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In this paper, recently developed perturbation iterationmethod is used to solve Fredholm andVolterra integral equations.The study
shows that the new method can be applied to both types of integral equations. Some numerical examples are given, and results are
compared with other studies to illustrate the efficiency of the method.

1. Introduction

As one of themost important subjects of mathematics, differ-
ential and integral equations are widely used to model a vari-
ety of physical problems. Perturbation methods have been
used in search of approximate analytical solutions for over a
century [1–3]. Algebraic equations, integral-differential equa-
tions, and difference equations could be solved by these tech-
niques approximately.

However, a major difficulty in the implementation of per-
turbation methods is the requirement of a small parameter
or inserting a small artificial parameter in the equation. Solu-
tions obtained by these methods are therefore restricted by a
validity range of physical parameters. To eliminate the small
parameter assumption in regular perturbation analysis, iter-
ation techniques are incorporated with perturbations. Many
attempts in this issue appear in the literature recently [4–13].

Recently, a new perturbation-iteration algorithm has
been developed by Pakdemirli and his coworkers [14–16]. A
preliminary study of developing root finding algorithms sys-
tematically [17–19] finally led to generalization of the method
to differential equations also [14–16]. An iterative scheme is
constituted over the perturbation expansion in the new tech-
nique. The method has been successfully implemented to
first-order equations [15] and Bratu-type second-order equa-
tions [14].

In this paper, this new technique is applied to integral
equations for the first time. Fredholm and Volterra integral
equations

𝑦 (𝑡) = 𝑥 (𝑡) + ∫

1

0

𝑘 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠,

𝑦 (𝑡) = 𝑥 (𝑡) + ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠

(1)

are considered, where𝑥(𝑡) ∈ 𝐿2[0, 1), 𝑘(𝑡, 𝑠) ∈ 𝐿2[0, 1)×[0, 1),
and 𝑦(𝑡) is the unknown function to be determined. Results
are compared with some other studies.

2. Overview of the Method

In the present paper, the simplest perturbation-iteration
algorithm PIA(1, 1) is used by taking one correction term in
the perturbation expansion and correction terms of only first
derivatives in the Taylor series expansion, that is, 𝑛 = 1,𝑚 = 1
[14–16]. Consider the Volterra integral equation

𝑦 (𝑡) = 𝑥 (𝑡) + ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 (2)
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that has the form of

𝐹(𝑢, ∫ 𝑢, 𝜀) = 0, (3)

where

𝐹 = 𝑦 (𝑡) − 𝑥 (𝑡) − 𝜀 ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠 (4)

and 𝜀 is the artificially introduced perturbation parameter.
In this method, we use only one correction term in the per-
turbation expansion:

𝑢
𝑛+1
= 𝑢
𝑛
+ 𝜀(𝑢
𝑐
)
𝑛
. (5)

Substituting (5) into (3) and expanding in a Taylor series
with first-order derivatives only yield

𝐹(𝑢
𝑛
, ∫ 𝑢
𝑛
, 0) + 𝐹

𝑢
(𝑢
𝑛
, ∫ 𝑢
𝑛
, 0) 𝜀(𝑢

𝑐
)
𝑛

+ 𝐹
𝜀
(𝑢
𝑛
, ∫ 𝑢
𝑛
, 0) 𝜀

+ 𝐹
∫𝑢
(𝑢
𝑛
, ∫ 𝑢
𝑛
, 0) 𝜀 ∫ (𝑢

𝑐
)
𝑛
= 0

(6)

or

(𝑢
𝑐
)
𝑛

𝜕𝐹

𝜕𝑢
+ (∫ (𝑢

𝑐
)
𝑛
)
𝜕𝐹

𝜕 (∫ 𝑢)
+
𝜕𝐹

𝜕𝜀
+
𝐹

𝜀
= 0. (7)

All derivatives are evaluated at 𝜀 = 0.
Starting with the initial condition 𝑢

0
, first (𝑢

𝑐
)
0
has been

calculated by the help of (7).Then we substitute (𝑢
𝑐
)
0
into (5)

to find 𝑢
1
. Iteration process is repeated using (7) and (5) until

we obtain a satisfactory result.

3. Application

Example 1. Consider the Fredholm integral equation of the
second kind

𝑢 (𝑥) = ∫

1

0

(−
1

3
𝑒
2𝑥−(5/3)𝑡
) 𝑢 (𝑡) 𝑑𝑡 + 𝑒

2𝑥+(1/3) (8)

with exact solution

𝑢 (𝑥) = 𝑒
2𝑥
. (9)

Equation (8) can be rewritten in the following form:

𝐹 (𝑢, 𝜀) = 𝑢 (𝑥) − 𝑒
2𝑥+(1/3)
− 𝜀∫

1

0

(−
1

3
𝑒
2𝑥−(5/3)𝑡
) 𝑢 (𝑡) 𝑑𝑡,

(10)

where 𝜀 is a small parameter. The terms in (7) are

𝐹 = 𝑢
𝑛
(𝑥) − 𝑒

2𝑥+(1/3)
, 𝐹

𝑢
= 1,

𝐹
𝜀
= −∫

1

0

(−
1

3
𝑒
2𝑥−(5𝑡/3)
𝑢
𝑛
(𝑡)) 𝑑𝑡, 𝐹

∫𝑢
= 0.

(11)

Note that introducing the small parameter 𝜀 as a coefficient
of the integral term simplifies (7) and makes it solvable. For
this specific example (7) reads

𝑒
1/3+2𝑥
+ ∫

1

0

−
1

3
𝑒
−5𝑡/3+2𝑥
𝑢
𝑛
(𝑡) 𝑑𝑡 = (𝑢

𝑐
)
𝑛
(𝑥) + 𝑢

𝑛
(𝑥) . (12)

When applying the iteration formula (5), we select an ini-
tial guess appropriate to the boundary condition and at each
step we determine coefficients from the boundary condi-
tion. Starting with the initial function

𝑢
0
= 1 (13)

and using the formula, the approximate solutions at each step
are

𝑢
1
= −
𝑒
2𝑥

5
+
1

5
𝑒
−5/3+2𝑥
+ 𝑒
1/3+2𝑥
,

𝑢
2
= −
1

5
𝑒
−5/3+2𝑥
(−1 + 𝑒

1/3
+ 𝑒
5/3
− 11𝑒
2
+ 5𝑒
7/3
) ,

𝑢
3
=
1

5
𝑒
−(5/3)+2𝑥

× (1 + 𝑒
1/3
(−2 + 𝑒

1/3

× (1 + 𝑒 (−1 + 17𝑒
1/3
− 16𝑒
2/3
+ 5𝑒)))) .

(14)

Higher iterations are not given here for brevity. Using a
symbolic manipulation software, iterations could be calcu-
lated up to any order. In Table 1, some of our iterations are
compared with the exact solution and the error between the
exact solution, and 𝑢

20
are given which are of order 10−8.

Example 2. Consider the following integral equation:

𝑢 (𝑥) = cos𝑥 − ∫
𝑥

0

(𝑥 − 𝑡) cos (𝑥 − 𝑡) 𝑢 (𝑡) 𝑑𝑡. (15)

The exact solution of the problem is

𝑢 (𝑥) =
1

3
(2 cos√3𝑥 + 1) . (16)

Equation (15) can be rewritten in the following form:

𝐹 (𝑢, 𝜀) = 𝑢 (𝑥) − cos𝑥 − 𝜀∫
𝑥

0

(𝑥 − 𝑡) cos (𝑥 − 𝑡) 𝑢 (𝑡) 𝑑𝑡,

(17)

where 𝜀 is a small artificial parameter. The terms in (7) are

𝐹 = 𝑢
𝑛
(𝑥) − cos𝑥, 𝐹

𝑢
= 1,

𝐹
𝜀
= ∫

𝑥

0

(𝑥 − 𝑡) cos (𝑥 − 𝑡) 𝑢
𝑛
(𝑡) 𝑑𝑡, 𝐹

∫𝑢
= 0.

(18)

Equation (7) reduces to

∫

𝑥

0

(𝑥 − 𝑡) cos (𝑡 − 𝑥) 𝑢
𝑛
𝑑𝑡 + (𝑢

𝑐
)
𝑛
+ 𝑢
𝑛
= cos𝑥. (19)
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Table 1: Numerical result of Example 1.

𝑥 𝑢
5

𝑢
10

𝑢
15

𝑢
20

Exact solution Error (𝑢
20
)

0.0 1.00572 0.99995 1.00000 1.00000 1.00000 5.20782 × 10
−9

0.1 1.22839 1.22134 1.22140 1.22140 1.22140 6.36084 × 10
−9

0.2 1.50035 1.49174 1.49183 1.49182 1.49182 7.76915 × 10
−9

0.3 1.83254 1.82202 1.82212 1.82212 1.82212 9.48926 × 10
−9

0.4 2.23826 2.22542 2.22554 2.22554 2.22554 1.15902 × 10
−8

0.5 2.73382 2.71813 2.71828 2.71828 2.71828 1.41563 × 10
−8

0.6 3.33910 3.31993 3.32012 3.32012 3.32012 1.72906 × 10
−8

0.7 4.07838 4.05498 4.05520 4.05520 4.05520 2.11187 × 10
−8

0.8 4.98135 4.95276 4.95304 4.95303 4.95303 2.57945 × 10
−8

0.9 6.08423 6.04931 6.04965 6.04965 6.04965 3.15055 × 10
−8

1.0 7.43130 7.38865 7.38906 7.38906 7.38906 3.84809 × 10
−8

Table 2: Numerical result of Example 2.

𝑥 𝑢
5

𝑢
10

Exact solution Error (𝑢
10
)

0.0 1 1 1 0

0.1 0.990025 0.990025 0.990025 0

0.2 0.960398 0.960398 0.960398 1.11022 × 10
−16

0.3 0.912007 0.912007 0.912007 0

0.4 0.846298 0.846298 0.846298 1.11022 × 10
−16

0.5 0.765240 0.765240 0.765240 0

0.6 0.671256 0.671256 0.671256 2.22045 × 10
−16

0.7 0.567160 0.567160 0.567160 0

0.8 0.456066 0.456066 0.456066 1.11022 × 10
−16

0.9 0.341300 0.341300 0.341300 5.55112 × 10
−17

1.0 0.226296 0.226296 0.226296 5.55112 × 10
−17

Choosing the initial guess

𝑢
0
= 1 (20)

and using the formula, the approximate solutions at each step
are

𝑢
1
= 1 − 𝑥 sin𝑥,

𝑢
2
= 1 +
1

12
𝑥 (−12 + 𝑥

2
) sin𝑥,

𝑢
3
= 1 +
1

480
𝑥 (15𝑥 cos𝑥 − (495 − 45𝑥2 + 𝑥4) sin𝑥) .

(21)

Higher iterations are not given for brevity. In Table 2,
some of our iterations are compared with the exact solution,
and the errors between the exact solution and 𝑢

10
are given

which are of order 10−16.

Example 3. Consider the equation

𝑢 (𝑥) = 𝑒
3𝑥
−
1

9
(2𝑒
3
+ 1) 𝑥 + ∫

1

0

𝑥𝑡𝑢 (𝑡) 𝑑𝑡 (22)

with the exact solution

𝑢 (𝑥) = 𝑒
3𝑥
. (23)

Equation (22) is rewritten in the following form:

𝐹 (𝑢, 𝜀) = 𝑢 (𝑥) − 𝑒
3𝑥
+
1

9
(2𝑒
3
+ 1) 𝑥 − 𝜀∫

1

0

𝑥𝑡𝑢 (𝑡) 𝑑𝑡, (24)

where 𝜀 is an artificially introduced small parameter. The
terms in (7) are

𝐹 = 𝑢
𝑛
(𝑥) − 𝑒

3𝑥
+
1

9
(2𝑒
3
+ 1) 𝑥, 𝐹

𝑢
= 1,

𝐹
𝜀
= −∫

1

0

𝑥𝑡𝑢
𝑛
(𝑡) 𝑑𝑡, 𝐹

∫𝑢
= 0.

(25)

Equation (7) reduces to

9 (𝑒
3𝑥
+ ∫

1

0

𝑡𝑥𝑢
𝑛
𝑑𝑡) = 𝑥 + 2𝑒

3
𝑥 + 9(𝑢

𝑐
)
𝑛
+ 9𝑢
𝑛
. (26)

Choosing the initial guess

𝑢
0
= 1 (27)
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Table 3: Numerical result of Example 3.

𝑥 𝑢
5

𝑢
10

𝑢
15

𝑢
20

Exact solution Error (𝑢
20
)

0 1 1 1 1 1 0

0.1 1.34483 1.34984 1.34986 1.34986 1.34986 2.45400 × 10
−9

0.2 1.81206 1.82208 1.82212 1.82212 1.82212 4.90801 × 10
−9

0.3 2.44451 2.45954 2.45960 2.45960 2.45960 7.36201 × 10
−9

0.4 3.299996 3.32003 3.32011 3.32012 3.32012 9.81602 × 10
−9

0.5 4.45654 4.48159 4.48169 4.48169 4.48169 1.22700 × 10
−8

0.6 6.01947 6.04952 6.04964 6.04965 6.04965 1.47240 × 10
−8

0.7 8.13096 8.16603 8.16617 8.16617 8.16617 1.71780 × 10
−8

0.8 10.98293 11.02301 11.02317 11.02318 11.02318 1.96320 × 10
−8

0.9 14.83446 14.87955 14.87973 14.87973 14.87973 2.20860 × 10
−8

1.0 20.03523 20.08533 20.08553 20.08554 20.08554 2.45400 × 10
−8

Table 4: Numerical result of Example 4.

𝑥 𝑢
5

𝑢
10

𝑢
15

𝑢
20

Exact solution Error (𝑢
20
)

0.0 0 0 0 0 0 0

0.1 0.0099999 0.00999 0.01000 0.01000 0.01000 0

0.2 0.0399996 0.03999 0.04000 0.04000 0.04000 0

0.3 0.0899991 0.08999 0.09000 0.09000 0.09000 1.38778 × 10
−17

0.4 0.159998 0.15999 0.16000 0.16000 0.16000 0

0.5 0.249998 0.24999 0.25000 0.25 0.25 0

0.6 0.359996 0.35999 0.36000 0.36000 0.36000 5.55112 × 10
−17

0.7 0.489995 0.48999 0.49000 0.49000 0.49000 5.55112 × 10
−17

0.8 0.639994 0.63999 0.64000 0.64000 0.64000 0

0.9 0.809992 0.80999 0.81000 0.81000 0.81 1.11022 × 10
−16

1.0 0.99999 0.99999 1.00000 1.0 1.0 0

and using the formula, the approximate solutions at each step
are

𝑢
1
= 𝑒
3𝑥
+
7𝑥

18
−
2𝑒
3
𝑥

9
,

𝑢
2
= 𝑒
3𝑥
−
1

54
(−7 + 4𝑒

3
) 𝑥,

𝑢
3
= 𝑒
3𝑥
−
1

162
(−7 + 4𝑒

3
) 𝑥.

(28)

Higher iterations are not given for brevity. In Table 3, some of
our iterations are compared with the exact solution, and the
errors between the exact solution and 𝑢

20
are given which are

of order 10−8.

Example 4. Consider the following integral equation:

𝑢 (𝑥) =
9

10
𝑥
2
+ ∫

1

0

1

2
𝑥
2
𝑡
2
𝑢 (𝑡) 𝑑𝑡. (29)

The exact solution of the problem is

𝑢 (𝑥) = 𝑥
2
. (30)

Equation (29) is rewritten in the following form:

𝐹 (𝑢, 𝜀) = 𝑢 (𝑥) −
9

10
𝑥
2
− 𝜀∫

1

0

1

2
𝑥
2
𝑡
2
𝑢 (𝑡) 𝑑𝑡, (31)

and proceeding in a similar way yields the following iteration
algorithm:

(𝑢
𝑐
)
𝑛
+ 𝑢
𝑛
=
9𝑥
2

10
+ ∫

1

0

1

2
𝑡
2
𝑥
2
𝑢
𝑛
𝑑𝑡. (32)

One may select the initial guess as 𝑢
0
= 0. The successive

approximations are
𝑢
0
= 0,

𝑢
1
=
9𝑥
2

10
,

𝑢
2
=
99𝑥
2

100
,

𝑢
3
=
999𝑥
2

1000
.

(33)

Higher iterations are not given for brevity. In Table 4,
some of our iterations are compared with the exact solution,
and the errors between the exact solution and 𝑢

20
are given

which are of order 10−17.

4. Conclusion

In this paper, we have applied the newly developed Per-
turbation Iteration Algorithm PIA(1, 1) to some Fredholm
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and Volterra type integral equations for the first time. Num-
erical results show that method PIA(1, 1) is an effective per-
turbation-iteration technique producing successful analytical
results for integral equations.
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