𝑘 ∈ {0, 1, 2 . . .}, respectively; 𝑥(0) is the
initial state with a Gaussian distribution; 𝐴(𝑘) is the model
matrix, 𝐵(𝑘) is the state noise matrix. We are interested in
tracking the state of this target by the use of a sensor network
with 𝑛 sensors and the communication topology 𝐺 = (𝑉; 𝐸).

The observations at sensor 𝑖 and time 𝑘 are

𝑧
𝑖
(𝑘) = 𝐻

𝑖
(𝑘) 𝑥 (𝑘) + V

𝑖
(𝑘) , (2)

where 𝑧
𝑖
(𝑘) ∈ 𝑅

𝑝𝑖 with ∑
𝑛

𝑖=1
𝑝
𝑖
= 𝑝, 𝐻

𝑖
(𝑘) ∈ 𝑅

𝑝𝑖×𝑛 is the
local observation matrix for sensor 𝑖, and V

𝑖
(𝑘) is the local

observation noise. We refer to 𝑧
𝑖
(𝑘) as sensor data. Assume

that 𝑤(𝑘) and V
𝑖
(𝑘) are zero mean white Gaussian noise with

the following statistics:

𝐸 [𝑤 (𝑘)𝑤(𝑙)
𝑇
] = 𝑄 (𝑘) 𝛿𝑘𝑙

,

𝐸 [V
𝑖
(𝑘) V
𝑖
(𝑙)
𝑇
] = 𝑅
𝑖
(𝑘) 𝛿
𝑘𝑙
,

(3)

where 𝛿
𝑟𝑠

= 1 if 𝑟 = 𝑠 and 𝛿
𝑟𝑠

= 0, otherwise. We stack the
observations at all 𝑛 sensors in the sensor network to get the
global observation model as follows.

Let the global observation vector z(𝑘) ∈ 𝑅
𝑝, the global

observation matrix𝐻(𝑘) ∈ 𝑅
𝑝×𝑛, and the global observation

noise vector V(𝑘) ∈ 𝑅
𝑛 be

z (𝑘) = [𝑧
1
(𝑘) , 𝑧
2
(𝑘) , . . . , 𝑧

𝑛
(𝑘)]
𝑇
,

𝐻 (𝑘) = [𝐻
1 (
𝑘) ,𝐻2 (

𝑘) , . . . , 𝐻𝑛 (
𝑘)]
𝑇
,

V (𝑘) = [V
1
(𝑘) , V
2
(𝑘) , . . . , V

𝑛
(𝑘)]
𝑇
.

(4)

Then the global observation model is given by

z (𝑘) = 𝐻 (𝑘) 𝑥 (𝑘) + V (𝑘) . (5)

Since observation noises of different sensors are mutually
independent, we can combine 𝑅

𝑖
(𝑘) into one global observa-

tion noise covariance matrix 𝑅(𝑘) as

𝑅 (𝑘) = block diag [𝑅
𝑖
(𝑘) , . . . , 𝑅

𝑛
(𝑘)] . (6)

Given the collective information 𝑍(𝑘) = {z(0), z(1), . . . ,
z(𝑘)}, the estimation of the state of the process can be
expressed as

𝑥 (𝑘) := 𝑥 (𝑘 | 𝑍 (𝑘)) = 𝐸 [𝑥 (𝑘) | 𝑍 (𝑘)] ,

𝑥 (𝑘) := 𝑥 (𝑘 | 𝑍 (𝑘 − 1)) = 𝐸 [𝑥 (𝑘) | 𝑍 (𝑘 − 1)] .

(7)

We refer to 𝑥(𝑘) and 𝑥(𝑘) as estimate and prior estimate
(or prediction) of the state 𝑥(𝑘), respectively. Then, the error
covariance matrices associated with the estimates 𝑥(𝑘) and
𝑥(𝑘) are given by

𝑀(𝑘) :=𝐸 [(𝑥 (𝑘) − 𝑥 (𝑘)) (𝑥 (𝑘) − 𝑥 (𝑘))
𝑇
]=𝐸 [𝜂 (𝑘) 𝜂(𝑘)

𝑇
] ,

𝑃 (𝑘) :=𝐸 [(𝑥 (𝑘) − 𝑥 (𝑘)) (𝑥 (𝑘) − 𝑥 (𝑘))
𝑇
]=𝐸 [𝜂 (𝑘) 𝜂(𝑘)

𝑇
] ,

(8)

where 𝜂(𝑘) = 𝑥(𝑘) − 𝑥(𝑘) and 𝜂(𝑘) = 𝑥(𝑘) − 𝑥(𝑘) denote the
estimate errors and 𝑃(0) = 𝑃

0
. Then, the Kalman filter is a

linear estimator in the form

𝑥 (𝑘) = 𝑥 (𝑘) + 𝐾 (𝑘) (z (𝑘) − 𝐻 (𝑘) 𝑥 (𝑘)) (9)

with the Kalman gain𝐾(𝑘).

Remark 1. Throughout this paper, due to the importance of
the node indices, we adopt a notation that is free of the time-
index 𝑘 and call it an index-free notation to represent all
estimators [10]. The index-free form of the above estimator
can be written as

𝑥 = 𝑥 + 𝐾 (z − 𝐻𝑥) . (10)

We also use the update operation {⋅
+
} defined in [10] to

rewrite the sensing model of node 𝑖 of the sensor network as

𝑥
+
= 𝐴𝑥 + 𝐵𝑤, 𝑧

𝑖
= 𝐻
𝑖
𝑥 + V
𝑖
. (11)

Then, we get the index-free recursive equations of a cen-
tralized Kalman filter (CKF) for system (11):

𝑥 = 𝑥 + 𝐾 (z − 𝐻𝑥) ,

𝐾 = 𝑃𝐻
𝑇
(𝑅 + 𝐻𝑃𝐻

𝑇
)

−1

,

𝑀 = 𝑃 − 𝑃𝐻
𝑇
(𝑅 + 𝐻𝑃𝐻

𝑇
)

−1

𝐻𝑃,

𝑃
+
= 𝐴𝑀𝐴

𝑇
+ 𝐵𝑄𝐵

𝑇
,

𝑥
+
= 𝐴𝑥.

(12)
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2.2. Information Form: Centralized Information Filter. Using
the matrix inversion lemma

(𝐼 + 𝐴𝐵𝐶
−1
𝐵
𝑇
)

−1

𝐴 = (𝐴
−1

+ 𝐵𝐶
−1
𝐵
𝑇
)

−1

= 𝐴 − 𝐴𝐵(𝐵
𝑇
𝐴𝐵 + 𝐶)

−1

𝐵
𝑇
𝐴.

(13)

By use of the identity 𝐵𝑇𝐴𝐵𝐶−1 = [(𝐵
𝑇
𝐴𝐵 + 𝐶)𝐶

−1
− 𝐼], we

have

(𝐼 + 𝐴𝐵𝐶
−1
𝐵
𝑇
)

−1

𝐴𝐵𝐶
−1

= (𝐴
−1

+ 𝐵𝐶
−1
𝐵
𝑇
)

−1

𝐵𝐶
−1

= 𝐴𝐵 (𝐵
𝑇
𝐴𝐵 + 𝐶)

−1

.

(14)

From (14), we have

𝐾 = 𝑃𝐻
𝑇
(𝑅 + 𝐻𝑃𝐻

𝑇
)

−1

= (𝑃
−1

+ 𝐻
𝑇
𝑅
−1
𝐻)

−1

𝐻
𝑇
𝑅
−1
.

(15)

Using the matrix inversion lemma

(𝐴 + 𝐵𝐶𝐷)
−1

= 𝐴
−1

− 𝐴
−1
𝐵(𝐶
−1

+ 𝐷𝐴
−1
𝐵)

−1

𝐷𝐴
−1
, (16)

we have

(𝑃
−1

+ 𝐻
𝑇
𝑅
−1
𝐻)

−1

= 𝑃 − 𝑃𝐻
𝑇
(𝑅 + 𝐻𝑃𝐻

𝑇
)

−1

𝐻𝑃 = 𝑀.

(17)

Then we can rewrite (15) as

𝐾 = 𝑀𝐻
𝑇
𝑅
−1
. (18)

Based on the above derivation, the recursive equations of
the Kalman filter can be rewritten as

𝑥 = 𝑥 + 𝐾 (z − 𝐻𝑥) ,

𝐾 = 𝑀𝐻
𝑇
𝑅
−1
,

𝑀 = (𝑃
−1

+ 𝐻
𝑇
𝑅
−1
𝐻)

−1

,

𝑃
+
= 𝐴𝑀𝐴

𝑇
+ 𝐵𝑄𝐵

𝑇
,

𝑥
+
= 𝐴𝑥.

(19)

From (19), the estimate 𝑥 can be expressed as

𝑥 = 𝑥 + 𝐾 (z − 𝐻𝑥) = 𝑥 +𝑀𝐻
𝑇
𝑅
−1

(z − 𝐻𝑥)

= 𝑥 +𝑀(𝐻
𝑇
𝑅
−1z − 𝐻

𝑇
𝑅
−1
𝐻𝑥) .

(20)

Now we define the 𝑛-dimensional global observation
variables as

𝑦 = 𝐻
𝑇
𝑅
−1z, 𝑆 = 𝐻

𝑇
𝑅
−1
𝐻 (21)

and the 𝑛-dimensional local observation variables at sensor 𝑖
as

𝑦
𝑖
= 𝐻
𝑇

𝑖
𝑅
−1

𝑖
𝑧
𝑖
, 𝑆

𝑖
= 𝐻
𝑇

𝑖
𝑅
−1

𝑖
𝐻
𝑖
. (22)

When the observations are distributed among the sen-
sors, the KF can be implemented by collecting all the sensor
observations at a central location, or with observation fusion
by realizing that the global observation variables in (21), it can
be written as

y = 𝐻
𝑇
𝑅
−1z = 𝐻

𝑇

1
𝑅
−1

1
z
1
+ ⋅ ⋅ ⋅ + 𝐻

𝑇

𝑁
𝑅
−1

𝑁
z
𝑁
=

𝑁

∑

𝑖=1

𝑦
𝑖
. (23)

Similarly,

𝑆 = 𝐻
𝑇
𝑅
−1
𝐻 = 𝐻

𝑇

1
𝑅
−1

1
𝐻
1
+ ⋅ ⋅ ⋅ + 𝐻

𝑇

𝑁
𝑅
−1

𝑁
𝐻
𝑁
=

𝑁

∑

𝑖=1

𝑆
𝑖
. (24)

Recall (20) where the estimate 𝑥 could be written as

𝑥 = 𝑥 +𝑀(y − 𝑆𝑥) . (25)

Multiplication on the left by𝑀−1 yields a variation of (25) as

𝑀
−1
𝑥 = 𝑀

−1
𝑥 + y − 𝑆𝑥 = (𝑃

−1
+ 𝑆) 𝑥 + y − 𝑆𝑥 = 𝑃

−1
𝑥 + y.
(26)

Let the inverse of 𝑀 and 𝑃 be the information matrices,
𝐼 and 𝐼. Let �̂� and 𝑖 be the information vectors. We have the
following relations:

𝐼 = 𝑀
−1
, 𝐼 = 𝑃

−1
,

�̂� = 𝑀
−1
𝑥, 𝑖 = 𝑃

−1
𝑥.

(27)

Then (26) can be rewritten as

�̂� = 𝑖 + y, (28)

and the update of predicted estimate 𝑥 can be expressed as

𝑥
+
= 𝐴𝑥 = 𝐴 (𝑀𝐼) 𝑥 = 𝐴𝑀(𝐼𝑥) = 𝐴𝐼

−1
�̂�, (29)

and we have

𝑖

+

= (𝑃
−1
𝑥)

+

= 𝐼

+

𝐴𝐼
−1
�̂�. (30)

Now we get the following simpler form of the filter in (19)
and call it centralized information filter (CIF):

𝐼 = 𝐼 + 𝑆, �̂� = 𝑖 + y,

𝐼

+

= (𝐴𝐼
−1
𝐴
𝑇
+ 𝐵𝑄𝐵

𝑇
)

−1

, 𝑖

+

= 𝐼

+

𝐴𝐼
−1
�̂�,

(31)

where (31) is the filter step and prediction step (or update
step) of the CIF, respectively.

3. Consensus Strategy

Consensus strategy defines a set of rules for a team of agents
to agree on specific consensus states. With these rules each
agent exchanges information with its neighboring agents
and finally reaches an agreement (or consensus) concerning
the consensus state over time [17, 18]. Furthermore, average
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consensus occurswhen the final consensus state is the average
of the initial values.

Consider a team of 𝑛 agents to agree on specific consensus
states, and at any discrete-time instant 𝜏, the communication
topology between 𝑛 agents can be described by the graph
𝐺[𝜏] = (𝑉, 𝐸[𝜏]), the graph 𝐺 is undirected, 𝑉 = {1, 2, . . . , 𝑛}

is the vertex set, and 𝐸[𝜏] ⊆ 𝑉 ×𝑉 is the edge set. In the con-
sensus algorithm, each agent in the networkmaintains a local
copy of the consensus state 𝜁

𝑖
∈ 𝑅
𝑛 and updates this value

using its neighbors’ consensus states according to the rule:

𝜁
𝑖 [
𝜏 + 1] = 𝜁

𝑖 [
𝜏] +

𝑛

∑

𝑗=1

𝛽
𝑖𝑗 [

𝜏] (𝜁𝑗 [
𝜏] − 𝜁

𝑖 [
𝜏]) , (32)

where 𝜏 indicates the consensus filter iteration step. To
choose the weights 𝛽

𝑖𝑗
[𝜏], we can use the Maximum-degree

weights or the Metropolis weights [19]. Here we use the latter
which preserves the averaging in consensus filters and can
be computed by

𝛽
𝑖𝑗 [

𝜏] =

{
{
{
{

{
{
{
{

{

(1 +max {𝑑
𝑖 [
𝜏] , 𝑑𝑗 [

𝜏]})

−1

if (𝑖, 𝑗) ∈ 𝐸 [𝜏],

1 − ∑

(𝑖,𝑙)∈𝐸[𝜏]

𝛽
𝑖𝑙 [

𝜏] if 𝑖 = 𝑗,

0 otherwise,
(33)

where 𝑑
𝑖
[𝜏] is the degree of agent 𝑖 in the graph 𝐺[𝜏].

Arrange the local consensus states into the vector 𝜁[𝜏] =

[𝜁
𝑇

1
[𝜏], . . . , 𝜁

𝑇

𝑛
[𝜏]]
𝑇, and define the matrix (𝐵[𝜏])

𝑖𝑗
= 𝛽
𝑖𝑗
[𝜏]

for 𝑖 ̸= 𝑗; otherwise (𝐵[𝜏])
𝑖𝑖
= 1 − ∑

(𝑖,𝑙)∈𝐸[𝜏]
𝛽
𝑖𝑙
[𝜏], and we can

rewrite the update in (32) as

𝜁 [𝜏 + 1] = (𝐵 [𝜏] ⊗ 𝐼) 𝜁 [𝜏] , (34)

where 𝐼 is the appropriate size identity matrix and ⊗ denotes
the matrix Kronecker product.

The 𝑖𝑗th element of 𝐵[𝜏] in (34) satisfies the following
four conditions: (1) (𝐵[𝜏])

𝑖𝑗
≥ 0, (2) ∑

𝑖
(𝐵[𝜏])

𝑖𝑗
= 1, (3)

∑
𝑗
(𝐵[𝜏])

𝑖𝑗
= 1, (4) and each nonzero entry is both uniformly

upper and lower bounded. Based on these conditions, we
have the following results [20] for average consensus.

Lemma 2. Under switching interaction topologies, if there
exists a finite𝑇 ≥ 0 that for every interval [𝜏, 𝜏+𝑇] the union of
the interaction graph across interval is strongly connected, then
consensus protocol (34) achieves average consensus asymptoti-
cally; that is, 𝜁

𝑖
[𝜏] → (1/𝑛)∑

𝑛

𝑖=1
𝜁
𝑖
[0] as 𝜏 → ∞.

Remark 3. In order to calculate the metropolis weights in
(33), we assume undirected communication throughout this
paper. Therefore, if the graph 𝐺[𝜏] is connected, the matrix
𝐵[𝜏] is a doubly stochastic matrix, and the four conditions
on 𝐵[𝜏] are satisfied. This implies that average consensus is
achieved asymptotically as long as every graph is connected
[21].

4. Distributed Kalman Filter:
Consensus on Estimate

In this section, we discuss an alternative approach to dis-
tribute the Kalman filtering that relies on communicating
state estimates between neighboring nodes and refer to it as
Kalman consensus filter (KCF). Before presenting the KCF
algorithm, we first need to discuss a more primitive DKF
algorithm called local Kalman filter (LKF) which forms the
basis of the KCF.

4.1. Local Kalman Filter. In local Kalman filtering, let 𝑁
𝑖
=

{𝑗 : (𝑖, 𝑗) ∈ 𝐸} be the set of neighbors of node 𝑖 on
graph𝐺. Each node 𝑖 of the sensor network communicates its
measurement 𝑧

𝑖
, covariance information 𝑅

𝑖
, and observation

matrix 𝐻
𝑖
with its neighbors 𝑁

𝑖
. For node 𝑖, we assume that

the information flow from nonneighboring nodes to node
𝑖 is prohibited if there is no nodes except for its neighbors
𝑁
𝑖
exist. Therefore, node 𝑖 can use a central Kalman filter

that only utilizes the observation vectors and observation
matrices of the nodes in 𝐽

𝑖
= 𝑁
𝑖
∪ {𝑖} [11]. This leads to

the following primitive DKF algorithmwith no consensus on
state estimation.

LKF Iterations. Assume that node 𝑖 only receives information
from its neighbors. Then, we have the iterations of node 𝑖 in
local Kalman filtering as

𝑦
𝑖
= ∑

𝑗∈𝐽𝑖

𝐻
𝑇

𝑗
𝑅
−1

𝑗
𝑧
𝑗
= ∑

𝑗∈𝐽𝑖

𝑦
𝑗
,

𝑆
𝑖
= ∑

𝑗∈𝐽𝑖

𝐻
𝑇

𝑗
𝑅
−1

𝑗
𝐻
𝑗
= ∑

𝑗∈𝐽𝑖

𝑆
𝑗
,

𝑥
𝑖
= 𝑥
𝑖
+𝑀
𝑖
(𝑦
𝑖
− 𝑆
𝑖
𝑥) ,

𝑀
𝑖
= (𝑃
𝑖

−1
+ 𝑆
𝑖
)

−1

,

𝑃
𝑖

+
= 𝐴𝑀

𝑖
𝐴
𝑇
+ 𝐵𝑄𝐵

𝑇
,

𝑥
𝑖

+
= 𝐴𝑥
𝑖
,

(35)

where 𝑦
𝑖 and 𝑆

𝑖 are local aggregate information vector and
matrix, respectively and node 𝑖 locally computes both 𝑦

𝑖 and
𝑆
𝑖.

4.2. Kalman Consensus Filter. We now present the Kalman
consensus filter (KCF).The KCF uses consensus strategy (32)
on the state estimate in a distributedKalmanfilter, where each
node maintains a local Kalman filter. Corresponding to (32),
let 𝜁
𝑖
[𝜏] = 𝑥

𝑖
be the prior estimate at time 𝜏 and 𝜁

𝑖
[𝜏+1] = 𝑥

𝑖

𝑐

be fused prior estimate; each node fuses the prior estimates
from its neighbors according to the rule:

𝑥
𝑖

𝑐
= 𝑥
𝑖
+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗 [

𝜏] (𝑥𝑗
− 𝑥
𝑖
) . (36)
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Initialization (for node 𝑖):
𝑥
𝑖
= 𝑥(0) 𝑃

𝑖
= 𝑃
0

𝜏 = 1 𝜏
𝑝
= 𝜏 + 𝑇

𝑝

Loop {Local iteration on node 𝑖}
(1) Consensus update

𝑥
𝑖

𝑐
= 𝑥
𝑖
+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗
[𝜏](𝑥
𝑗
− 𝑥
𝑖
)

𝑦
𝑖
= ∑

𝑗∈𝐽𝑖

𝐻
𝑗

𝑇
𝑅
𝑗

−1
𝑧
𝑗

𝑆
𝑖
= ∑

𝑗∈𝐽𝑖

𝐻
𝑗

𝑇
𝑅
𝑗

−1
𝐻
𝑗

𝜏 ← 𝜏 + 1

(2) If new observations are taken then the Kalman consensus state estimate are computed
𝑥
𝑖
= 𝑥
𝑖

𝑐
+𝑀
𝑖
(𝑦
𝑖
− 𝑆
𝑖
𝑥
𝑖

𝑐
) = 𝑥

𝑖
+𝑀
𝑖
(𝑦
𝑖
− 𝑆
𝑖
𝑥
𝑖
) + (𝐼 −𝑀

𝑖
𝑆
𝑖
) ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗
[𝜏](𝑥
𝑗
− 𝑥
𝑖
)

𝑀
𝑖
= (𝑃
𝑖

−1
+ 𝑆
𝑖
)
−1

(3) If time for a predication step (i.e., 𝜏 = 𝜏
𝑝
) then prediction step

𝑃
𝑖

+
= 𝐴𝑀

𝑖
𝐴
𝑇
+ 𝐵𝑄𝐵

𝑇

𝑥
𝑖

+
= 𝐴𝑥
𝑖

𝜏
𝑝
= 𝜏 + 𝑇

𝑝

End loop

Algorithm 1: Kalman consensus filter.

Using the fused prior estimate 𝑥
𝑖

𝑐, the filter estimate at node
𝑖 could be implemented by

𝑥
𝑖
= 𝑥
𝑖

𝑐
+𝑀
𝑖
(𝑦
𝑖
− 𝑆
𝑖
𝑥
𝑖

𝑐
)

= 𝑥
𝑖
+𝑀
𝑖
(𝑦
𝑖
− 𝑆
𝑖
𝑥
𝑖
) + (𝐼 −𝑀

𝑖
𝑆
𝑖
) ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗 [

𝜏] (𝑥𝑗
− 𝑥
𝑖
) .

(37)

The local KCF is summarized in Algorithm 1, where 𝜏 is
the time index for the consensus strategy and 𝑇

𝑝
∈ 𝑍
+ is

the time interval between prediction updates. One-time step
𝑘 − 1 → 𝑘 is equivalent to 𝑇

𝑝
time steps of the consensus

time index 𝜏 → 𝜏+ 1; that is, for each node, the information
exchanges between neighboring nodes occurred faster than
the prediction update step.The three steps in KCF prediction,
local filter estimate, and consensus update are not necessarily
sequential.

The last term in (37) is the correction of filter estimate
𝑥
𝑖
compared to the standard Kalman estimator. Intuitively,

adding the consensus term in (37) will force local estimators
to reach a consensus regarding state estimates. The structure
of node 𝑖 in the KCF algorithm is shown in Figure 1.

In [11], the author proposed the following Kalman con-
sensus estimator which is in the form of

𝑥
𝑖
= 𝑥
𝑖
+𝑀
𝑖
(𝑦
𝑖
− 𝑆
𝑖
𝑥
𝑖
) + 𝐶
𝑖
∑

𝑗∈𝑁𝑖

(𝑥
𝑗
− 𝑥
𝑖
) , (38)

where𝐶
𝑖
is named consensus gain of node 𝑖.The choice of the

consensus gain 𝐶
𝑖
is free. A poor choice of 𝐶

𝑖
leads to either

the lack of consensus on estimates (e.g., setting 𝐶
𝑖
= 0, for

all 𝑖) or the lack of stability of the error dynamics of the filter.
One possible choice is to let

𝐶
𝑖
= 𝛾𝑃
𝑖
= 𝜀

𝑃
𝑖

1 +




𝑃
𝑖




𝐹

, (39)

where 𝜀 > 0 is a relative small constant and ‖ ⋅ ‖
𝐹
denotes the

Frobenius norm of a matrix. The derivation of the optimal

zj

zi

Consensus
strategy

Kalman
filter

x
c

j

xj

xi

x̂i

Node i

Figure 1: The algorithm structure of node 𝑖 in the KCF.

Kalman consensus filter can be found in [10], where we can
also find that the computational complexity of updating the
error covariance𝑃

𝑖

+
= 𝐴𝑀

𝑖
𝐴
𝑇
+𝐵𝑄𝐵

𝑇 of the optimalKalman
consensus filter is not scalable in 𝑛. To obtain a suboptimal
approximation of theKCFwhich is distributed and scalable in
𝑛, wemake an assumption that the consensus gains𝐶

𝑖
= 𝑂(𝜀)

are of the order of 𝜀. Then we get the stable suboptimal KCF
summarized in Algorithm 2.

5. Distributed Filter: Consensus on
Information Matrix

The KCF discussed previously applies consensus strategy on
the prior estimate to the Kalman filter and improves the state
estimate of KF. However, the error covariance matrix 𝑀

𝑖

is not improved because each node in KCF only fuses the
prior estimates from its neighbors but neglects the helpful
information about the error covariance matrix. In the next
section, we adopt an information matrix weighted consensus
strategy to improve the consensus based distributed Kalman
filter algorithm in the estimation fusion of sensor networks.
We refer to this method as information consensus filter (ICF)
[16]. Before presenting the ICF algorithm, we need to discuss
amore primitiveDKF algorithm called local information filter
(LIF) which forms the basis of the ICF.
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Initialization:
𝑥
𝑖
= 𝑥(0), 𝑃

𝑖
= 𝑃
0
, and message𝑚

𝑗
= {𝑦
𝑗
, 𝑆
𝑗
, 𝑥
𝑗
}

While new data exists do
(1) Compute local observation vector and matrix of node 𝑖:

𝑦
𝑖
= 𝐻
𝑖

𝑇
𝑅
𝑖

−1
𝑧
𝑖

𝑆
𝑖
= 𝐻
𝑖

𝑇
𝑅
𝑖

−1
𝐻
𝑖

(2) Broadcast message𝑚
𝑖
= {𝑦
𝑖
, 𝑆
𝑖
, 𝑥
𝑖
} to neighbors.

(3) Receive messages from all neighbors.
(4) Compute the local aggregate information vector and matrix:

𝑦
𝑖
= ∑

𝑗∈𝐽𝑖

𝑦
𝑗

𝑆
𝑖
== ∑

𝑗∈𝐽𝑖

𝑆
𝑗

(5) Compute the Kalman consensus state estimate
𝑥
𝑖
= 𝑥
𝑖
+𝑀
𝑖
(𝑦
𝑖
− 𝑆
𝑖
𝑥
𝑖
) + 𝛾𝑃

𝑖
∑

𝑗∈𝑁𝑖

(𝑥
𝑗
− 𝑥
𝑖
)

𝑀
𝑖
= (𝑃
𝑖

−1
+ 𝑆
𝑖
)
−1

𝛾 =

𝜀

1 +




𝑃
𝑖






, ‖𝑋‖ = tr(𝑋𝑇𝑋)
1/2

(6) Update the state of the Kalman consensus filter:
𝑃
𝑖

+
= 𝐴𝑀

𝑖
𝐴
𝑇
+ 𝐵𝑄𝐵

𝑇

𝑥
𝑖

+
= 𝐴𝑥
𝑖

EndWhile

Algorithm 2: Suboptimal Kalman consensus filter: DKFAlgorithmwith an estimator that has a rigorously derived consensus term (message
passing during one time cycle for node).

5.1. Local Information Filter. To distribute the estimation
of the global state vector, 𝑥 in CIF, we implement local
information filter (LIF) at each sensor 𝑖, which is based on
the sensor model (11) and can be derived from local Kalman
filter (LKF) in (35) after we use its information form. Each
LIF computes local objects (matrices and vectors) which are
then fused (if required) by exchanging information among
the neighbors. In LIF, there is no centralized knowledge of
the estimation of the global state that exists in CIF; however,
it can be obtain by fusing the local state vector.

Let the inverses of 𝑀
𝑖
and 𝑃

𝑖
be the local information

matrices, 𝐼
𝑖
and 𝐼
𝑖
. Let �̂�
𝑖
and 𝑖
𝑖
be the local information vector.

We have the following relations:

𝐼
𝑖
= 𝑀
𝑖

−1
, 𝐼

𝑖
= 𝑃
𝑖

−1
,

�̂�
𝑖
= 𝑀
𝑖

−1
𝑥
𝑖
, 𝑖

𝑖
= 𝑃
𝑖

−1
𝑥
𝑖
.

(40)

Thenwe get the following simpler formof the filter in (35).

LIF Iterations. The local information filtering iterations for
node 𝑖 are in the form

𝐼
𝑖
= 𝐼
𝑖
+ 𝑆
𝑖
, �̂�

𝑖
= 𝑖
𝑖
+ 𝑦
𝑖
,

𝐼
𝑖

+

= (𝐴𝐼
−1

𝑖
𝐴
𝑇
+ 𝐵𝑄𝐵

𝑇
)

−1

, 𝑖
𝑖

+

= 𝐼
𝑖

+

𝐴𝐼
−1

𝑖
�̂�
𝑖
.

(41)

5.2. Information Consensus Filter. We now present the infor-
mation consensus filter (ICF). The ICF uses consensus strat-
egy (32) on both the information state and the information
matrix in a distributed Kalman filter, where each node
maintains a local information filter. Recalling (32), let 𝑖

𝑖

𝑐 be
the fused local information vector and 𝐼

𝑖

𝑐 the fused local

information matrix; each node fuses the local information
from its neighbors according to the rule:

𝑖
𝑖

𝑐

= 𝑖
𝑖
+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗 [

𝜏] (𝑖𝑗
− 𝑖
𝑖
) ,

𝐼
𝑖

𝑐

= 𝐼
𝑖
+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗 [

𝜏] (𝐼𝑗
− 𝐼
𝑖
) .

(42)

Using the fused local information vector and matrix, 𝑖
𝑖

𝑐

and 𝐼
𝑖

𝑐, the local ICF is summarized in Algorithm 3.

5.3. Local Information Filter. Now we make a comparison
between ICF and KCF based on the state estimate 𝑥

𝑖
and the

error covariance matrix𝑀
𝑖
. Let 𝛽

𝑖𝑖
[𝜏] = 1 − ∑

𝑗∈𝑁𝑖
𝛽
𝑖𝑗
[𝜏]; we

can rewrite (42) as

𝑖
𝑖

𝑐

= 𝛽
𝑖𝑖 [

𝜏] 𝑖𝑖
+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗 [

𝜏] 𝑖𝑗
,

𝐼
𝑖

𝑐

= 𝛽
𝑖𝑖 [

𝜏] 𝐼𝑖
+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗 [

𝜏] 𝐼𝑗
.

(43)

Then we have

𝑥
𝑖

𝑐
= (𝐼
𝑖

𝑐

)

−1

𝑖
𝑖

𝑐

= (𝐼
𝑖

𝑐

)

−1
[

[

𝛽
𝑖𝑖 [

𝜏] 𝑖𝑖
+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗 [

𝜏] 𝑖𝑗
]

]

= 𝑊
𝑖𝑖
𝑥
𝑖
+ ∑

𝑗∈𝑁𝑖

𝑊
𝑖𝑗
𝑥
𝑗
.

(44)

Here we use 𝑖
𝑖
= 𝐼
𝑖
𝑥
𝑖
, 𝑖 ∈ 𝐽

𝑖
and 𝑊

𝑖𝑙
= 𝛽
𝑖𝑙
[𝜏](𝐼
𝑖

𝑐

)
−1
𝐼
𝑙
, 𝑙 ∈ 𝐽

𝑖
.

Then we finally get

𝑥
𝑖
= 𝑥
𝑖

𝑐
+𝑀
𝑖
(𝑦
𝑖
− 𝑆
𝑖
𝑥
𝑖

𝑐
)

= 𝑊
𝑖𝑖
𝑥
𝑖
+𝑀
𝑖
(𝑦
𝑖
− 𝑆
𝑖
𝑊
𝑖𝑖
𝑥
𝑖
) + (𝐼 −𝑀

𝑖
𝑆
𝑖
) ∑

𝑗∈𝑁𝑖

𝑊
𝑖𝑗
𝑥
𝑗
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Initialization (for node 𝑖):
𝑖
𝑖
= 𝑖(0) 𝐼

𝑖
= 𝐼(0)

𝜏 = 1 𝜏
𝑝
= 𝜏 + 𝑇

𝑝

Loop {Local iteration on node 𝑖}
(1) Consensus update

𝑖
𝑖

𝑐

= 𝑖
𝑖
+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗
[𝜏](𝑖
𝑗
− 𝑖
𝑖
)

𝐼
𝑖

𝑐

= 𝐼
𝑖
+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗
[𝜏](𝐼
𝑗
− 𝐼
𝑖
)

𝑦
𝑖
= ∑

𝑗∈𝐽𝑖

𝐻
𝑗

𝑇
𝑅
𝑗

−1
𝑧
𝑗

𝑆
𝑖
= ∑

𝑗∈𝐽𝑖

𝐻
𝑗

𝑇
𝑅
𝑗

−1
𝐻
𝑗

𝜏 ← 𝜏 + 1

(2) If new observations are taken then the information consensus estimate are computed
�̂�
𝑖
= 𝑖
𝑖

𝑐

+ 𝑦
𝑖
= 𝑖
𝑖
+ 𝑦
𝑖
+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗
[𝜏](𝑖
𝑗
− 𝑖
𝑖
)

𝐼
𝑖
= 𝐼
𝑖

𝑐

+ 𝑆
𝑖
= 𝐼
𝑖
+ 𝑆
𝑖
+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗
[𝜏](𝐼
𝑗
− 𝐼
𝑖
)

(3) If time for a predication step (i.e., 𝜏 = 𝜏
𝑝
) then prediction step

𝐼
𝑖

+

= (𝐴𝐼
−1

𝑖
𝐴
𝑇
+ 𝐵𝑄𝐵

𝑇
)
−1

𝑖
𝑖

+

= 𝐼
𝑖

+

𝐴𝐼
−1

𝑖
�̂�
𝑖

𝜏
𝑝
= 𝜏 + 𝑇

𝑝

End Loop

Algorithm 3: Information consensus filter.

= ((𝐼
𝑖

𝑐

)

−1

𝐼
𝑖
) 𝑥
𝑖
+𝑀
𝑖
[𝑦
𝑖
− 𝑆
𝑖
((𝐼
𝑖

𝑐

)

−1

𝐼
𝑖
) 𝑥
𝑖
]

+ (𝐼 −𝑀
𝑖
𝑆
𝑖
) ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗 [

𝜏] [(𝐼𝑖

𝑐

)

−1

𝐼
𝑗
𝑥
𝑗
− (𝐼
𝑖

𝑐

)

−1

𝐼
𝑖
𝑥
𝑖
] ,

𝑀
𝑖
= (𝐼
𝑖
)

−1

=
[

[

𝐼
𝑖
+ 𝑆
𝑖
+ ∑

𝑗∈𝑁𝑖

𝛽
𝑖𝑗 [

𝜏] (𝐼𝑗
− 𝐼
𝑖
)
]

]

−1

,

(45)
where the error covariance matrix𝑀

𝑖
has been improved by

a consensus term compared with 𝑀
𝑖
= (𝐼
𝑖
)
−1

= [𝐼
𝑖
+ 𝑆
𝑖
]
−1

in KCF, and the state estimate 𝑥
𝑖
is also corrected by a factor

((𝐼
𝑖

𝑐

)
−1
𝐼
𝑖
) compared with the 𝑥

𝑖
in KCF.

5.4. The Optimization of Consensus Weights in ICF. The
weights 𝛽

𝑖𝑗
[𝜏] are important parameters of ICF and we can

use the metropolis weights or the maximum-degree weights
to determine it. In fact, the more reasonable approach is to
choose differentweights according to the fused local informa-
tion 𝐼
𝑖
and 𝑖
𝑖
. Here, a nice scheme to optimize the consensus

weights is proposed base on the following objective function:

𝐹
𝑖
= 𝛼
1

𝑖

tr ((𝐼
𝑖

𝑐

)

−1

)

tr ((𝐼
𝑖
)

−1

)

+ 𝛼
2

𝑖






𝑖
𝑖

𝑐

− 𝑖

𝑐

𝑖,𝑎V







2

+ ∑
𝑗∈𝑁𝑖






𝑖
𝑗
− 𝑖

𝑐

𝑖,𝑎V







2

∑
𝑗∈𝐽𝑖






𝑖
𝑗
− 𝑖
𝑖,𝑎V







2
,

(46)

where

𝑖

𝑐

𝑖,𝑎V =
1

1 + 𝑑
𝑖

(𝑖

𝑐

𝑖
+ ∑

𝑗∈𝑁𝑖

𝑖
𝑗
) ,

𝑖
𝑖,𝑎V =

1

1 + 𝑑
𝑖

(𝑖
𝑖
+ ∑

𝑗∈𝑁𝑖

𝑖
𝑗
) ,

(47)

𝛼
1

𝑖
, 𝛼2
𝑖
are the weight coefficients, and 𝛼

1

𝑖
+ 𝛼
2

𝑖
= 1 (0 < 𝛼

1

𝑖
<

1, 0 < 𝛼
2

𝑖
< 1).

The first term in the objective function 𝐹
𝑖
is used to assess

the prior estimate error covariance of node 𝑖 after fusing the
local information of its neighbors, and the second term is
used to assess the consensus of the fused local information
vector in node 𝑖 and the prior estimates of its neighbors.
Base on the objective function 𝐹

𝑖
, the consensus weights

optimization problem can be described as

𝛽
∗

𝑖
= arg min

𝛽𝑖

𝐹
𝑖

s.t. 𝛽
𝑖𝑗
≥ 0, (𝑖, 𝑗) ∈ 𝐸 [𝜏]

𝛽
𝑖𝑗
= 0, (𝑖, 𝑗) ∉ 𝐸 [𝜏]





𝛽
𝑖




1

= 1,

(48)

where 𝛽
𝑖

= [𝛽
𝑖1
, 𝛽
𝑖2
, . . . , 𝛽

𝑖𝑛
]. To solve the optimization

problem (48),we only need the local information of node 𝑖

and that of its neighbors. We refer to this method as weights
optimized information consensus filter (WO-ICF).

6. Numerical Simulations

Let the linear system under consideration be represented by
a second-order discrete time-varying model:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑤, (49)
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Figure 2: A sensor network with 20 nodes and 51 links.

where𝐴 = 𝐼
2
+𝛿𝐴
0
+(𝛿
2
/2)𝐴
2

0
+(𝛿
3
/6)𝐴
3

0
with𝐴

0
= 2 [
0 1

1 0
],

𝛿 = 0.015 and 𝐵 = 𝛿𝐵
0
with 𝐵

0
= 𝐼
2
, 𝑄 = 25𝐼

2
. The initial

conditions are 𝑥
0
= [15, −10], 𝑃

0
= 20𝐼

2
. A sensor network

with 20 randomly located nodes is used in this experiment
(see Figure 2). The local observation matrix for sensor 𝑖 is
𝐻
𝑖
= [
0 1

1 0
], and the local observation noise covariance is

𝑅
𝑖
= 100𝐼

2
for 𝑖 ≤ 10 otherwise 𝑅

𝑖
= 3000𝐼

2
.

Define the averaged estimation error 𝐸(𝑘) and the aver-
aged consistency estimation error 𝐷(𝑘) as the algorithm
performance metrics, which can be computed as follows:

𝐸 (𝑘) = √

1

𝑛

𝑛

∑

𝑖=1

(𝑥
𝑖
(𝑘) − 𝑥 (𝑘))

𝑇
(𝑥
𝑖
(𝑘) − 𝑥 (𝑘)),

𝐷 (𝑘) = √

1

𝑛

𝑛

∑

𝑖=1

(𝑥
𝑖 (
𝑘) − 𝑥

𝑎V (𝑘))
𝑇
(𝑥
𝑖 (
𝑘) − 𝑥

𝑎V (𝑘)),

(50)

where 𝑥
𝑎V(𝑘) = (1/𝑛)∑

𝑛

𝑖=1
𝑥
𝑖
(𝑘) is the averaged estimation of

state.
Figure 3 demonstrates the averaged estimation error

using different algorithms. We can see that the ICF and
the WO-ICF behave in a similar manner (with comparable
performances), and the averaged estimation accuracy in
ICF and WO-ICF is improved compared to KCF. After 50
iterations, their performances are very close to CKF; this is
because the average consensus is achieved after constantly
information exchanging, fusing, and filtering.

Figure 4 shows that our WO-ICF performs significantly
better than both KCF and ICF, it was the fastest converged,
and the consistency of estimates between different nodes in
WO-ICF was improved by optimizing the consensus weights.

Figure 5 demonstrates the comparisons of different algo-
rithms on the traces of the averaged estimation covariance
matrices tr((1/𝑛)∑𝑛

𝑖=1
𝑀
𝑖
(𝑘)). A quick look at Figure 5 reveals

that both ICF and our WO-ICF perform significantly better
than KCF, of which the reason is that the information
matrix weighted consensus strategy is adopted. Furthermore,
by optimizing the consensus weights, the error covariance
matrix𝑀

𝑖
is improved significantly compared to ICF.
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Figure 3: The averaged estimation errors of different algorithms.
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Figure 4: The averaged consistency estimation errors of different
algorithms.

7. Conclusions

In this paper, a description about the existing distributed Fil-
ter with consensus strategies is presented, including Kalman
consensus filter (KCF) and information consensus filter
(ICF). In addition, an in-depth comparison between the KCF
and the ICF is made. Based on the ICF, the weights optimized
information consensus filter (WO-ICF) is proposed to opti-
mize the consensus weights. Simulation shows that both ICF
andWO-ICFperformbetter thanKCF; they improve not only
the state estimate but also the error covariance matrix, and
the proposedWO-ICF achieves better consistency estimation
performance than ICF. Compared with the existing consen-
sus filter, our WO-ICF achieves the best performance and is
closest to the optimal centralized performance.
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Figure 5:The traces of the averaged estimation covariance matrices
of different algorithms.
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