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Fractional-order diffusion equations are viewed as generalizations of classical diffusion equations, treating super-diffusive flow
processes. In this paper, in order to solve the fractional advection-diffusion equation, the fractional characteristic finite difference
method is presented, which is based on the method of characteristics (MOC) and fractional finite difference (FD) procedures.
The stability, consistency, convergence, and error estimate of the method are obtained. An example is also given to illustrate the
applicability of theoretical results.

1. Introduction

The history of fractional calculus is almost as long as integer-
order calculus. However, because of lack of application back-
ground, fractional calculus was developed very slowly. Up to
now, fractional calculus has been applied to almost every field
of hydrology [1], physics [2, 3], engineering [4], mathematics
[5], and science [6, 7], such as diffusion [8], oscillation,
and viscoellastic dynamics. The fractional derivatives in
space are often used to model anomalous diffusion because
particles spread faster than the classical models predict. The
main physical purpose for investigating diffusion equation
of fractional order is to describe phenomena of anomalous
diffusion in transport progresses through complex or disor-
dered systems including fractal media, and fractional kinetic
equations have been proved especially useful in the context of
anomalous slow diffusion.

There are several different methods to solve differential
equations of fractional order [9], for instance, the method
of images, the Fourier transform methods, the method of
separation of variables, the Mellin transform methods, and
the Laplace transform methods. Wyss [10] considered the
time fractional diffusion equation and the solution is given
in closed form in terms of the Fox functions. In the last
decade, different numerical methods have been developed
to solve the fractional diffusion equations [11, 12]. Several

explicit finite difference schemeswere proposed and analyzed
in [13]. Liu et al. [14] used L2 scheme form [5] to discretize the
fractional Fokker-Planck equation. Deng [15] proposed finite
element method for the space and time fractional Fokker-
Planck equation. Meerschaert and Tadjeran [16] considered a
Grünwald-Letnikov approximation for the two-sided space-
fractional partial differential equations.

Many difficult problems arise in the numerical simulation
of fluid flow within porous media in petroleum reservoir
simulation and in subsurface contaminant transport and
remediation [17]. For example, their mathematical models
are basically advection dominated. Fractional derivatives
play an important role in modelling particle transport in
anomalous diffusion [18]. The space-fractional advection-
dominated diffusion equation [19] is

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
+ V (𝑥)

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥

= 𝑑 (𝑥)
𝜕
𝛼

𝑢 (𝑥, 𝑡)

𝜕𝑥𝛼
+ 𝑠 (𝑥, 𝑡) , 𝐿 ≤ 𝑥 ≤ 𝑅, 0 < 𝑡 ≤ 𝑇,

𝑢 (𝑥, 𝑡 = 0) = 𝑢
0
(𝑥) , 𝐿 ≤ 𝑥 ≤ 𝑅,

𝑢 (𝐿, 𝑡) = 0, 𝑢 (𝑅, 𝑡) = 0, 0 < 𝑡 ≤ 𝑇,

(1)
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where the function V(𝑥) > 0 is the drift of the process,
𝛼 is the fractional order of the spatial derivative, physical
considerations restrict 1 < 𝛼 ≤ 2, the functions 𝑑(𝑥) >
0 may be interpreted as the coefficient of dispersion, and
𝑠(𝑥, 𝑡) is a source/sink term.Moreover, when (1) is convection
dominated diffusion equation, we have V(𝑥) ≫ 𝑑(𝑥).

Equation (1) contains a Riemann-Liouville fractional
derivative of order 𝛼 of a function 𝑓(𝑥), for 𝑥 ∈ [𝐿, 𝑅],
−∞ ≤ 𝐿 < 𝑅 ≤ ∞, defined by [9]

𝜕
𝛼

𝑓 (𝑥)

𝜕𝑥𝛼
=

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥𝑛
∫

𝑥

𝐿

𝑓 (𝜉)

(𝑥 − 𝜉)
𝛼+1−𝑛

𝑑𝜉, (2)

where 𝑛 is an integer such that 𝑛−1 < 𝛼 ≤ 𝑛, Γ(⋅) is the gamma
function.

The standard finite difference methods (SFDM) for solv-
ing (1) were discussed in [16, 19, 20], and their stability
was given in those papers, too. However, these methods
often generate numerical solutions with severe nonphysical
oscillations. Because of the nature of hyperbolic types [17,
21], the convection-diffusion problems involve moving sharp
fronts or boundary layers. While upwind finite difference
methods eliminate nonphysical oscillations, they tend to
generate numerical solutions with excessive numerical dif-
fusion and smear the moving steep fronts. The efficient
grid refinements are required if the standard methods are
used in computations. But for high dimensional large-scale
problems, it may lead to very large linear systems and need
long computation time.

In this paper, we will consider a new numerical difference
scheme proposed by the characteristic method, which is
named the fractional characteristic finite difference method
(CFDM). It is proved that the newmethod is unconditionally
stable, consistent, and convergent; therefore, there is no
stability limitation on the size of Δ𝑡. Moreover, the CFDM
allows large time steps to be usedwithout the loss of accuracy,
which is much better than the SFDM and other numerical
methods. The reason is that, for problems with significant
convection, the solution changes much less rapidly in the
characteristic 𝜏 direction than in the 𝑡 direction.

The outline of the paper is as follows. In Section 2, we
describe the fractional characteristic finite difference schemes
for solving (1). In Section 3, the stability, consistency, and
convergence are proved, and the maximum error estimate
is derived, too. The numerical experiments are given in
Section 4.The conclusions of this paper are given in Section 5.

2. Fractional Characteristic Difference Method

In this section, we consider the combination of characteristic
methods with finite difference techniques [22] and seek a new
numerical method of (1), which is the convection-dominated
problem and reflects the almost hyperbolic nature.

2.1. The Idea of Characteristic Methods. Let 𝜓(𝑥) =

√1 + V2(𝑥) and denote the characteristic direction associated
with the operator 𝑢

𝑡
+ V(𝑥)𝑢

𝑥
by 𝜏 = 𝜏(𝑥) (see [22]), where

𝜕

𝜕𝜏 (𝑥)
=

1

𝜓 (𝑥)

𝜕

𝜕𝑡
+

V (𝑥)

𝜓 (𝑥)

𝜕

𝜕𝑥
. (3)

Then, the left part of (1) can be rewritten as

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
+ V (𝑥)

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥
= 𝜓 (𝑥)

𝜕𝑢 (𝑥, 𝑡)

𝜕𝜏 (𝑥)
. (4)

Next, in order to formulate the fractional CFDMof (1), we
give somenotations. LetΔ𝑡be the temporalmesh or time step,
𝑡
𝑚

= 𝑚Δ𝑡, 𝑚 = 0, 1, 2, . . . ,𝑀,𝑀 = 𝑇/Δ𝑡, Δ𝑥 is the spatial
mesh, the coordinates of the mesh points are 𝑥

𝑖
= 𝐿 + 𝑖Δ𝑥,

𝑖 = 0, 1, 2, . . . , 𝑁,𝑁 = (𝑅−𝐿)/Δ𝑥, with𝑀 and𝑁 are positive
integers.The values of the solution 𝑢(𝑥, 𝑡) on these grid points
are 𝑢(𝑥

𝑖
, 𝑡
𝑚

) ≡ 𝑢
𝑚

𝑖
≃ 𝑈
𝑚

𝑖
, and the numerical estimate of the

exact value of 𝑢(𝑥, 𝑡) at the point (𝑥
𝑖
, 𝑡
𝑚

) is denoted by 𝑈𝑚
𝑖
.

Finally, define V
𝑖
= V(𝑥
𝑖
), 𝑑
𝑖
= 𝑑(𝑥

𝑖
), and 𝑆𝑚

𝑖
= 𝑠(𝑥
𝑖
, 𝑡
𝑚

).
The characteristic derivative is approximated in the fol-

lowing manner:

𝜓 (𝑥)
𝜕𝑢 (𝑥, 𝑡

𝑚+1

)

𝜕𝜏
≈ 𝜓 (𝑥)

𝑢 (𝑥, 𝑡
𝑚+1

) − 𝑢 (𝑥, 𝑡
𝑚

)

[(𝑥 − 𝑥)
2

+ Δ𝑡2]
1/2

=
𝑢 (𝑥, 𝑡

𝑚+1

) − 𝑢 (𝑥, 𝑡
𝑚

)

Δ𝑡
,

(5)

where 𝑥 = 𝑥 − V(𝑥)Δ𝑡.
Then, by (5) the differential operators at the point

(𝑥
𝑖
, 𝑡
𝑚+1

) are discretized to be

[
𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
+ V (𝑥)

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥
]

(𝑥𝑖 ,𝑡
𝑚+1
)

=
𝑢
𝑚+1

𝑖
− 𝑢
𝑚

𝑖

Δ𝑡
+ 𝑂(Δ𝑡 +min(Δ𝑥, Δ𝑥

2

Δ𝑡
)) ,

(6)

where 𝑥
𝑖
= 𝑥
𝑖
− V
𝑖
Δ𝑡, 𝑢𝑚
𝑖
= 𝑢(𝑥

𝑖
, 𝑡
𝑚

) is calculated by the
piecewise-linear interpolation.

Let 𝑟
𝑖
= V
𝑖
Δ𝑡/Δ𝑥, and let symbol [𝑟

𝑖
] be the integral part

of 𝑟
𝑖
. Let 𝑖

0
= 𝑖 − [𝑟

𝑖
] − 1 and 𝑟∗

𝑖
= 𝑟
𝑖
− [𝑟
𝑖
], using linear

interpolation to 𝑢𝑚
𝑖
, we get [23]

𝑢
𝑚

𝑖
= (1 − 𝑟

∗

𝑖
) 𝑢
𝑚

𝑖0+1
+ 𝑟
∗

𝑖
𝑢
𝑚

𝑖0

. (7)

Generally, the quantity 𝑟
𝑖
is called the Courant (or CFL)

number.

2.2. The Discrete Versions of the Fractional Derivative. First,
we develop the right-shifted Grünwald discrete approxima-
tion to the fractional derivatives by means of improving the
standard form of the Grünwald-Letnikov definition [16]:

𝜕
𝛼

𝑓 (𝑥)

𝜕𝑥𝛼
= lim
𝑀→∞

1

Δ𝑥𝛼

𝑀

∑

𝑘=0

𝑔
(𝛼)

𝑘
𝑓 (𝑥 − (𝑘 − 1) Δ𝑥) , (8)
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where𝑀 is a positive integer, Δ𝑥 = (𝑥 − 𝐿)/𝑀, and 𝑔(𝛼)
𝑘
=

(−1)
𝑘

(
𝛼

𝑘
), which can be calculated by

𝑔
(𝛼)

0
= 1, 𝑔

(𝛼)

𝑘
= (1 −

𝛼 + 1

𝑘
) 𝑔
(𝛼)

𝑘−1
. (9)

Following (5), we can discretize the Riemann-Liouville
operator [12]

𝜕
𝛼

𝑓 (𝑥)

𝜕𝑥𝛼
=

1

Δ𝑥𝛼

[𝑙]+1

∑

𝑘=0

𝜔
(𝛼)

𝑘
𝑓 (𝑥 − (𝑘 − 1) Δ𝑥)

+ 𝑂 (Δ𝑥
𝑝

) ,

(10)

where 𝑝 is a positive integer, 𝑙 = (𝑥 − 𝐿)/Δ𝑥, and [𝑙] is the
integral part of 𝑙.

Here, according to the definition of 𝜔(𝛼)
𝑘
, we can draw the

following conclusion [9, 12]: when 𝑝 = 1, 𝜔(𝛼)
𝑘
= 𝑔
(𝛼)

𝑘
; when

𝑝 = 2, 𝜔(𝛼)
𝑘
= (3
𝛼

/2
𝛼

) ∑
𝑘

𝑗=0
𝑔
(𝛼)

𝑗
𝑔
(𝛼)

𝑘−𝑗
3
−𝑗.

According to the shiftedGrünwald-Letnikov formulae (8)
and (10), the definition (2) can be discretized by

𝜕
𝛼

𝑢

𝜕𝑥𝛼
(𝑥
𝑖
, 𝑡
𝑚+1

) =
1

Δ𝑥𝛼

𝑖+1

∑

𝑘=0

𝑔
(𝛼)

𝑘
𝑢
𝑚+1

𝑖−𝑘+1
+ 𝑂 (Δ𝑥) , (11)

with 𝑝 = 1.
Inserting (6), (7), and (11) into (1), neglecting the trun-

cation error, after rearranging the terms, we finally get the
fractional characteristic difference scheme

𝑈
𝑚+1

𝑖
− 𝜉
𝑖

𝑖+1

∑

𝑘=0

𝑔
(𝛼)

𝑘
𝑈
𝑚+1

𝑖−𝑘+1
= (1 − 𝑟

∗

𝑖
) 𝑈
𝑚

𝑖0+1
+ 𝑟
∗

𝑖
𝑈
𝑚

𝑖0

+ Δ𝑡𝑆
𝑚+1

𝑖
,

(12)

where 𝜉
𝑖
= 𝑑
𝑖
Δ𝑡/Δ𝑥

𝛼 is associated with the diffusion
coefficient, and the initial values are 𝑈0

𝑖
= 𝑢
0
(𝑥
𝑖
).

3. Stability and Convergence Analysis

In this section, before studying the stability and convergence
of theCFDM,we give the following lemma,whichwas proved
previously [16].

Lemma 1. According to the definition of 𝑔(𝛼)
𝑘

in (9), when 1 <
𝛼 ≤ 2, the coefficients 𝑔(𝛼)

𝑘
have the following properties:

(1) 𝑔
(𝛼)

0
= 1, 𝑔(𝛼)

1
= −𝛼 < 0 and 𝑔(𝛼)

𝑘
≥ 0, 𝑘 ≥ 2,

(2) ∑
∞

𝑘=0
𝑔
(𝛼)

𝑘
= 0 and ∑∞

𝑘=0, 𝑘 ̸= 1
𝑔
(𝛼)

𝑘
= −𝑔
(𝛼)

1
= 𝛼,

(3) ∑
𝑚

𝑘=0
𝑔
(𝛼)

𝑘
≤ 0,𝑚 ≥ 1.

In the following section, we study the stability and
convergence of the fractional CFDM for (1) with the given
initial and boundary conditions.

3.1. Stability Analysis

Theorem 2. The fractional characteristic finite difference
scheme (12) of (1) with 1 < 𝛼 ≤ 2, based on the shifted

Grünwald approximation (8) to the space fractional derivative,
is unconditionally stable.

Proof. Incorporating the boundary conditions, (12) is rewrit-
ten as 𝐴𝑈𝑚+1 = 𝐵𝑈

𝑚

+ 𝑆
𝑚+1, where 𝑈𝑚 = [𝑈

𝑚

1
,

𝑈
𝑚

2
, . . . , 𝑈

𝑚

𝑁−1
]
𝑇, 𝑆𝑚+1 = [Δ𝑡𝑆𝑚+1

1
, Δ𝑡𝑆
𝑚+1

2
, . . . , Δ𝑡𝑆

𝑚+1

𝑁−1
]
𝑇, 𝐴 =

[𝑎
𝑖,𝑗
] and 𝐵 = [𝑏

𝑖,𝑗
] are two (𝑁 − 1) × (𝑁 − 1)matrices.

When 𝑖 = 1, 2, . . . , 𝑁 − 1 and 𝑗 = 1, . . . , 𝑁 − 1, we have

𝑎
𝑖,𝑗
=

{{{{{{{{{{

{{{{{{{{{{

{

−𝜉
𝑖
𝑔
(𝛼)

𝑖−𝑗+1
, 𝑗 ≤ 𝑖 − 1,

1 − 𝜉
𝑖
𝑔
(𝛼)

1
, 𝑗 = 𝑖,

−𝜉
𝑖
𝑔
(𝛼)

0
, 𝑗 = 𝑖 + 1,

0, 𝑗 > 𝑖 + 1,

𝑏
𝑖,𝑗
=

{{

{{

{

1 − 𝑟
∗

𝑖
, 𝑗 = 𝑖 − [𝑟

𝑖
] ,

𝑟
∗

𝑖
, 𝑗 = 𝑖 − [𝑟

𝑖
] − 1,

0, otherwise,

(13)

where 0 ≤ 𝑟∗
𝑖
≤ 1, so 0 ≤ 1 − 𝑟∗

𝑖
≤ 1, too. Thus, 𝐵 ≥ 0 holds.

For matrix 𝐵, we can easily get

𝑁−1

∑

𝑗=1

𝑏
𝑖,𝑗
=

{{

{{

{

0, 𝑖 < [𝑟
𝑖
] ,

1 − 𝑟
∗

𝑖
, 𝑖 = [𝑟

𝑖
] ,

1, 𝑖 > [𝑟
𝑖
] .

(14)

Therefore,

‖𝐵‖
∞
= max
1≤𝑖≤𝑁−1

𝑁−1

∑

𝑗=1


𝑏
𝑖,𝑗


= max
1≤𝑖≤𝑁−1

𝑁−1

∑

𝑗=1

𝑏
𝑖,𝑗
≤ 1. (15)

For matrix 𝐴, we can easily see that 𝑎
𝑖,𝑗
≤ 0 for all 𝑖 ̸= 𝑗,

and

𝑎
𝑖,𝑖
= 1 − 𝜉

𝑖
𝑔
(𝛼)

1
= 1 + 𝜉

𝑖
𝛼 > 0. (16)

At the same time, according to Lemma 1, we have
𝑁−1

∑

𝑗=1, 𝑗 ̸= 𝑖


𝑎
𝑖,𝑗


= 𝜉
𝑖

𝑖

∑

𝑘=0, 𝑘 ̸= 1

𝑔
(𝛼)

𝑘
≤ 𝜉
𝑖
𝛼, (17)

for 𝑖 = 1, 2, . . . , 𝑁 − 1, we can obtain

𝑎𝑖,𝑖
 −

𝑁−1

∑

𝑗=1, 𝑗 ̸= 𝑖


𝑎
𝑖,𝑗


≥ 1. (18)

Therefore, 𝐴 is diagonally dominant by rows. According to
the matrix theory [24, 25],


𝐴
−1
∞

≤
1

min
1≤𝑖≤𝑁−1

{
𝑎𝑖,𝑖
 − ∑𝑗 ̸= 𝑖


𝑎
𝑖,𝑗


}
≤ 1. (19)

Then, from (15) and (19), we can get

𝐴
−1

𝐵
∞

≤

𝐴
−1
∞
‖𝐵‖
∞
≤ 1. (20)

Thus, the characteristic finite difference scheme (12) is uncon-
ditionally stable.
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In addition, taking into account (6) and (11), we have

𝑇 (𝑥, 𝑡) = 𝑂(Δ𝑡 +min(Δ𝑥, Δ𝑥
2

Δ𝑡
)) = 𝑂 (Δ𝑥 + Δ𝑡) , (21)

so this method is consistent with a local truncation error
which is 𝑂(Δ𝑥 + Δ𝑡).

3.2. Convergence Analysis. Let 𝑢(𝑥
𝑖
, 𝑡
𝑚

) (𝑖 = 1, 2, . . . , 𝑁 − 1;
𝑚 = 0, 1, 2, . . . ,𝑀) be the exact solution of (1) at mesh point
(𝑥
𝑖
, 𝑡
𝑚

). Define 𝑒𝑚
𝑖
= 𝑢(𝑥

𝑖
, 𝑡
𝑚

) − 𝑈
𝑚

𝑖
, 𝑖 = 1, 2, . . . , 𝑁 − 1; 𝑚 =

0, 1, 2, . . . ,𝑀 and 𝐸𝑚 = [𝑒
𝑚

1
, 𝑒
𝑚

2
, . . . , 𝑒

𝑚

𝑁−1
]
𝑇. Using 𝐸0 = 0,

substitution into (12) leads to

𝐴𝐸
𝑚+1

= 𝐵𝐸
𝑚

+ 𝑅
𝑚+1

, (22)

where 𝑅𝑚 = [𝑅𝑚
1
, 𝑅
𝑚

2
, . . . , 𝑅

𝑚

𝑁−1
]
𝑇, and 𝑅𝑚

𝑖
= Δ𝑡𝑇(𝑥

𝑖
, 𝑡
𝑚

), 𝑖 =
1, 2, . . . , 𝑁 − 1;𝑚 = 0, 1, 2, . . . ,𝑀.

From (6), (11), and (21), we have the following.

Lemma 3. There is a positive constant 𝐶, such that
𝑅
𝑚

𝑖

 ≤ 𝐶Δ𝑡 (Δ𝑥 + Δ𝑡) , (23)

where 𝑖 = 1, 2, . . . , 𝑁 − 1;𝑚 = 0, 1, 2, . . . ,𝑀.

Let ‖𝐸𝑚‖
∞
= max

1≤𝑖≤𝑁−1
|𝑒
𝑚

𝑖
|, because 𝑚Δ𝑡 ≤ 𝑇 is finite,

we can obtain the following result.

Theorem4. Let𝑈𝑚
𝑖
be the numerical solution computed by the

CFDM (12). Then there is a positive constant 𝐶
1
, such that

𝑈
𝑚

𝑖
− 𝑢 (𝑥

𝑖
, 𝑡
𝑚

)
 ≤ 𝐶1 (Δ𝑥 + Δ𝑡) ,

𝑖 = 1, 2, . . . , 𝑁 − 1; 𝑚 = 0, 1, 2, . . . ,𝑀.

(24)

Proof. From (22) and 𝐸0 = 0, we can get

𝐸
𝑚+1

= 𝐴
−1

(𝐵𝐸
𝑚

+ 𝑅
𝑚+1

)

= 𝐴
−1

[𝐵𝐴
−1

(𝐵𝐸
𝑚−1

+ 𝑅
𝑚

) + 𝑅
𝑚+1

]

= (𝐴
−1

𝐵)
𝑚

𝐴
−1

𝑅
1

+ (𝐴
−1

𝐵)
𝑚−1

𝐴
−1

𝑅
2

+ ⋅ ⋅ ⋅ + 𝐴
−1

𝑅
𝑚+1

.

(25)

According to (19) and Lemma 3, using (25), we finally get


𝐸
𝑚+1
∞

≤

(𝐴
−1

𝐵)
𝑚∞


𝐴
−1
∞


𝑅
1
∞

+

(𝐴
−1

𝐵)
𝑚−1∞


𝐴
−1
∞


𝑅
2
∞

+ ⋅ ⋅ ⋅ +

𝐴
−1
∞


𝑅
𝑚+1
∞

≤ 𝐶Δ𝑡 (𝑚 + 1) (Δ𝑥 + Δ𝑡) .

(26)

Because𝑚Δ𝑡 ≤ 𝑇, from (26), we obtain the error estimate
‖𝐸
𝑚

‖
∞
≤ 𝐶𝑇(Δ𝑥 + Δ𝑡). Therefore, we get the result |𝑈𝑚

𝑖
−

𝑢(𝑥
𝑖
, 𝑡
𝑚

)| ≤ 𝐶
1
(Δ𝑥 + Δ𝑡), where 𝐶

1
= 𝐶𝑇 is a positive

constant.

Finally, according to Theorem 4, we draw the following
conclusion: when Δ𝑡 → 0 and Δ𝑥 → 0, |𝑒𝑚

𝑖
| → 0

holds; that is, the characteristic finite difference scheme (12)
is convergent. In summary, the fractional CFDM for (1) is
unconditionally stable, consistent, and convergent.

4. Numerical Simulations

In this section, we give some numerical results for a special
case of (1) to confirmour theoretical analysis discussed above.
In addition, we also compare our new CFDMwith the SFDM
and point out the advantages of the new method.

For (1), if we assume that V(𝑥) = V and 𝑑(𝑥) = 𝑑 are
two constant functions, the function 𝑠(𝑥, 𝑡) = 0, and the
initial condition 𝑢

0
(𝑥) = 𝛿(𝑥) is the dirac delta function.

Then, under the zero Dirichlet boundary conditions, the
exact solution of (1) could be found by the Fourier transform
methods [9]:

𝑢 (𝑥, 𝑡) =
1

𝜋
∫

+∞

0

cos [(𝑥 − V𝑡) 𝜉 + 𝑑𝑡 sin(𝜋𝛼
2
) 𝜉
𝛼

]

× 𝑒
𝑑𝑡 cos(𝜋𝛼/2)𝜉𝛼

𝑑𝜉.

(27)

In the numerical experiments, the data are chosen as
follows: V = √2, 𝑇 = 1.5, 𝐿 = −2, and 𝑅 = 4. For simplicity,
we assume that the initial time 𝑡

0
= 0.1, and the initial

values 𝑈0 = 𝑢(𝑥, 𝑡
0
) are calculated from (27). The numerical

solutions are obtained from the CFDM scheme (12) discussed
above.The errors of numerical solutions are measured in 𝐿

∞

and 𝐿
2
norms which are defined as follows:

𝐸
∞,Δ𝑡

= max
𝑖

|𝑈 (𝑥 (𝑖) , 𝑡) − 𝑢 (𝑥 (𝑖) , 𝑡)| ,

𝐸
2,Δ𝑡

= √ℎ

𝑁

∑

𝑖=0

(𝑈 (𝑥 (𝑖) , 𝑡) − 𝑢 (𝑥 (𝑖) , 𝑡))
2

,

(28)

where𝑈(𝑥(𝑖), 𝑡) and 𝑢(𝑥(𝑖), 𝑡) are the numerical solution and
analytical solution at (𝑥(𝑖), 𝑡), respectively. ℎ is the space step,
and Δ𝑡 is the time step. The ratios of convergence in time are
calculated by

log(
𝐸
𝑙,Δ𝑡1

𝐸
𝑙,Δ𝑡2

)[log(Δ𝑡1
Δ𝑡
2

)]

−1

, 𝑙 = 2,∞, (29)

where Δ𝑡
1
and Δ𝑡

2
are two time steps, and very small spatial

step size Δ𝑥 is taken in computation. Similarly, the ratios of
convergence in space can be calculated, too.

4.1. The Properties of the CFDM. In this subsection, we use
the CFDM (12) to compute the numerical solutions to (1),
and list the computational results in the figures and tables.
From Figure 1, we can see that the numerical solutions of the
CFDMcoincidewith the analytic solutions, with the diffusion
coefficient 𝑑 = 0.1, the space step Δ𝑥 = 1/90, and the
time step Δ𝑡 = 1/30 at 𝑡 = 1.5, for 𝛼 = 1.9 and 1.6. It is
clearly shown that the CFDM is stable for (1), which allows
the large time step to be used and gains a very good numerical
approximation to the exact solution.
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Table 1: The errors and ratios in space calculated by CFDM (12) with 𝑑 = 0.1 and Δ𝑡 = 1/400 at time 𝑡 = 1.5, for two different fractional
orders 𝛼 = 1.9 and 1.6, respectively.

Δ𝑥 ‖𝐸‖
∞
-CFDM Ratio ‖𝐸‖

2
-CFDM Ratio

𝛼 = 1.9

1/25 8.9731𝐸 − 2 — 7.4998𝐸 − 2 —
1/30 7.5702𝐸 − 2 0.9325 6.2978𝐸 − 2 0.9581
1/35 6.5100𝐸 − 2 0.9788 5.3975𝐸 − 2 1.0001
1/40 5.6805𝐸 − 2 1.0207 4.6976𝐸 − 2 1.0401
1/45 5.0149𝐸 − 2 1.0581 4.1379𝐸 − 2 1.0771

𝛼 = 1.6

1/60 1.0621𝐸 − 1 — 7.1299𝐸 − 2 —
1/65 9.7561𝐸 − 2 1.0612 6.5310𝐸 − 2 1.0961
1/70 8.9922𝐸 − 2 1.1002 6.0045𝐸 − 2 1.1342
1/75 8.3116𝐸 − 2 1.1408 5.5381𝐸 − 2 1.1720
1/80 7.7015𝐸 − 2 1.1813 5.1218𝐸 − 2 1.2108

Table 2: The errors and ratios in time calculated by CFDM (12) with 𝑑 = 0.02 and Δ𝑥 = 1/300 at time 𝑡 = 1.5, for two different fractional
orders 𝛼 = 1.9 and 1.6, respectively.

Δ𝑡 ‖𝐸‖
∞
-CFDM Ratio ‖𝐸‖

2
-CFDM Ratio

𝛼 = 1.9

1/5 9.4691𝐸 − 2 — 4.7080𝐸 − 2 —
1/10 4.5550𝐸 − 2 1.0558 2.3455𝐸 − 2 1.0052
1/15 2.9714𝐸 − 2 1.0536 1.5526𝐸 − 2 1.0175
1/20 2.1900𝐸 − 2 1.0607 1.1555𝐸 − 2 1.0268
1/30 1.4163𝐸 − 2 1.0749 7.5847𝐸 − 3 1.0383

𝛼 = 1.6

1/10 1.3447𝐸 − 1 — 5.1437𝐸 − 2 —
1/15 9.6286𝐸 − 2 0.8238 3.6205𝐸 − 2 0.8661
1/18 8.4253𝐸 − 2 0.7322 3.1293𝐸 − 2 0.7997
1/20 7.6641𝐸 − 2 0.8987 2.8581𝐸 − 2 0.8604
1/25 6.4439𝐸 − 2 0.7771 2.4270𝐸 − 2 0.7327

𝑢
(𝑥
,𝑡
)

1

0.8

0.6

0.4

0.2

0
−1 0 1 2 3 4 5

𝑥

𝛼 = 1.6

𝛼 = 1.9

Figure 1: Exact solutions and numerical solutions obtained by the
CFDM with 𝑑 = 0.1, Δ𝑥 = 1/90, and Δ𝑡 = 1/30 at 𝑡 = 1.5. The solid
lines correspond to the exact solutions. The starred and dotted lines
correspond to numerical solutions for 𝛼 = 1.9 and 1.6, respectively.

Next, we examine the ratio of convergence in space for the
CFDM. Table 1 shows 𝐿

∞
and 𝐿

2
errors and ratios in space

with the diffusion coefficient 𝑑 = 0.1 and the small time step

Δ𝑡 = 1/400 at time 𝑡 = 1.5, for two different fractional orders
𝛼 = 1.9 and 1.6, respectively. The second and fourth columns
show the 𝐿

∞
and 𝐿

2
errors, respectively. Column three shows

the ratio of the CFDM in 𝐿
∞

norm, and column five shows
the ratio of the CFDM in 𝐿

2
norm. It is clearly shown that the

CFDMmethod is of first-order accuracy in space in both 𝐿
∞

and 𝐿
2
norms.

Meanwhile, Table 2 shows 𝐿
∞
and 𝐿

2
errors and ratios in

time with 𝑑 = 0.02 and Δ𝑥 = 1/300 at time 𝑡 = 1.5, for two
different fractional orders 𝛼 = 1.9 and 1.6, respectively. The
table shows that the CFDMmethod is of first-order accuracy
in time in both 𝐿

∞
and 𝐿

2
norms, too. Furthermore, from the

table, we can see that evenwith the very large time steps size of
Δ𝑡 = 1/5 to 1/30, which corresponds to the Courant numbers
of 14.14 to 84.85, the CFDM can still generate the accurate
numerical solutions without noticeable numerical errors. In
conclusion, according to Tables 1 and 2, the accuracy of the
CFDM method is of order 𝑂(Δ𝑥 + Δ𝑡), which confirms the
result of Theorem 4.

4.2. Comparison with the SFDM. To gain a better under-
standing of the CFDM, we use the well-developed and well-
received SFDM to simulate the same model problem for
comparison, which usually contains the implicit and explicit
finite difference schemes.Weonly consider the case of𝛼 = 1.9
in this subsection.
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Table 3: Comparison of 𝐿
2
errors calculated by the CFDM (12) and the implicit SFDM with 𝛼 = 1.9, different space steps Δ𝑥 and time steps

Δ𝑡 at time 𝑡 = 1.5, for two different diffusion coefficients 𝑑 = 0.1 and 𝑑 = 0.02.

𝑑 Δ𝑥 Δ𝑡 ‖𝐸‖
2
-CFDM ‖𝐸‖

2
-im-SFDM

0.1
1/60 1/30 4.0456𝐸 − 3 1.1639𝐸 − 1

1/50 1/40 3.3588𝐸 − 3 1.0382𝐸 − 1

1/80 1/50 2.1298𝐸 − 3 8.0739𝐸 − 2

0.02
1/80 1/20 7.9441𝐸 − 3 5.6804𝐸 − 1

1/90 1/30 6.4445𝐸 − 3 4.8836𝐸 − 1

1/100 1/45 5.3891𝐸 − 3 4.1255𝐸 − 1

Table 4:The 𝐿
2
errors calculated by the upwind, central and Lax-Wendroff explicit difference schemes with different space stepsΔ𝑥 and time

steps Δ𝑡 for 𝑑 = 0.02 and 𝛼 = 1.9 at time 𝑡 = 1.5.

Δ𝑥 Δ𝑡 ‖𝐸‖
2
-Upwind ‖𝐸‖

2
-Central ‖𝐸‖

2
-Lax-Wendroff

1/50 1/1000 2.5462𝐸 − 1 3.3689𝐸 − 2 1.1582𝐸 − 2

1/80 1/1500 1.7972𝐸 − 1 1.9049𝐸 − 2 2.5064𝐸 − 3

1/100 1/2000 1.5122𝐸 − 1 1.4560𝐸 − 2 1.0258𝐸 − 3

1/120 1/3000 1.3178𝐸 − 1 9.2617𝐸 − 3 5.9643𝐸 − 4

0.2

0.15

0.1

0.05

0

Er
ro
r

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
𝑡

SFDM
CFDM

Figure 2: The 𝐿
∞

errors between exact solutions and numerical
solutions calculated by the CFDM (12) and the implicit SFDM at
different time levels with 𝛼 = 1.9, Δ𝑥 = 1/50, and Δ𝑡 = 1/40 for
𝑑 = 0.1.

For the implicit SFDM, it is also unconditionally stable.
Table 3 and Figure 2 both show that the CFDM ismuch better
than the implicit SFDM, if they have the same assumptions.
Firstly, Table 3 shows the comparison of 𝐿

2
errors calculated

by the CFDM (12) and the implicit SFDM for two different
diffusion coefficients 𝑑 = 0.1 and 𝑑 = 0.02, with some
different space steps Δ𝑥 and time steps Δ𝑡 for 𝛼 = 1.9 at time
𝑡 = 1.5. From the table, we can easily see that the 𝐿

2
errors

generated by the CFDM is obviously much smaller than the
𝐿
2
errors generated by the implicit SFDM, which has one-

even two-order higher accuracy than the latter.

Moreover, Figure 2 shows that the 𝐿
∞

errors between
exact solutions and numerical solutions calculated by the
CFDMand the SFDMat different time levels with𝛼 = 1.9, the
diffusion coefficient 𝑑 = 0.1, the space step Δ𝑥 = 1/50, and
the time step Δ𝑡 = 1/40. It is easily to see that the CFDM can
generate accurate numerical solution even if relatively large
time step is used, and this significantly improves efficiency
[17, 26]. However, the implicit SFDM does not have this kind
of property.

Next, we compare the CFDM and the implicit SFDM
numerical solutions with 𝛼 = 1.9 and 𝑑 = 0.02 at time
𝑡 = 1.5 in Figure 3. To keep similar 𝐿

∞
error, for the CFDM,

the grid sizes are chosen as Δ𝑡 = 1/30 and Δ𝑥 = 1/100, and
it generates the 𝐿

∞
error of 1.2168 × 10−2. However, for the

implicit SFDM,we have to choose very small grid sizes, which
are at least Δ𝑡 = 1/5000 and Δ𝑥 = 1/1000. In this case, the
implicit SFDMgenerates the 𝐿

∞
error of 4.6630×10−2, which

is still larger than that of the CFDM. As a result, it is evidently
shown that the CFDM can allow large time steps and space
steps without the loss of accuracy.

In Section 4 discussed above, we only compare the
numerical results of the CFDM with the implicit SFDM.
In fact, the SFDM for (1) also contains several other
explicit schemes which are conditionally stable.There are the
upwind explicit scheme, central explicit scheme, and the Lax-
Wendroff explicit scheme, and so forth. Of course, our new
fractional CFDM is obviously better than all of them for the
space-fractional convection-dominated diffusion problems
because the explicit SFDM schemes are conditionally stable
and they does not allow large time steps.

Finally, we compare the CFDM with the explicit SFDM
schemes simply. Table 4 shows that the 𝐿

2
errors of three

different explicit schemes with different Δ𝑥 and Δ𝑡 for 𝑑 =
0.02 and 𝛼 = 1.9 at time 𝑡 = 1.5. As a result, the much
refined time steps and space steps have to be used to improve
the accuracy of the numerical solution in Table 4, in order
to obtain a numerical solution with comparable accuracy to
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Figure 3: Numerical solutions and exact solution at 𝑡 = 1.5 with
𝑑 = 0.02. The solid line corresponds to the exact solution and the
dotted line corresponds to numerical solution of the CFDM with
𝛼 = 1.9, Δ𝑥 = 1/100, and Δ𝑡 = 1/30. The stared line corresponds
to numerical solution of the implicit SFDM with Δ𝑥 = 1/1000 and
Δ𝑡 = 1/5000.

the numerical solution by the CFDM with the relatively
coarse spatial grids and time steps in Tables 2 or 3. Moreover,
under the same assumptions of Table 3, the three explicit
SFDM schemes are all unstable.

5. Conclusions

In actual applications, we often use the space-fractional deriv-
atives to model convection-diffusion problems, and in many
diffusion processes arising in physical problems, convection
essentially dominates diffusion. In this paper, we propose a
new scheme called the fractional CFDM and prove that it is
unconditionally stable, consistent, and convergent. For this
new method, even though the time steps are very coarse, the
resulting CFDM solutions are more accurate than the SFDM
solutions with much finer temporal grid sizes. Thus, the
CFDM is more efficient and superior to the SFDM, especially
for the convection-dominated problems.
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