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Consider a large mixed integer linear problem where structure of the constraint matrix is sparse, with independent blocks, and
coupling constraints and variables. There is one of the groups of constraints to make difficult the application of Benders scheme
decomposition. In this work, we propose the following algorithm; a Lagrangian relaxation is made on the mentioned set of
constraints; we presented a process heuristic for the calculation of the multiplier through the resolution of the dual problem,
structured starting from the bundle methods. According to the methodology proposed, for each iteration of the algorithm, we
propose Benders decomposition where quotas are provided for the value function and 𝜀-subgradient.

1. Introduction

Themain objective of this work is to develop a methodology
that combines the Benders decomposition and a heuristic
for calculating the multiplier applied to a relaxed problem to
solve a linear problem of large integer

min 𝑐
𝑡
𝑥 + 𝑑

𝑡
𝑦,

s.t. 𝐴𝑥 + 𝐵𝑦 ≤ 𝑏,

𝑥 ∈ 𝑋
𝑅
, 𝑦 ∈ 𝑌,

(1)

where 𝑋
𝑅
= {𝑥 : 𝐷𝑥 ≤ 𝑑, 𝑥 ≥ 0} and 𝑌 = {𝑦 : 𝐹𝑦 ≤ 𝑓, 𝑦 ≥

0, 𝑦 integer}.
Relaxing a part of the restrictions has been updated by

multiplying the respective heuristic process, solving a local
model of dual relaxed. As the algorithm presented, for each
iteration with the multiplier obtained, apply iterations of
Benders decomposition on the relaxed problem, obtaining an
𝜀-subgradient quotas and lower and upper optimal solution.
The motivation of this work arises from an integer linear

problem from the large expansion planning of the trans-
mission of a digital telecommunication system in an urban
area equivalent to a city the size of Rio de Janeiro/Brazil
[1]. Section 2 gives an outline about decomposition methods
for large scale, with all the relevant features for this work.
Moreover, Section 3 shows the integer linear model in this
work. More details of the methodology regularization and
Benders decomposition are given in Section 4. Section 5
gives an improvement the Approximate Algorithm Bundle.
In Section 6 is presented some conclusion and future works
obtained from this work.

2. Decomposition Methods for Large Scale

The large mixed integer linear programming problem has
highlighted the difficulty to be solved directly through com-
mercial software. In such cases the Lagrangian, combined
with subgradient optimization, is often used to lower levels
to find the optimal value of the objective function. These
quotes can be used, for example, the method of Branch-
and-Bound [2], or just to measure the quality of feasible
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solutions. These properties are currently incorporated in
commercial software [3]. Other strategies are also considered:
obtaining upper bounds [4], more efficient routines on the
generation of cuts and the use of parallel processing [5]. The
Lagrangian was used by [6, 7] with its work on the traveling
salesman problems, and methods of Branch-and-Bound and
implicit enumeration had considerable gain in [8] with the
Lagrangian, in [9]. There are several questions directed to
the Lagrangian in integer linear problems, among them how
to calculate the Lagrange multipliers, how to choose among
the various relaxations of the problem, and how to obtain
viable solutions to the primal problem.Techniques for solving
the Lagrangian dual relaxation of combinatorial optimization
problems in polynomial time by applying the algorithm as a
subroutine of ellipsoids [10] have been presented with [11].
Other methodologies use heuristics decomposition lagrange
combining the solution of the Lagrangian Dual by the
method of subgradient, also considering the feasible solutions
primal heuristics [12]. These techniques were applied to flow
problems in networks “multicommodity” in [13], the capaci-
tated location problems [14].The decomposition Benders [15]
is an exact method, finite, effective when the number of inte-
ger variables is much smaller than the number of continuous
variables in which case the master problem has dimension
much smaller than the original problem. However, for large
problems, the Benders master problem can be difficult to
solve because of the large size. It joins the convergence
speed generally slow, making this method inefficient in many
cases.Moreover, computational experiments have shown that
a general code of Branch-and-Bound applied to solve the
problem Benders master produces a tree often much larger
than for solving the original problem.Thus, the disadvantage
of this decomposition is often the difficulty in solving the
master problem, making it inefficient.

Several papers were presented with the objective of
solving the problem about master with a higher overall
efficiency. Among these, [2, 9, 13, 21, 56, 62] implement
the Benders decomposition with Lagrangian applied in cuts
master problem. [22–25]. This transfers the difficulty of the
master problem in solving iteratively the maximum dual
function. In [26, 27] this method is denied due to lack of
controllability (the optimal solution in the Benders master
problem can never achieve the optimum in relaxed master
problem) in the solution of the relaxedmaster problem.There
are also suggestions on how to get a good initial set of cuts
for the Benders master problem [28, 29]. In [30] suggests the
use of linear relaxation for the Benders master problem in a
number of initial iterations.

Motivated by these failures, [31, 32] developed the “Cross
Decomposition”while exploiting the structures of primal and
dual problems, combining the advantages of Dantzig-Wolfe
decomposition [33, 34] and Benders [34, 35]. Reference [27]
carried out a comparative study of several approaches to the
problem Benders master, presenting an efficient method for
solving a linear problem, the whole “Cross Decomposition”
[31, 32, 36–39].Theoretical aspects of Benders decomposition
together with the “Cross Decomposition” are also discussed
in [36, 40]. Changes in “Cross Decomposition” for integer
linear programming problems were made by [13, 37]. These

changes are made through the generalization of the method
of Kornai and Liptak [41], which eliminates the need to
use the master primal and dual problems. The dynamics of
this decomposition is the subproblems, which iterates the
primal and dual subproblems. Instead of using the last sub-
problem solution as input to another, using an average of all
previous subproblem solutions.The convergence proof of this
methodology is found in [42]. For a certain class of location
problems are presented structured exact solution methods
from the “Cross Decomposition” in [36, 40, 43]. A com-
parison of techniques Kornai and Liptak for Decomposition
and Cross-linear problems with block-angular structures and
computational results is discussed in [16, 44]. Both method-
ologies have also been applied to problems of organizational
planning [45]. Reference [46] presented a simplified algo-
rithm of “Cross Decomposition” for multiple-choice right-
side constraints. Applications involving stochastic transport
problems were addressed in [47], involving comparative
study with other methods.

The update of the multipliers can be made by various
methods. If formulated as a linear problem, the simplex is
traditionally used. Moreover, in general, a dual nondifferen-
tiable and classical approach is the method of subgradient
[1, 23–25, 48], which is knownnot to be amethod of lowering.
Althoughmore complex, the techniques originally developed
for bundle [49–51] are being increasingly used. The method
exploits bundle data from previous iterations, vectors iter-
ated, objective function, and subgradients, the bundle infor-
mation, to produce new iteration. The method of 𝜀-descend
[52] considers the method of programming differentiable
subgradient conjugates [49, 50]. Kiwiel in [53–55] provides
new insight into the method of Bundle based on classical
methods of cutting planes developed by [56, 57]. The basic
idea of generalization of cutting planes is to add a quadratic
regularization to the linear approximation by convex parts
to the objective function; this linearization is generated by
using the subgradient. To avoid a large bundle, it is necessary
to limit it. Reference [58], for example, presented a selection
strategy based on the subgradient multipliers associated with
the localmodel, where the bundle that remains in subgradient
𝑛 + 2, 𝑛 being the size of a variable of the problem, consid-
ered three approaches to specify the quadratic stabilization
process, which are essentially equivalent. The first technique
uses the confidence regions; see [59, 60]. TheMoreau-Yosida
regularization generates the proximal method used by [61]. A
modern synthesis technique using bundle andmetric variable
is made from the concept of Moreau-Yosida regularization
in [62, 63]. Applications in control problems involving
the method of bundle can be found in [64], and other
applications using Lagrangian decomposition, networks, and
comparative tests with other algorithms are developed in
[60] and decompositions of large and parallel optimization in
[65]. Lemarechal according to [66] “is not an exaggeration to
say that 90 percent of the applications of nondifferentiability
appear in decompositions of one form or another, while
the remaining 10 percent are shown via the calculation of
eigenvalues.”Wemention also [67] when C. Lemaréchal says,
“the nondifferentiable optimization has the biggest deficiency
of the speed of convergence.”
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3. Model

Consider the integer linear problem (P), motivated by an
application in a telecommunications system [1], as follows:

]
𝑃
= min

4

∑

𝑘=1

𝑐
𝑡

𝑘
𝑥
𝑘
+

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗
,

s.t. 𝐷
𝑘
𝑥
𝑘
= 𝑑

𝑘
, 𝑘 = 1, . . . , 4,

𝐹
𝑗
𝑦
𝑗
≤ 𝑓

𝑗
, 𝑗 = 1, 2

𝐴
𝑘
𝑥
𝑘
+ 𝐵

𝑘
𝑦
1
= 𝐾

𝑘
, 𝑘 = 1, . . . , 4,

𝐶
3
𝑥
3
+ 𝐶

4
𝑥
4
+ 𝐶

2
𝑦
2
= 𝐾

5
,

𝑥
𝑘
≥ 0, 𝑦

𝑗
≥ 0 integer, 𝑘 = 1, . . . , 4 𝑗 = 1, 2,

(P)

where the matrices 𝐴
𝑘
, 𝐵
𝑘
, 𝐶
2
, 𝐶
3
, 𝐶
4
, 𝐷

𝑘
and 𝐹

𝑗
have appro-

priate dimensions with the vectors 𝑐
𝑘
, 𝑑
𝑘
, 𝑒
𝑗
, 𝑓
𝑗
, 𝐾

𝑘
, 𝐾

5
, 𝑥
𝑘

and𝑦
𝑗
.

On the other hand, consider 𝑋 = ∏
4

𝑘=1
𝑋
𝑘
where 𝑋

𝑘
=

{𝑥
𝑘
; 𝐷

𝑘
𝑥
𝑘
− 𝑑

𝑘
= 0 ∧ 𝑥

𝑘
≥ 0, 𝑥

𝑘
integers} and 𝑌 = ∏

2

𝑗=1
𝑌
𝑗

where 𝑌
𝑗
= {𝑦

𝑗
; 𝐹
𝑗
𝑦
𝑗
−𝑓

𝑗
≤ 0 ∧ 𝑦

𝑗
≥ 0, 𝑦

𝑗
integers}, supposed

nonempty and limited, that is finite.
Consider the integer linear programming problem (P):

]
𝑃𝐼
= min

4

∑

𝑘=1

𝑐
𝑡

𝑘
𝑥
𝑘
+

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗
,

s.t. 𝐴
𝑘
𝑥
𝑘
+ 𝐵

𝑘
𝑦
1
= 𝐾

𝑘
, 𝑘 = 1, . . . , 4,

𝐶
3
𝑥
3
+ 𝐶

4
𝑥
4
+ 𝐶

2
𝑦
2
= 𝐾

5
,

𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌.

(ILP)

A relaxation of the continuous variable 𝑥 (ILP) generates
(ILPx):

]
𝑃
= min

4

∑

𝑘=1

𝑐
𝑡

𝑘
𝑥
𝑘
+

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗
,

s.t. 𝐴
𝑘
𝑥
𝑘
+ 𝐵

𝑘
𝑦
1
= 𝐾

𝑘
, 𝑘 = 1, . . . , 4,

𝐶
3
𝑥
3
+ 𝐶

4
𝑥
4
+ 𝐶

2
𝑦
2
= 𝐾

5
,

𝑥 ∈ 𝑋
𝑅
, 𝑦 ∈ 𝑌,

(ILPx)

where𝑋
𝑅
= ∏

4

𝑘=1
𝑋
(𝑘)𝑅

, and𝑋
(𝑘)𝑅

= {𝑥
𝑘
; 𝐷

𝑘
𝑥
𝑘
−𝑑

𝑘
= 0∧𝑥

𝑘
≥

0}.
Also to relax the variable y (ILPy) is obtained is follows:

]
𝑃𝑅

= min
4

∑

𝑘=1

𝑐
𝑡

𝑘
𝑥
𝑘
+

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗
,

s.t. 𝐴
𝑘
𝑥
𝑘
+ 𝐵

𝑘
𝑦
1
= 𝐾

𝑘
, 𝑘 = 1, . . . , 4,

𝐶
3
𝑥
3
+ 𝐶

4
𝑥
4
+ 𝐶

2
𝑦
2
= 𝐾

5
,

𝑥 ∈ 𝑋
𝑅
, 𝑦 ∈ 𝑌

𝑅
,

(ILPy)

where 𝑌
(𝑗)

= {𝑦
𝑗
; 𝐹
𝑗
𝑦
𝑗
− 𝑓

𝑗
≤ 0 ∧ 𝑦

𝑗
≥ 0}.

Relaxing the last block of constraints (ILP), we have the
dual

VDI
= max

𝜆

𝜑 (𝜆) ,
(DI)

where for all 𝜆 defines the dual function.

𝜑 (𝜆) = min
(𝑥,𝑦)∈𝑊𝐼

ℓ (𝑥, 𝑦, 𝜆)

= min
4

∑

𝑘=1

𝑐
𝑡

𝑘
𝑥
𝑘
+

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗

+ 𝜆
𝑡
(𝐶
3
𝑥
3
+ 𝐶

4
𝑥
4
+ 𝐶

2
𝑦
2
− 𝐾

5
) ,

s.t. (𝑥, 𝑦) ∈ 𝑊
𝐼
,

(𝜑)

where 𝑊
𝐼
= {(𝑥, 𝑦); 𝑥 ∈ 𝑋

𝑅
, 𝑦 ∈ 𝑌, 𝐴

𝑘
𝑥
𝑘
+ 𝐵

𝑘
𝑦
1
= 𝐾

𝑘
, 𝑘 =

1, . . . , 4}.
The purpose of this relaxation is to ensure separability of

blocks of variables 𝑥
3
and 𝑥

4
, 𝑦
2
over in order, then applying

the Benders decomposition.

4. Methodology Regularization and
Benders Decomposition

Theslow convergence of the algorithms in structuredBenders
decomposition applied large-scale integer linear program-
ming problems motivated the development of the method-
ology to accelerate the classical method. Applies to Benders
decomposition to the large-scale integer linear programming
problemwith a Lagrangian relaxation, to update the Lagrange
multipliers by a Bundle Methods.

4.1. Benders Decomposition for the Relaxed Problem. The
Benders decomposition applied to the relaxed problem (𝜑) is
to reformulate this problem in an equivalent containing only
y-integer variables and a continuous variable. Without loss
of generality, assume that the problem has a finite optimal
solution for all 𝜆.

For each 𝜆, (𝜑) can be rewritten as:

min
𝑦∈𝑄

{

{

{

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗
+ 𝜆

𝑡
𝐶
2
𝑦
2

+min{
4

∑

𝑘=1

𝑐
𝑡

𝑘
𝑥
𝑘
+ 𝜆

𝑡
(𝐶
3
𝑥
3
+ 𝐶

4
𝑥
4
) ,

𝐴
𝑘
𝑥
𝑘
= 𝐾

𝑘
− 𝐵

𝑘
𝑦
1
, 𝑘 = 1, . . . , 4, 𝑥 ∈ 𝑋

𝑅
}

}

}

}

,

(𝜑

)

where𝑄 = {𝑦 ∈ 𝑌; ∃𝑥 ∈ 𝑋
𝑅
such that 𝐴

𝑘
𝑥
𝑘
= 𝐾

𝑘
−𝐵

𝑘
𝑦
1
𝑘 =

1, . . . , 4}, nonempty.
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For 𝑦 ∈ 𝑄 with 𝑦
1
fixed, the inner minimization

subproblem (with explicit𝑋
𝑅
)

V
𝐿
= min

𝑥

4

∑

𝑘=1

𝑐
𝑡

𝑘
𝑥
𝑘
+ 𝜆

𝑡
(𝐶
3
𝑥
3
+ 𝐶

4
𝑥
4
) ,

s.t. 𝐷
𝑘
𝑥
𝑘
= 𝑑

𝑘
, 𝑘 = 1, . . . , 4,

𝐴
𝑘
𝑥
𝑘
= 𝐾

𝑘
− 𝐵

𝑘
𝑦
1
, 𝑘 = 1, . . . , 4,

𝑥
𝑘
≥ 0, 𝑘 = 1, . . . , 4

(L)

has given its dual

V
𝐷
= max
(V,𝑢)

4

∑

𝑖=1

𝑑
𝑡

𝑖
V
𝑖
+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡

𝑢
𝑖
,

s.t. 𝐷
𝑡

𝑖
V
𝑖
+𝐴

𝑡

𝑖
𝑢
𝑖
≤ 𝑐

𝑖
where 𝑐

𝑖
={

𝑐
𝑖
, 𝑖=1, 2,

𝑐
𝑖
+𝐶

𝑡

𝑖
𝜆, 𝑖=3, 4,

(D)

where 𝑢 = (𝑢
1
, . . . , 𝑢

4
)
𝑡 and V = (V

1
, . . . , V

4
)
𝑡.

We assume that the polyhedral

𝑈 (𝜆)={(V, 𝑢) ; 𝐷𝑡
𝑖
V
𝑖
+𝐴

𝑡

𝑖
𝑢
𝑖
≤𝑐
𝑖
where 𝑐

𝑖
={

𝑐
𝑖
, 𝑖=1, 2,

𝑐
𝑖
+𝐶

𝑡

𝑖
𝜆, 𝑖=3, 4

}

(2)

are uniformly bounded, if necessary adding dimensions to
variables (V, 𝑢) and 𝜆.

Thus we can define the set {(V𝑞, 𝑢𝑞)𝜆} for all 𝑞 ∈ 𝑃
𝑈(𝜆)

(finite) of extreme points of 𝑈(𝜆). In this case, (𝜑) is equal
to

min
𝑦∈𝑄

{

{

{

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗
+𝜆

𝑡
𝐶
2
𝑦
2
+max
𝑞∈𝑃𝑈(𝜆)

{

4

∑

𝑖=1

𝑑
𝑡

𝑖
V𝑞
𝑖
+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡

𝑢
𝑞

𝑖
}

}

}

}

.

(𝜑
1
)

Consider that 𝑧
𝐿
(𝜆), the argument of the minimum, has for

any subset𝑃
𝑈(𝜆)

⊆ 𝑃
𝑈(𝜆)

, the relaxed Bendersmaster problem:

𝑧
𝐿
(𝜆) = min

(𝑧,𝑦)

𝑧,

s.t. 𝑧 ≥

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗
+

4

∑

𝑖=1

𝑑
𝑡

𝑖
V𝑞
𝑖
+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡

𝑢
𝑞

𝑖
,

𝑧 ∈ R, 𝑦 ∈ 𝑌, ∀𝑞 ∈ 𝑃


𝑈(𝜆)
.

(MB)

4.2. Quotas. For 𝜆 fixed, consider 𝑧
𝑈
(𝜆) = ∑

2

𝑗=1
𝑒
𝑡

𝑗
𝑦
𝑗
+

𝜆
𝑡
𝐶
2
𝑦
2
+ V

𝐷
upper limit, where V

𝐷
was obtained in relaxed

primal dual subproblem (D) and 𝑧
𝐿
(𝜆) was obtained in

relaxed primal dual subproblem (MB).
Then

𝑧
𝐿
(𝜆) ≤ 𝜑 (𝜆) = min

(𝑥,𝑦)∈𝑊𝐼

ℓ (𝑥, 𝑦, 𝜆) ≤ 𝑧
𝑈
(𝜆) . (3)

For 𝜆 variable, if we assume that, as done in the algorithm,
the restrictions relaxed Benders master problem will remain
the same from one to another iteration in 𝜆, then 𝑧

𝐿
(𝜆
𝑝+1

) ≥

𝑧
𝐿
(𝜆
𝑝
).

4.3. Regularization Dual Quadratic Problem. The iterative
solution of the dual problem of maximizing into 𝜑 (DI), that
updates the multiplier 𝜆, is done using a local regulated
model, such as the Bundle. However we do not know for each
𝜆, the value of 𝜑(𝜆), we only have lower quotas 𝑧

𝐿
(𝜆) and

upper 𝑧
𝑈
(𝜆).

Suppose that we are in the 𝑝th iteration 𝜆𝑝. Consider the
model

𝑤 (𝜆
𝑝
) = max

(𝑤,𝜌)

𝑤 −

1

2𝑡
𝑝





𝜌 − 𝜆

𝑝




2

,

s.t. 𝑤 ≤ (𝑔
𝑟
)
𝑡

(𝜌 − 𝜆
𝑝
) + 𝑧

𝑈
(𝜌
𝑟
) , 𝑟 ≥ 1,

(FI)

where 𝑡
𝑝
> 0, which determines the size of direction 𝜌 − 𝜆𝑃.

For application of the Bundle method, consider the
following.

(a) The value of 𝑔𝑟 := 𝐶
3
𝑥
𝑟

3
+ 𝐶

4
𝑥
𝑟

4
+ 𝐶

2
𝑦
𝑟

2
− 𝐾

5

corresponds to some 𝜀
𝑟
-subgradient of 𝜑 in 𝜆𝑟.

Indeed, for (𝑥𝑟, 𝑦𝑟) ∈ 𝑊
𝐼
and any 𝜆𝑝,

𝜑 (𝜆
𝑝
) = min

(𝑥,𝑦)∈𝑊𝐼

ℓ (𝑥, 𝑦, 𝜆
𝑝
)

= ℓ (𝑥
𝑟
, 𝑦
𝑟
, 𝜆
𝑝
) − 𝜀

𝑟
, for some 𝜀

𝑟
≥ 0

(4)

Defining ℓ,

𝜑 (𝜆
𝑝
) = (𝜆

𝑝
− 𝜆)

𝑡

𝑔
𝑟
+ ℓ (𝑥

𝑟
, 𝑦
𝑟
, 𝜆) − 𝜀

𝑟

≥ (𝜆
𝑝
− 𝜆)

𝑡

𝑔
𝑟
+ 𝜑 (𝜆) − 𝜀

𝑟
,

(5)

that is, 𝑔𝑟 ∈ 𝜕
𝜀𝑟
𝜑(𝜆

𝑝
) (subdifferencial of 𝜑(𝜆𝑝)).

(b) The linear cuts, corresponding to the local polyhedral
model, and also 𝜑(𝜆

𝑟
). This value is replaced by the

upper bound 𝑧
𝑈
(𝜌
𝑟
), provided by the primal relaxed

dual subproblem (D). To get 𝑔𝑟, 𝑧
𝑈
(𝜌
𝑟
), 𝑧

𝐿
(𝜌
𝑟
) may

require a few iterations of the Benders algorithm.

Indeed, consider acceptable (𝑔
𝑟, 𝑧

𝑈
(𝜌
𝑟
), 𝑧

𝐿
(𝜌
𝑟
)) if test

quality of the approximation of 𝜑(𝜌𝑟) is verified as follows:

𝑧
𝑈
(𝜌
𝑟
) − 𝑧

𝐿
(𝜌
𝑟
)

≤ 𝛼 (𝑧
𝑈
(𝜆
𝑝−1

) − 𝑧
𝐿
(𝜆
𝑝−1

)) , for some 0 < 𝛼 < 1.

(6)

It is noted that the convergence Benders method ensures
that the test will be checked in a finite number of iterations
[15]. With this test it is ensured that the maximum error in
calculating 𝜑, from one iteration to another in 𝜆, decreases.
Indirectly we also expect 𝜀

𝑟
→ 0.
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With this set of information, we have the model “approx-
imate”

Ω
𝑝
(𝜌) := min

𝑟
{(𝑔

𝑟
)
𝑡

(𝜌 − 𝜆
𝑝
) + 𝑧

𝑈
(𝜌
𝑟
)} . (7)

Thus, equivalently, (FI) is as follows:

max
𝜌

{Ω
𝑝
(𝜌) −

1

2𝑡
𝑝





𝜌 − 𝜆

𝑝




2

} . (8)

The regularized model (FI) has embedded in it the process
(decomposed) plans secants and intends to determine a
direction of ascent through the accumulated residue, with
the approximate calculation of the dual function 𝜑(𝜆) in
(DI), through Benders decomposition. The lemma and the
proposition that follow seek to justify the existence and
uniqueness of the solution of the quadratic subproblem, like
it’s the aggregate subgradient.

Lemma 1 (see Lemma XV.3.1.1 in [69]). The problem (8) has
a unique solution 𝜌𝑝+1 characterized by

𝜌
𝑝+1

= 𝜆
𝑝
+ 𝑡

𝑝
𝑔
𝑝
, 𝑔

𝑝
∈ 𝜕Ω

𝑝
(𝜌
𝑝+1

) . (9)

Furthermore

Ω (𝜆) ≤ 𝑧
𝐿
(𝜆
𝑝
) + (𝑔

𝑝
)

𝑡

(𝜆 − 𝜆
𝑝
) + 𝑒

𝑝
, ∀𝜆, (10)

where

𝑒
𝑝
= Ω(𝜌

𝑝+1
) − 𝑧

𝐿
(𝜆
𝑝
) − 𝑡

𝑝






𝑔
𝑝







2

. (11)

Proof. Suppose nonempty set generated by linear constraints,
the existence and uniqueness of the solution 𝜌

𝑝+1 following
the definition of a positive quadratic. The optimality condi-
tion for this solution is

0 ∈ 𝜕Ω
𝑝
(𝜌
𝑝+1

) −

1

𝑡
𝑝

(𝜌
𝑝+1

+ 𝜆
𝑝
) . (12)

Then

Ω (𝜆) ≤ Ω (𝜌
𝑝+1

) + (𝑔
𝑝
)

𝑡

(𝜆 − 𝜌
𝑝+1

) (13)

which is equivalent to

Ω (𝜆) ≤ 𝑧
𝐿
(𝜆
𝑝
) + (𝑔

𝑝
)

𝑡

(𝜆 − 𝜆
𝑝
) − 𝑧

𝐿
(𝜆
𝑝
)

+ Ω (𝜌
𝑝+1

) + (𝑔
𝑝
)

𝑡

(𝜆
𝑝
− 𝜌

𝑝+1
) .

(14)

Considering (9) recognizes the expression (11) of 𝑒
𝑝
.

Proposition 2 (see Lemma XV.3.1.2 in [69]). With the
notation of Lemma 1, consider a quadratic functionΨ : R𝑛 →

R ∪ {∞} satisfying

Ψ (𝜆) ≤ 𝑧
𝐿
(𝜆
𝑝
) + (𝑔

𝑝
)

𝑡

(𝜆 − 𝜆
𝑝
) + 𝑒

𝑝
=: 𝜑 (𝜆) , ∀𝜆, (15)

where equality in 𝜆 = 𝜌
𝑝+1. Then 𝜌𝑝+1 maximizes the function

Ψ̃ (𝜆) := Ψ (𝜆) +

1

2𝑡
𝑝





𝜆 − 𝜆

𝑝




2

. (16)

Proof. Applying (9) and (11) and defining relations Ψ can be
written as follows:

Ψ (𝜆) ≤ Ω (𝜌
𝑝+1

) + (𝑔
𝑝
)

𝑡

(𝜆 − 𝜌
𝑝+1

) − Ω (𝜌
𝑝+1

)

+ (𝑔
𝑝
)

𝑡

(𝜌
𝑝+1

− 𝜆
𝑝
) + 𝑧

𝐿
(𝜆
𝑝
) + 𝑒

𝑝
,

∴ Ψ (𝜆) ≤ Ω (𝜌
𝑝+1

) + (𝑔
𝑝
)

𝑡

(𝜆 − 𝜌
𝑝+1

)

(17)

with equality in 𝜆 = 𝜌
𝑝+1. Subtracting the term (1/𝑡

𝑝
)(𝜆 −

𝜆
𝑝
) = 0 both sides,

Ψ̃ (𝜆) ≤ Ω (𝜌
𝑝+1

) + (𝑔
𝑝
)

𝑡

(𝜆 − 𝜌
𝑝+1

) −

1

2𝑡
𝑝





𝜆 − 𝜆

𝑝




2

, (18)

even with equality 𝜆 = 𝜌
𝑝+1. Now note that the function of

the right side is maximized when

𝑔
𝑝
−

1

𝑡
𝑝

(𝜆 − 𝜆
𝑝
) = 0, (19)

corresponding to 𝜌𝑝+1, given by (9).

The function 𝜑(𝜆) is known to aggregate linearization
approximation of 𝜑, where the limit on the model Ω, as
described in Lemma 1.

A more convenient way to solve (FI) is to be made
through the dual problem. Define the Lagrangian and their
optimality conditions as follows:

For 𝑑 := 𝜌 − 𝜆
𝑝,

ℓ
∗
(𝑤, 𝑑, 𝜂) = 𝑤 −

1

2𝑡
𝑝

‖𝑑‖
2

− ∑

𝑟∈{1,...,ℓ)

𝜂
𝑟
(𝑤 − (𝑔

𝑟
)
𝑡

𝑑 − 𝑧
𝑈
(𝜌
𝑟
)) , 𝜂 ≥ 0

ℓ
∗

𝑤
= 0 ∴ ∑

𝑟∈{1,...,ℓ)

𝜂
𝑟
= 1,

ℓ
∗

𝑑
= 0 ∴ −

1

2𝑡
𝑝

𝑑 + ∑

𝑟∈{1,...,ℓ)

𝜂
𝑟
𝑔
𝑟
= 0.

(20)

Complementarity,

𝜂
𝑟
[𝑤 − (𝑔

𝑟
)
𝑡

𝑑 − 𝑧
𝑈
(𝜌
𝑟
)] = 0, 𝑟 ≥ 1. (21)

Substituting these equations into ℓ
∗, it has the following

quadratic linear problem:

min ℘ (𝜂) ,

s.t. ∑

𝑟∈{1,...,ℓ)

𝜂
𝑟
= 1,

𝜂
𝑟
≥ 0,

(DFI)



6 Journal of Applied Mathematics

where

℘ (𝜂) =

𝑡
𝑝

2













∑

𝑟∈{1,...,ℓ)

𝜂
𝑟
𝑔
𝑟













2

+ ∑

𝑟∈{1,...,ℓ)

𝜂
𝑟
𝑧
𝑈
(𝜌
𝑟
) . (22)

Consider that the optimality conditions have also to
update the multiplier

𝜌 = 𝜆
𝑝
+ 𝑡

𝑝
( ∑

𝑟∈{1,...,ℓ)

𝜂
𝑟
𝑔
𝑟
) , (23)

where 𝜂 is single solution of (DFI).

5. The Approximate Algorithm of Bundle

5.1. Algorithm Partial Benders. At each iteration, the multi-
plier 𝜆 is used in subproblem (D), what, resolved, provides
an upper bound 𝑧

𝑈
and generates a new Benders cut to be

included in the relaxed master problem (MB). Solving this
provides a lower limit 𝑧

𝐿
and a variable y for subproblem

(L), which in turn is resolved in 𝑥. With 𝜆 fixed, this process
is repeated and accumulated up all the cuts in the master
problem Benders (MB), until the test (6) is satisfied. At the
end of this process the values of 𝑥, 𝑦, 𝑧

𝑈
, and 𝑧

𝐿
are taken to

the regularized model, a new update to the multiplier.

Note. We chose to include the quadratic model only the cut
that corresponds to the test (6). However, we can include all
cuts, leaving for future work the selection policy and proper
disposal.

5.2. Approximate Test Armijo. One approach test Armijo [8]
here will determine that the direction of the approximation
increases 𝜑. Thereby,

𝛿
𝑝
:= Ω (𝜌

𝑝+1
) − 𝑧

𝐿
(𝜌
𝑝
) −

1

2𝑡
𝑝






𝜌
𝑝+1

− 𝜆
𝑝




2

, (24)

where 𝜌𝑝+1 = 𝜆
𝑝
+ 𝑡

𝑝
𝑔 andΩ is given by (7).

Approaching the values of 𝜑 by lower quotas (𝑧
𝐿
(𝜆)) and

upper (𝑧
𝑈
(𝜌)) has

𝜑 (𝜌
𝑝+1

) − 𝜑 (𝜆
𝑝
) ≤ 𝑧

𝑈
(𝜌
𝑝+1

) − 𝑧
𝐿
(𝜆
𝑝
) . (25)

For 0 < 𝑚
1
< 1 provided, an approximation of the test

Armijo will be satisfied in 𝜌𝑝+1 if

𝑧
𝑈
(𝜌
𝑝+1

) − 𝑧
𝐿
(𝜆
𝑝
) ≥ 𝑚

1
𝛿
𝑝
, (26)

where the left side is positive because

𝑧
𝑈
(𝜌
𝑝+1

) − 𝑧
𝐿
(𝜆
𝑝
) ≥ 𝑧

𝑈
(𝜌
𝑝+1

) − 𝑧
𝐿
(𝜌
𝑝+1

) ≥ 0. (27)

If we compare this to the test that corresponded to
the exact calculation of the function 𝜑, observed that the
difference between the current and the candidate has been
replaced by an increase as much as 𝛿

𝑝
is an increase of

the exact value. This expects that the test stop approximate
Bundle method will not be anticipated, since also ensures a
good approximation to the function 𝜑.

5.3. Regularization Algorithm for Updating the Multipliers
with Relaxation. Before we present the algorithm and in
order to keep the notation, replace the model (FI) that is
equivalent to

𝑤 (𝜆
𝑝
) = max

(𝑤,𝜌)

𝑤 −

1

2𝑡
𝑝





𝜌 − 𝜆

𝑝




2

,

s.t. 𝑤 ≤ (𝑔
𝑟
)
𝑡

(𝜌 − 𝜌
𝑟
) + 𝑒

𝑟
+ 𝑧

𝑈
(𝜆
𝑝
) , 𝑟 ≥ 1,

(6

)

where

𝑒
𝑟
:= 𝑒 (𝜆

𝑝
, 𝜌
𝑟
, 𝑔
𝑟
) := 𝑧

𝑈
(𝜌
𝑟
) − 𝑧

𝑈
(𝜆
𝑝
) + (𝑔

𝑟
)
𝑡

(𝜌
𝑟
− 𝜆

𝑝
) .

(28)

We used without distinctions 𝑔(𝜌𝑟) and 𝑔
𝑟.

Algorithm 3. Initialization: They are given tolerance stop 𝛿 ≥
0 and 𝜃 > 0. Consider ℓ > 0 the maximum size of the Bundle,
𝑡
1
> 0. Get an initial dual feasible solution 𝜆1, 𝑦0 ∈ 𝑌 and 𝑥0

initial feasible solution (L); that is, for 𝑦 = 𝑦
0, 𝑥0 is solution

of

𝐴
𝑘
𝑥
𝑘
= 𝐾

𝑘
− 𝐵

𝑘
𝑦
1
, 𝑘 = 1, . . . , 4,

𝑥
𝑘
∈ 𝑋

𝑘
, 𝑘 = 1, . . . , 4.

(29)

Calculate 𝑔1 = 𝑔(𝜆
1
). Make 𝑧

𝑈
(𝜆
1
) := ℓ(𝑥

0
, 𝑦
0
, 𝜆
1
). Estimate

𝑧
𝐿
(𝜆
1
), for example, through an iteration of the Benders

method. Choice 𝑚
1

∈ (0, 1) reducing the test Armijo,
𝛼 ∈ (0, 1) is the reduction in quality test approximation 𝜑.
Initialize the set of ascent 𝑃 = 𝜙, the accountant of iterations
𝑝 = 1, and the size of the bundle ℓ = 1. For 𝑒

1
= 0,

corresponding to the initial bundle (𝑔1, 𝑒
1
), and the initial

model

𝜌 → Ω
1
(𝜌) := 𝑧

𝑈
(𝜆
1
) + (𝑔

1
)

𝑡

(𝜌 − 𝜆
1
) . (30)

Step 1 (principal calculation and test stop). Whether 𝜌𝑝+1 is
the unique solution of the quadratic problem such that

𝜌
𝑝+1

= 𝜆
𝑝
+ 𝑡

𝑝
𝑔
𝑝
, where 𝑔𝑝 ∈ 𝜕Ω

𝑝
(𝜌
𝑝+1

) . (31)

Make

𝑒
𝑝
:= Ω

𝑝
(𝜌
𝑝+1

) − 𝑧
𝐿
(𝜆
𝑝
) − 𝑡

𝑝





𝑔
𝑝




2

,

𝛿
𝑝
:= Ω

𝑝
(𝜌
𝑝+1

) − 𝑧
𝐿
(𝜆
𝑝
) −

𝑡
𝑝

2





𝑔
𝑝




2

.

(32)

Calculate through of the algorithm

𝑧
𝑈
(𝜌
𝑝+1

) , 𝑧
𝐿
(𝜌
𝑝+1

) , 𝑔 (𝜌
𝑝+1

) . (33)

If 𝛿
𝑝
≤ 𝛿 and 𝑧

𝑈
(𝜌
𝑝+1

) − 𝑧
𝐿
(𝜌
𝑝+1

) > 𝜃, stop.

Step 2 (approximation test Armijo). If 𝑧
𝑈
(𝜌
𝑝+1

) − 𝑧
𝐿
(𝜆
𝑝
) ≥

𝑚
1
𝛿
𝑝
,𝑚

1
∈ (0, 1) is “serious step”; otherwise, it is “null step,”

check to Step 4.
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Step 3 (serious step).

Make 𝜆𝑝+1 = 𝜌
𝑝+1.

Add 𝑝 the set 𝑃; for 𝑟 = 1, . . . , ℓ.
Permute 𝑒

𝑟
and 𝑒

𝑝
by, respectively,

𝑒
𝑟
+ 𝑧

𝑈
(𝜆
𝑝
) − 𝑧

𝑈
(𝜆
𝑝+1

) + (𝑔
𝑟
)
𝑡

(𝜆
𝑝
− 𝜆

𝑝+1
) ,

𝑒
𝑟
+ 𝑧

𝑈
(𝜆
𝑝
) − 𝑧

𝑈
(𝜆
𝑝+1

) + (𝑔
𝑟
)
𝑡

(𝜆
𝑝
− 𝜆

𝑝+1
) .

(34)

Step 4 (control of bundle size). If ℓ = ℓ, then eliminate at least
two of the bundle elements and insert the element (𝑔𝑝, 𝑒

𝑝
).

Consider (𝑔𝑡, 𝑒
𝑡
)
𝑡=1,...,ℓ

the new bundle obtained (with ℓ =
ℓ).

Step 5. Insert (𝑔ℓ+1, 𝑒
ℓ+1

) to the bundle, where 𝑒
ℓ+1

= 0 in the
case of serious step, and in the case of null step,

𝑒
ℓ+1

= 𝑧
𝑈
(𝜌
𝑝+1

) − 𝑧
𝑈
(𝜆
𝑝
) + (𝑔

ℓ+1
)

𝑡

(𝜌
𝑝+1

− 𝜆
𝑝
) . (35)

Replace ℓ by ℓ + 1, and update the model 𝜌 → Ω
𝑝+1

(𝜌) :=

min
𝑟
{(𝑔

𝑟
)
𝑡
(𝜌 − 𝜆

𝑝+1
) + 𝑧

𝑈
(𝜌
𝑟
)}.

Step 6. Make 𝑝 = 𝑝 + 1, and return to Step 1.

5.4. Partial Benders Algorithm for Integer Linear Problem with
Relaxation. Initialization: make 𝑞 = 1.

Step 1. Solve

V
𝐷
= max
(V𝑖 ,𝑢𝑖)

4

∑

𝑖=1

𝑑
𝑡

𝑖
𝑉
𝑖
+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡

𝑢
𝑖
,

s.t. 𝐷
𝑡

𝑖
V
𝑖
+ 𝐴

𝑡

𝑖
𝑢
𝑖
≤ 𝑐

𝑖
,

where 𝑐
𝑖
= {

𝑐
𝑖
, 𝑖 = 1, 2,

𝑐
𝑖
+ 𝐶

𝑡

𝑖
𝜌
𝑝+1

, 𝑖 = 3, 4.

(36)

If there is no solution, stop: (𝜑
1
) has no feasible solution.

Otherwise, (V(𝑝,𝑞), 𝑢(𝑝,𝑞)) solution, and then

𝑧
𝑈
(𝜌
𝑝+1

) =

2

∑

𝑗=1

𝑒
𝑡

𝑖
𝑦
𝑗
+ 𝜌

𝑡
𝐶
2
𝑦
2
+ V

𝐷
. (37)

Generate a new constraint (cut) from (𝜌
𝑝+1

, V(𝑝,𝑞), and 𝑢(𝑝,𝑞)).
Continue with Step 2.

Step 2. Solve

min 𝑧,

s.t. 𝑧 ≥

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗
+ (𝜌

𝑝+1
)

𝑡

𝐶
2
𝑦
2
+

4

∑

𝑖=1

𝑑
𝑡

𝑖
V𝑞
𝑖

+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦)
𝑡

, 𝑧 ∈ R, 𝑦 ∈ 𝑌, ∀𝑞.

(38)

Consider (𝑧
𝐿
(𝜌
𝑝+1

), 𝑦
𝑝+1

) the optimal solution. Continue
with Step 3.

Step 3. Solve

min
4

∑

𝑘=1

𝑐
𝑡

𝑘
𝑥
𝑘
+ (𝜌

𝑝+1
)

𝑡

(𝐶
3
𝑥
3
+ 𝐶

4
𝑥
4
) .

s.t. 𝐴
𝑘
𝑥
𝑘
= 𝑘

𝑘
− 𝐵

𝑘
𝑦
𝑝+1

1
, 𝑘 = 1, . . . , 4.

𝑥
𝑘
∈ 𝑋

𝑅
, 𝑘 = 1, . . . , 4.

(39)

Whether 𝑥𝑝+1 solution; continue with Step 4.

Step 4 (test quality approach 𝜑).

If

𝑧
𝑈
(𝜌
𝑝+1

) − 𝑧
𝐿
(𝜌
𝑝+1

) ≤ 𝛼 (𝑧
𝑈
(𝜆
𝑝
) − 𝑧

𝐿
(𝜆
𝑝
)) (40)

end.

Otherwise, make𝑝+1 = 𝑝, 𝑞 = 𝑞+1, and return to Step 1.

Remarks

(1) The test for stopping the algorithm adds to the usual
tolerance 𝛿 of bundles, the requirement that the
function approximation is reasonable. In fact, for
crude approximations of 𝜑, it is possible to have false
serious steps with error 𝛿 false small, hence the need
for 𝜃-approximation.

(2) The Benders relaxed master problem (MB) should
have some heuristics for selecting cuts, given that
the accumulations of all inequalities explode the
subproblem.

We present Figure 1 of the algorithm for the problemwith
integer linear relaxation.

5.5. About Convergence. We opted to observe that 𝜃 small
enough for the results cited correspond to guarantee the
stability of the algorithm of bundle. This can be observed
by adding a positive parameter 𝜃 → 0, the expression of
errors linearization, and the gains predicted by the model
(see, Lemma 3.2.1 in [69]. Thus if only guarantee the local
convergence. Furthermore, the quality test approximation
(𝜑
1
) should be sufficient for obtaining convergence of the

overall strength because the iterative process to arrive at the
usual formulation of the bundle, with 𝜃 = 0. Undoubtedly,
with the risk of being a high cost computational algorithm,
as already noted. It presents the known result that guarantees
no cycling algorithm Benders.

Theorem 4. The vectors composed of the vertices and their
multipliers (V𝑝, 𝑢𝑝, and 𝜆𝑝) generated at each iteration by the
algorithm are different.

Proof. Suppose that the first (𝑝 ≥ 1) extreme points, say
(V1, 𝑢1), (V2, 𝑢2), . . . , (V𝑝, 𝑢𝑝) the problem generated (D) (𝜆)
and 𝜆1, . . . , 𝜆𝑝 obtained problem regularized (FI).
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Regularization process for
update multiplier 𝜆 

Dual primal subproblem 
relaxed (D)

Relaxed primal 
subproblem (L)

Relaxed primal master 
problem (MB)

Initialization

x

𝜆

(x, y, zL , zU)

{y, (�q, uq)}

(�q, uq); zU

y; zL

Test quality (𝜑1)

Figure 1

Then with the Step 2, it has

min 𝑧,

s.t. 𝑧 ≥

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗
+ (𝜆

𝑠
)
𝑡

𝐶
2
𝑦
2
+

4

∑

𝑖=1

𝑏
𝑡

𝑖
V𝑝
𝑖
+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡

𝑢
𝑝

𝑖
,

𝑧 ∈ R, 𝑦 ∈ 𝑌, 𝑠 ≤ 𝑝.

(41)

The optimal solution of this problem 𝑧, 𝑦, that is, for some
𝑘 (1 ≤ 𝑘 ≤ 𝑝), 𝑠 = 1, . . . , 𝑝

𝑧 =

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗
(𝜆
𝑘
)

𝑡

𝐶
2
𝑦
2
+

4

∑

𝑖=1

𝑏
𝑡

𝑖
V𝑘
𝑖
+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡

𝑢
𝑘

𝑖

≥

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗
+ (𝜆

𝑠
)
𝑡

𝐶
2
𝑦
2
+

4

∑

𝑖=1

𝑏
𝑡

𝑖
V𝑠
𝑖
+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡

𝑢
𝑠

𝑖
.

(42)

As 𝑧 is a lower bound on the optimal cost primal relaxed 𝜑,
𝜑 ≥ 𝑧, and with (42),

4

∑

𝑖=1

𝑏
𝑡

𝑖
V𝑘
𝑖
+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡

𝑢
𝑘

𝑖
≤ 𝜑 − (

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗
+ (𝜆

𝑘
)

𝑡

𝐶
2
𝑦
2
) .

(43)

On the other hand, in the next iteration of (D) (𝜆𝑝+1) the
solution (V𝑝+1, 𝑢𝑝+1) is a vertex 𝑈(𝜆). Then

4

∑

𝑖=1

𝑏
𝑡

𝑖
V𝑝+1
𝑖

+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡

𝑢
𝑝+1

𝑖

=

4

∑

𝐾=1

𝑐
𝑡

𝑘
𝑥
𝑘
+ (𝜆

𝑝+1
)

𝑡

(𝐶
3
𝑥
3
+ 𝐶

4
𝑥
4
) ,

(44)

where 𝑥 is a solution of (L) (𝜆).
As (𝑥, 𝑦) is a viable solution 𝜑 it has

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗
+ (𝜆

𝑝+1
)

𝑡

𝐶
2
𝑦
2
+

4

∑

𝐾=1

𝑐
𝑡

𝑘
𝑥
𝑘
+ (𝜆

𝑝+1
)

𝑡

(𝐶
3
𝑥
3
+ 𝐶

4
𝑥
4
)

≥ 𝜑.

(45)

Equivalently

𝜑 −

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗
≤

4

∑

𝐾=1

𝑐
𝑡

𝑘
𝑥
𝑘
+ (𝜆

𝑝+1
)

𝑡

(𝐶
3
𝑥
3
+ 𝐶

4
𝑥
4
)

+ (𝜆
𝑝+1

)

𝑡

𝐶
2
𝑦
2
.

(46)

Combining (43) and (44), it has

4

∑

𝑖=1

𝑏
𝑡

𝑖
V𝑘
𝑖
+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡

𝑢
𝑘

𝑖
+ (𝜆

𝑘
)

𝑡

𝐶
2
𝑦
2

≤ 𝜑 −

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗

≤

4

∑

𝑘=1

𝑐
𝑡

𝑘
𝑥
𝑘
+ (𝜆

𝑝+1
)

𝑡

(𝐶
3
𝑥
3
+ 𝐶

4
𝑥
4
) + (𝜆

𝑝+1
)

𝑡

(𝐶
2
𝑦
2
)

=

4

∑

𝑖=1

𝑏
𝑡

𝑖
V𝑝+1
𝑖

+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡

𝑢
𝑝+1

𝑖
+ (𝜆

𝑝+1
)

𝑡

𝐶
2
𝑦
2
.

(47)

If 𝜑 − (∑
4

𝑘=1
𝑐
𝑡

𝑘
𝑥
𝑘
+ (𝜆

𝑝+1
)

𝑡

(𝐶
3
𝑥
3
+ 𝐶

4
𝑥
4
)) = ∑

2

𝑗=1
𝑒
𝑡

𝑗
𝑦
𝑗
+

(𝜆
𝑝+1

)

𝑡

𝐶
2
𝑦
2
then (𝑥, 𝑦) solves the relaxed integer linear

problem (𝜑).
Otherwise,

4

∑

𝑖=1

𝑏
𝑡

𝑖
V𝑘
𝑖
+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡

𝑢
𝑘

𝑖
+ (𝜆

𝑘
)

𝑡

𝐶
2
𝑦
2

<

4

∑

𝑖=1

𝑏
𝑡

𝑖
V𝑝+1
𝑖

+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡

𝑢
𝑝+1

𝑖
+ (𝜆

𝑝+1
)

𝑡

𝐶
2
𝑦
2

(48)

in which case (V𝑘, 𝑢𝑘, 𝜆𝑘) ̸= (V𝑝+1, 𝑢𝑝+1, 𝜆𝑝+1).
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But inequality (42) is as follows:

4

∑

𝑖=1

𝑏
𝑡

𝑖
V𝑘
𝑖
+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡

𝑢
𝑘

𝑖
+ (𝜆

𝑘
)

𝑡

𝐶
2
𝑦
2

≥

4

∑

𝑖=1

𝑏
𝑡

𝑖
V𝑠
𝑖
+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡

𝑢
𝑠

𝑖
+ (𝜆

𝑝+1
)

𝑡

𝐶
2
𝑦
2
,

𝑠 = 1, . . . , 𝑝.

(49)

On the other hand, of (48),
4

∑

𝑖=1

𝑏
𝑡

𝑖
V𝑠
𝑖
+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡

𝑢
𝑠

𝑖
+ (𝜆

𝑠
)
𝑡

𝐶
2
𝑦
2

<

4

∑

𝑖=1

𝑏
𝑡

𝑖
V𝑝+1
𝑖

+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡

𝑢
𝑃+1

𝑖

+ (𝜆
𝑝+1

)

𝑡

𝐶
2
𝑦
2
, 𝑠 = 1, . . . , 𝑝,

(50)

and therefore (V𝑝+1, 𝑢𝑝+1, 𝜆𝑝+1) ̸= (V𝑠, 𝑢𝑠, 𝜆𝑠) 𝑠 = 1, . . . , 𝑝.

Corollary 5. If 𝑞 > 1, the 𝑚th iteration internal, then
𝑦
𝑚+1

̸= 𝑦
𝑚.

Proof. Suppose the contrary, that to solve (MB) with 𝑚 cuts,
the solution 𝑦 is repeated. In this case, to solve the problem
(D), we would obtain a vector (V𝑚+1, 𝑢𝑚+1) satisfying

4

∑

𝑖=1

𝑑
𝑡

𝑖
Vℓ
𝑖
+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡

𝑢
ℓ

𝑖
=

4

∑

𝑖=1

𝑑
𝑡

𝑖
V𝑚+1
𝑖

+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡

𝑢
𝑚+1

𝑖

(51)

for some ℓ = {1, . . . , 𝑚}. However, this only occurs when the
optimality criterion is reached.

6. Conclusion and Future Works

Our main goal was to present an alternative technique
using Lagrangian relaxation in solving a problem in integer
linear programming. The work introduced a new algorithm
structured from a block of relaxation of constraints that the
problem presents difficulties when approached by traditional
techniques Benders. We hope to take advantage of the com-
putational process smoothing over other heuristic algorithms
(Dantzig-Wolfe, subgradient) because its search direction is
determined by processes similar to bundle method, which
has shown proven results superior to those in many large
problems [60]. It seems also unlikely that the technique
of “Cross Decomposition” would be adaptable. As future
works, we investigate other applications in order to verify the
efficiency of the methods on structured problems and extend
the decomposition to nonlinear problems and integer non-
linear, using the Lagrangian heuristic process along with the
regularization. It is expected that other hybridmethodologies
[71–74] can be applied in the solution of the problem (P) [1].
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[46] S. Kim, S. C. Cho, and B. S. Um, “A simplified cross decompo-
sition algorithm for multiple right hand choice linear program-
ming,” Journal of the Operations Research Society of Japan, vol.
32, no. 4, pp. 441–449, 1989.

[47] K. Holmberg and K. O. Jörnsten, “Cross decomposition applied
to the stochastic transportation problem,” European Journal of
Operational Research, vol. 17, no. 3, pp. 361–368, 1984.

[48] B. Pchénitchny and Y. Daniline,Methodes Numériques dans les
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World Scientific, 1992.

[65] D. Medhi, Decomposition of structured large scale optimization
problems and parallel optimization [Ph.D. thesis], University of
Wisconsin, 1987.

[66] SIAG/OPT Views-and-News, “A Forum for the SIAM Activity
Group on Optimization,” Larry Nazareth Editor, 4, 1994.
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