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Let 𝐸 a reflexive Banach space having a uniformly Gâteaux differentiable norm. Let 𝐶 be a nonempty closed convex subset of
𝐸, 𝑇 : 𝐶 → 𝐶 a continuous pseudocontractive mapping with 𝐹(𝑇) ̸= 0, and 𝐴 : 𝐶 → 𝐶 a continuous bounded strongly
pseudocontractive mapping with a pseudocontractive constant 𝑘 ∈ (0, 1). Let {𝛼

𝑛
} and {𝛽

𝑛
} be sequences in (0, 1) satisfying suitable

conditions and for arbitrary initial value 𝑥
0

∈ 𝐶, let the sequence {𝑥
𝑛
} be generated by 𝑥

𝑛
= 𝛼
𝑛
𝐴𝑥
𝑛
+𝛽
𝑛
𝑥
𝑛−1

+(1−𝛼
𝑛
−𝛽
𝑛
)𝑇𝑥
𝑛
, 𝑛 ≥ 1.

If either every weakly compact convex subset of 𝐸 has the fixed point property for nonexpansive mappings or 𝐸 is strictly convex,
then {𝑥

𝑛
} converges strongly to a fixed point of 𝑇, which solves a certain variational inequality related to 𝐴.

1. Introduction and Preliminaries

Throughout this paper, we denote by 𝐸 the norm ‖ ⋅ ‖ and 𝐸
∗

a real Banach space and the dual space of 𝐸, respectively. Let
𝐶 be a nonempty closed convex subset of 𝐸. For the mapping
𝑇 : 𝐶 → 𝐶, we denote the fixed point set of 𝑇 by 𝐹(𝑇); that
is, 𝐹(𝑇) = {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥}.

Let 𝐽 denote the normalized duality mapping from 𝐸 into
2
𝑋
∗

defined by

𝐽 (𝑥) = {𝑓 ∈ 𝐸
∗

: ⟨𝑥, 𝑓⟩ = ‖𝑥‖
𝑓

 ,
𝑓

 = ‖𝑥‖} , ∀𝑥 ∈ 𝐸,

(1)

where ⟨⋅, ⋅⟩ denotes the generalized duality pair between 𝐸

and 𝐸
∗. Recall that the norm of 𝐸 is said to be Gâteaux

differentiable if

lim
𝑡→0

𝑥 + 𝑡𝑦
 − ‖𝑥‖

𝑡

(2)

exists for each 𝑥, 𝑦 in its unit sphere 𝑈 = {𝑥 ∈ 𝐸 : ‖𝑥‖ = 1}.
Such an 𝐸 is called a smooth Banach space. The norm is said
to be uniformly Gâteaux differentiable if for 𝑦 ∈ 𝑈, the limit
is attained uniformly for 𝑥 ∈ 𝑈. The space 𝐸 is said to have
a uniformly Fréchet differentiable norm (and 𝐸 is said to be
uniformly smooth) if the limit in (2) is attained uniformly

for (𝑥, 𝑦) ∈ 𝑈 × 𝑈. It is known that 𝐸 is smooth if and
only if the normalized duality mapping 𝐽 is single valued.
It is well known that if 𝐸 is uniformly smooth, then the
duality mapping is norm-to-norm uniformly continuous on
bounded subsets of 𝐸, and that if 𝐸 has a uniformly Gâteaux
differentiable norm, then 𝐽 is norm-to-weak∗ uniformly
continuous on each bounded subsets of 𝐸 [1, 2].

It is relevant to the results of this paper to note that while
every uniformly smooth Banach space is a reflexive Banach
space having a uniformly Gâteaux differentiable norm, the
converse does not hold. To see this, consider𝐸 to be the direct
sum 𝑙
2

(𝑙
𝑝
𝑛), the class of all those sequences 𝑥 = {𝑥

𝑛
}with 𝑥

𝑛
∈

𝑙
𝑝
𝑛 and ‖𝑥‖ = (∑

𝑛<∞
‖𝑥
𝑛
‖
2

)
1/2 (see [3]). If 1 < 𝑝

𝑛
< ∞ for 𝑛 ∈

N, where either lim sup
𝑛→∞

𝑝
𝑛

= ∞ or lim inf
𝑛→∞

𝑝
𝑛

= 1,
then 𝐸 is a reflexive Banach space with a uniformly Gâteaux
differentiable norm but is not uniformly smooth (see [3–5]).
We also observe that the spaces which enjoy the fixed point
property (shortly, F.P.P) for nonexpansive mappings are not
necessarily spaces having a uniformly Gâteaux differentiable
norm. On the other hand, the converse of this fact appears to
be unknown as well.

A Banach space 𝐸 is said to be strictly convex if

‖𝑥‖ =
𝑦

 = 1, 𝑥 ̸= 𝑦 implies
𝑥 + 𝑦



2
< 1. (3)
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A Banach space 𝐸 is said to be uniformly convex if 𝛿
𝐸
(𝜀) > 0

for all 𝜀 > 0, where 𝛿
𝐸
(𝜀) is the modulus of convexity of 𝐸

defined by

𝛿
𝐸

(𝜀) = inf {1 −

𝑥 + 𝑦


2
: ‖𝑥‖ ≤ 1,

𝑦
 ≤ 1,

𝑥 − 𝑦
 ≥ 𝜀} ,

𝜀 ∈ [0, 2] .

(4)

It is well known that a uniformly convex Banach space 𝐸 is
reflexive and strictly convex [1] and satisfies the F.P.P. for non-
expansive mappings. However, it appears to be unknown
whether a reflexive and strictly convex space satisfies the F.P.P.
for nonexpansive mappings.

Recall that a mapping 𝑇 with domain 𝐷(𝑇) and range
𝑅(𝑇) in 𝐸 is called pseudocontractive if the inequality

𝑥 − 𝑦
 ≤

𝑥 − 𝑦 + 𝑟 ((𝐼 − 𝑇) 𝑥 − (𝐼 − 𝑇) 𝑦)
 (5)

holds for each, 𝑦 ∈ 𝐷(𝑇) and for all 𝑟 > 0. From a result of
Kato [6], we know that (5) is equivalent to (6) below; there
exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝑇𝑥 − 𝑇𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤
𝑥 − 𝑦



2 (6)

for all 𝑥, 𝑦 ∈ 𝐷(𝑇). The mapping 𝑇 is said to be strongly pseu-
docontractive it there exists a constant 𝑘 ∈ (0, 1) and 𝑗(𝑥−𝑦) ∈

𝐽(𝑥 − 𝑦) such that

⟨𝑇𝑥 − 𝑇𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤ 𝑘
𝑥 − 𝑦



2 (7)

for all 𝑥, 𝑦 ∈ 𝐷(𝑇).
The class of pseudocontractive mappings is one of the

most important classes ofmappings in nonlinear analysis and
it has been attracting mathematician’s interest. In addition
to generalizing the nonexpansive mappings (the mappings
𝑇 : 𝐷 → 𝐸 for which ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖, for all 𝑥, 𝑦 ∈ 𝐷),
the pseudocontractive ones are characterized by the fact that
𝑇 is pseudocontractive if and only if 𝐼 − 𝑇 is accretive, where
amapping𝐴with domain𝐷(𝐴) and range𝑅(𝐴) in 𝐸 is called
accretive if the inequality

𝑥 − 𝑦
 ≤

𝑥 − 𝑦 + 𝑠 (𝐴𝑥 − 𝐴𝑦)
 , (8)

holds for every 𝑥, 𝑦 ∈ 𝐷(𝐴) and for all 𝑠 > 0.
Within the past 40 years or so, many authors have been

devoting their study to the existence of zeros of accretive
mappings or fixed points of pseudocontractive mappings and
iterative construction of zeros of accretive mappings and of
fixed points of pseudocontractive mappings (see [5, 7–10]).
Also, several iterativemethods for approximating fixed points
(zeros) of nonexpansive and pseudocontractive mappings
(accretive mappings) in Hilbert spaces and Banach spaces
have been introduced and studied by many authors. We can
refer to [11–17] and the references in therein.

In 2007, Rafiq [15] introduced a Mann-type implicit
iterative method (9) for a hemicontractive mapping 𝑇 as

𝑥
0

∈ 𝐾, 𝑥
𝑛

= 𝛼
𝑛
𝑥
𝑛−1

+ (1 − 𝛼
𝑛
) 𝑇𝑥
𝑛
, ∀𝑛 ≥ 1,

(9)

where 𝐾 is a compact convex subset of a real Hilbert space 𝐻

and {𝛼
𝑛
} ⊂ [𝛿, 1 − 𝛿] for some 𝛿 ∈ (0, 1), and proved that {𝑥

𝑛
}

converges strongly to a fixed point of 𝑇.
In 2007, Yao et al. [16] introduced an iterativemethod (10)

below for approximating fixed points of a continuous pseudo-
contractive mapping 𝑇 without compactness assumption on
its domain in a uniformly smooth Banach space: for arbitrary
initial value 𝑥

0
∈ 𝐶 and a fixed anchor 𝑢 ∈ 𝐶,

𝑥
𝑛

= 𝛼
𝑛
𝑢 + 𝛽
𝑛
𝑥
𝑛−1

+ 𝛾
𝑛
𝑇𝑥
𝑛
, ∀𝑛 ≥ 1, (10)

where {𝛼
𝑛
}, {𝛽
𝑛
}, and {𝛾

𝑛
} are three sequences in (0, 1)

satisfying some appropriate conditions. By using the Reich
inequality [9] in uniformly smooth Banach spaces

𝑥 + 𝑦


2

≤ ‖𝑥‖
2

+ 2⟨𝑦, 𝐽 (𝑥)⟩

+ max {‖𝑥‖ , 1}
𝑦

 𝑏 (
𝑦

) , ∀𝑥, 𝑦 ∈ 𝐸,

(11)

where 𝑏 : [0, ∞) → [0, ∞) is a nondecreasing continuous
function, they proved that the sequence {𝑥

𝑛
} generated by (10)

converges strongly to a fixed point of𝑇. In particular, in 2007,
by using the viscosity iterative method studied by [18, 19],
Song and Chen [17] introduced a modified implicit iterative
method (12) below for a continuous pseudocontractive map-
ping 𝑇 without compactness assumption on its domain in
a real reflexive and strictly convex Banach space having a
uniformly Gâteaux differentiable norm: for arbitrary initial
value 𝑥

0
∈ 𝐶,

𝑥
𝑛

= 𝛼
𝑛
𝑦
𝑛

+ (1 − 𝛼
𝑛
) 𝑇𝑥
𝑛
,

𝑦
𝑛

= 𝛽
𝑛
𝑓 (𝑥
𝑛−1

) + (1 − 𝛽
𝑛
) 𝑥
𝑛−1

, ∀𝑛 ≥ 1,

(12)

where {𝛼
𝑛
} and {𝛽

𝑛
} are two sequences in (0, 1) satisfying

some appropriate conditions and 𝑓 : 𝐶 → 𝐶 is a contractive
mapping, and proved that the sequence {𝑥

𝑛
} generated by (12)

converges strongly to a fixed point of 𝑇, which is the unique
solution of a certain variational inequality related to 𝑓.

In this paper, inspired and motivated by the above-
mentioned results, we introduce the following the iterative
method for a continuous pseudocontractive mapping 𝑇: for
arbitrary initial value 𝑥

0
∈ 𝐶,

𝑥
𝑛

= 𝛼
𝑛
𝐴𝑥
𝑛

+ 𝛽
𝑛
𝑥
𝑛−1

+ (1 − 𝛼
𝑛

− 𝛽
𝑛
) 𝑇𝑥
𝑛
, ∀𝑛 ≥ 1, (13)

where {𝛼
𝑛
} and {𝛽

𝑛
} are two sequences in (0, 1) and 𝐴 :

𝐶 → 𝐶 is a bounded continuous strongly pseudocontractive
mapping with a pseudocontractive constant 𝑘 ∈ (0, 1).
Whether a reflexive Banach space has a uniformly Gâteaux
differentiable norm such that every weakly compact convex
subset of 𝐸 has the fixed point property for nonexpansive
mappings, or a reflexive and strict convex Banach space has
a uniformly Gâteaux differentiable norm, we establish the
strong convergence of the sequence generated by proposed
iterative method (13) to a fixed point of the mapping, which
solves a certain variational inequality related to 𝐴. The main
result generalizes, improves, and develops the corresponding
results of Yao et al. [16] and Song and Chen [17] as well as
Rafiq [15].

We need the following well-known lemmas for the proof
of our main result.
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Lemma 1 (see [1, 2]). Let 𝐸 be a Banach space and let 𝐽 be the
normalized duality mapping on 𝐸. Then for any 𝑥, 𝑦 ∈ 𝐸, the
following inequality holds:
𝑥 + 𝑦



2

≤ ‖𝑥‖
2

+ 2⟨𝑦, 𝑗 (𝑥 + 𝑦)⟩, ∀𝑗 (𝑥 + 𝑦) ∈ 𝐽 (𝑥 + 𝑦) .

(14)

Lemma 2 (see [20]). Let {𝑠
𝑛
} be a sequence of nonnegative real

numbers satisfying

𝑠
𝑛+1

≤ (1 − 𝜆
𝑛
) 𝑠
𝑛

+ 𝜆
𝑛
𝛿
𝑛
, ∀𝑛 ≥ 0, (15)

where {𝜆
𝑛
} and {𝛿

𝑛
} satisfy the following conditions:

(i) {𝜆
𝑛
} ⊂ [0, 1] and ∑

∞

𝑛=0
𝜆
𝑛

= ∞ or, equivalently,
∏
∞

𝑛=0
(1 − 𝜆

𝑛
) = 0,

(ii) lim sup
𝑛→∞

𝛿
𝑛

≤ 0 or ∑
∞

𝑛=0
𝜆
𝑛
𝛿
𝑛

< ∞.

Then lim
𝑛→∞

𝑠
𝑛

= 0.

2. Iterative Methods

We need the following result which was given in [10].

Proposition 3. Let 𝐶 be a closed convex subset of a Banach
space 𝐸. Suppose that 𝑇, 𝐴 are two continuous mappings from
𝐶 into itself, which are pseudocontractive and strongly pseudo-
contractive, respectively. Then there exists a unique path 𝑡 →

𝑥
𝑡

∈ 𝐶, 𝑡 ∈ (0, 1), satisfying

𝑥
𝑡

= 𝑡𝐴𝑥
𝑡
+ (1 − 𝑡) 𝑇𝑥

𝑡
. (16)

Further, the following hold.

(i) Suppose that there exists a bounded sequence {𝑥
𝑛
} in 𝐶

such that 𝑥
𝑛

− 𝑇𝑥
𝑛

→ 0, while {𝑥
𝑛

− 𝐴𝑥
𝑛
} is bounded.

Then the path {𝑥
𝑡
} is bounded.

(ii) In particular, if 𝑇 has a fixed point in 𝐶, then the path
{𝑥
𝑡
} is bounded.

(iii) If 𝑝 is a fixed point of 𝑇, there exists 𝑗 ∈ 𝐽(𝑥
𝑡
− 𝑝) such

that

⟨𝑥
𝑡
− 𝐴𝑥
𝑡
, 𝑗⟩ ≤ 0. (17)

We prepare the following result for the existence of a solution
of the variational inequality related to 𝐴.

Theorem 4. Let 𝐶 be a nonempty closed convex subset of a
Banach space 𝐸 and let 𝑇 be a continuous pseudocontractive
mapping from 𝐶 into itself with 𝐹(𝑇) ̸= 0 and let 𝐴 : 𝐶 → 𝐶

be a continuous bounded strongly pseudocontractive mapping
with a pseudocontractive coefficient 𝑘 ∈ (0, 1). For each 𝑡 ∈

(0, 1), let 𝑥
𝑡

∈ 𝐶 be defined by

𝑥
𝑡

= 𝑡𝐴𝑥
𝑡
+ (1 − 𝑡) 𝑇𝑥

𝑡
. (18)

If one of the following assumptions holds:

(H1) 𝐸 is a reflexive Banach space, the norm of 𝐸 is
uniformly Gâteaux differentiable, and every weakly
compact convex subset of 𝐸 has the fixed point property
for nonexpansive mappings;

(H2) 𝐸 is a reflexive and strictly convex Banach space and
the norm of 𝐸 is uniformly Gâteaux differentiable,

then the path {𝑥
𝑡
} converges strongly to a point 𝑢 in𝐹(𝑇), which

is the unique solution of the variational inequality

⟨(𝐼 − 𝐴) 𝑢, 𝐽 (𝑢 − V)⟩ ≤ 0, ∀V ∈ 𝐹 (𝑇) . (19)

Proof. In case of (H1), the result follows from Theorem 2 of
[10]. So, we prove only the case of (H2).We follow themethod
of proof in [5, 10].

By Proposition 3, the path {𝑥
𝑡

: 𝑡 ∈ (0, 1)} exists. It
remains to show that it converges strongly to a fixed point
of 𝑇 as 𝑡 → 0. As a consequence of Theorem 6 of [21], the
mapping 2𝐼 − 𝑇 has a nonexpansive inverse, denoted by
𝑔, which maps 𝐶 into itself with 𝐹(𝑇) = 𝐹(𝑔). By
Proposition 3(ii), {𝑥

𝑡
} is bounded. Since 𝐴 is a bounded

mapping, {𝐴𝑥
𝑡

: 𝑡 ∈ (0, 1)} is bounded. From (18), we have

𝑇𝑥
𝑡

 =



1

1 − 𝑡
𝑥
𝑡
−

𝑡

1 − 𝑡
𝐴𝑥
𝑡


≤

1

1 − 𝑡

𝑥
𝑡

 +
𝑡

1 − 𝑡

𝐴𝑥
𝑡

 ,

(20)

and so {𝑇𝑥
𝑡
} is bounded (as 𝑡 → 0). Since

𝑥
𝑡
− 𝑇𝑥
𝑡

 = 𝑡
𝐴𝑥
𝑡
− 𝑇𝑥
𝑡

 → 0 as 𝑡 → 0, (21)

we derive that

𝑥
𝑡
− 𝑔𝑥
𝑡

→ 0 as 𝑡 → 0. (22)

Let {𝑡
𝑛
} be a sequence in (0, 1) such that 𝑡

𝑛
→ 0 as 𝑛 → ∞

and let 𝑥
𝑛

= 𝑥
𝑡
𝑛

. Since {𝑥
𝑛
} is bounded, we may define

𝑓 : 𝐶 → R+ by 𝑓(𝑥) = lim sup
𝑛→∞

‖𝑥
𝑛

− 𝑥‖. Since 𝐸 is
reflexive, 𝑓(𝑥) → ∞ as ‖𝑥‖ → ∞, and 𝑓 is continuous
and convex, and the set

𝑀 = {𝑢 ∈ 𝐶 : 𝑓 (𝑢) = inf {𝑓 (𝑥) : 𝑥 ∈ 𝐶}} (23)

is a nonempty (due to Theorem 1.2 of [22]). Since 𝐹(𝑇) =

𝐹(𝑔) ̸= 0, let V ∈ 𝐹(𝑔). Then, since 𝐸 is strict convex, the set

𝑀
0

= {𝑢 ∈ 𝑀 : ‖𝑢 − V‖ = inf {‖𝑥 − V‖ : 𝑥 ∈ 𝑀}} (24)

is singleton. Let𝑀
0

= {𝑢} for some 𝑢 ∈ 𝑀. We also know that
𝑔(V) = V and

𝑔 (𝑢) − V
 =

𝑔 (𝑢) − 𝑔 (V)
 ≤ ‖𝑢 − V‖ . (25)

Therefore, 𝑔(𝑢) = 𝑢. Since 𝑇 is pseudocontractive and 𝑢 is a
fixed point of 𝑇, we derive from Proposition 3(iii) that

⟨𝑥
𝑛

− 𝐴𝑥
𝑛
, 𝐽 (𝑥
𝑛

− 𝑢)⟩ ≤ 0, ∀𝑛 ∈ N. (26)

Now let 𝑥 = 𝐴𝑢 − 𝑢 and 𝑡 ∈ (0, 1). Then by Lemma 1, we have

𝑥
𝑛

− 𝑢 − 𝑡𝑥


2

≤
𝑥
𝑛

− 𝑢


2

+ 2⟨−𝑡𝑥, 𝐽 (𝑥
𝑛

− 𝑢 − 𝑡𝑥)⟩. (27)

Let 𝜀 > 0. Then by the assumption on 𝐸, there exists 𝛿 > 0

such that 𝑢 + 𝑡𝑥 ∈ 𝐶 and

⟨𝑥, 𝐽 (𝑥
𝑛

− 𝑢)⟩ < 𝜀 + ⟨𝑥, 𝐽 (𝑥
𝑛

− 𝑢 − 𝑡𝑥)⟩ (28)
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for all 𝑡 ∈ (0, 𝛿). Consequently,

⟨𝑥, 𝐽 (𝑥
𝑛

− 𝑢)⟩ < 𝜀 +
1

2𝑡
[
𝑥
𝑛

− 𝑢


2

−
𝑥
𝑛

− 𝑢 − 𝑡𝑥


2

] . (29)

Therefore, we may choose a subsequence {𝑥
𝑛
𝑘

} of {𝑥
𝑛
} such

that

lim sup
𝑘→∞

⟨𝐴𝑢 − 𝑢, 𝐽 (𝑥
𝑛
𝑘

− 𝑢)⟩ ≤ 0. (30)

From (26) and the fact that 𝐴 is strongly pseudocontractive,
we have


𝑥
𝑛
𝑘

− 𝑢


2

= ⟨𝑥
𝑛
𝑘

− 𝑢, 𝐽 (𝑥
𝑛
𝑘

− 𝑢)⟩

= ⟨𝑥
𝑛
𝑘

− 𝐴𝑥
𝑛
𝑘

, 𝐽 (𝑥
𝑛
𝑘

− 𝑢)⟩

+ ⟨𝐴𝑥
𝑛
𝑘

− 𝐴𝑢, 𝐽 (𝑥
𝑛
𝑘

− 𝑢)⟩

+ ⟨𝐴𝑢 − 𝑢, 𝐽 (𝑥
𝑛
𝑘

− 𝑢)⟩

≤ 𝑘

𝑥
𝑛
𝑘

− 𝑢


2

+ ⟨𝐴𝑢 − 𝑢, 𝐽 (𝑥
𝑛
𝑘

− 𝑢)⟩ ,

(31)

which implies that (1 − 𝑘)‖𝑥
𝑛
𝑘

− 𝑢‖
2

≤ ⟨𝐴𝑢 − 𝑢, 𝐽(𝑥
𝑛
𝑘

− 𝑢)⟩.
Thus, by (30), we conclude that {𝑥

𝑛
𝑘

} converges strongly to
𝑢. To prove that actually the net {𝑥

𝑡
} converges strongly to 𝑢,

let {𝑥
𝑚
𝑘

} be another subsequence of {𝑥
𝑡

: 𝑡 ∈ (0, 1)} such that
𝑥
𝑚
𝑘

= 𝑥
𝑡
𝑚
𝑘

, 𝑡
𝑚
𝑘

→ 0 as 𝑘 → ∞ and𝑥
𝑚
𝑘

→ V, where𝑇V = V.
Then Proposition 3(iii) implies that ⟨𝑢−𝐴𝑢, 𝐽(𝑢−V)⟩ ≤ 0 and
⟨V − 𝐴V, 𝐽(V − 𝑢)⟩ ≤ 0. This implies that

⟨𝑢 − V − (𝐴𝑢 − 𝐴V) , 𝐽 (𝑢 − V)⟩ ≤ 0. (32)

Since 𝐴 is strongly pseudocontractive, 𝑢 = V and the strong
lim
𝑡→0

𝑥
𝑡
exists.This same argumentmay be used to conclude

that 𝑢 is the only solution of the variational inequality (19).
This completes the proof.

UsingTheorem 4, we establish our second main result.

Theorem 5. Let 𝐸 be a Banach space and let 𝐶 be a nonempty
closed convex subset of 𝐸. Let 𝑇 : 𝐶 → 𝐶 be a continuous
pseudocontractive mapping such that 𝐹(𝑇) ̸= 0, and let 𝐴 :

𝐶 → 𝐶 be a continuous bounded strongly pseudocontractive
mapping with a pseudocontractive constant 𝑘 ∈ (0, 1). Let
{𝛼
𝑛
} and {𝛽

𝑛
} be sequences in (0, 1) satisfying the following

conditions:

(C1) lim
𝑛→∞

𝛼
𝑛

= 0 and lim
𝑛→∞

𝛽
𝑛

= 0;
(C2) ∑

∞

𝑛=1
(𝛼
𝑛
/(𝛼
𝑛

+ 𝛽
𝑛
)) = ∞.

For arbitrary initial value 𝑥
0

∈ 𝐶, let the sequence {𝑥
𝑛
} be

defined by

𝑥
𝑛

= 𝛼
𝑛
𝐴𝑥
𝑛

+ 𝛽
𝑛
𝑥
𝑛−1

+ (1 − 𝛼
𝑛

− 𝛽
𝑛
) 𝑇𝑥
𝑛
, ∀𝑛 ≥ 1. (33)

If one of the following assumptions holds:

(H1) 𝐸 is a reflexive Banach space, the norm of 𝐸 is
uniformly Gâteaux differentiable, and every weakly
compact convex subset of 𝐸 has the fixed point property
for nonexpansive mappings;

(H2) 𝐸 is a reflexive and strictly convex Banach space and
the norm of 𝐸 is uniformly Gâteaux differentiable,

then {𝑥
𝑛
} converges strongly to a fixed point 𝑝 of𝑇, which is the

unique solution of the variational inequality

⟨(𝐼 − 𝐴) 𝑝, 𝐽 (𝑝 − 𝑞)⟩ ≤ 0, ∀𝑞 ∈ 𝐹 (𝑇) . (34)

Proof. We divide the proof into several steps as follows.

Step 1. We show that {𝑥
𝑛
} is bounded. To this end, let 𝑞 ∈

𝐹(𝑇). Then, noting that

𝑥
𝑛

− 𝑞 = 𝛼
𝑛

(𝐴𝑥
𝑛

− 𝑞) + 𝛽
𝑛

(𝑥
𝑛−1

− 𝑞)

+ (1 − 𝛼
𝑛

− 𝛽
𝑛
) (𝑇𝑥
𝑛

− 𝑞) ,

⟨𝑇𝑥
𝑛

− 𝑞, 𝐽 (𝑥
𝑛

− 𝑞)⟩ ≤
𝑥
𝑛

− 𝑞


2

𝐴𝑥
𝑛

− 𝐴𝑞, 𝐽 (𝑥
𝑛

− 𝑞)⟩ ≤ 𝑘
𝑥
𝑛

− 𝑞


2

,

(35)

we have
𝑥
𝑛

− 𝑞


2

= ⟨𝛼
𝑛

[(𝐴𝑥
𝑛

− 𝐴𝑞) + (𝐴𝑞 − 𝑞)] + 𝛽
𝑛

(𝑥
𝑛−1

− 𝑞)

+ (1 − 𝛼
𝑛

− 𝛽
𝑛
) (𝑇𝑥
𝑛

− 𝑞) , 𝐽 (𝑥
𝑛

− 𝑞)⟩

≤ 𝛼
𝑛
𝑘
𝑥
𝑛

− 𝑞


2

+ 𝛼
𝑛

𝐴𝑞 − 𝑞


𝑥
𝑛

− 𝑞


+ 𝛽
𝑛

𝑥
𝑛−1

− 𝑞


𝑥
𝑛

− 𝑞


+ (1 − 𝛼
𝑛

− 𝛽
𝑛
)

𝑥
𝑛

− 𝑞


2

,

(36)

which implies
𝑥
𝑛

− 𝑞
 ≤ (1 − 𝛼

𝑛
(1 − 𝑘) − 𝛽

𝑛
)

𝑥
𝑛

− 𝑞


+ 𝛼
𝑛

𝐴𝑞 − 𝑞
 + 𝛽
𝑛

𝑥
𝑛−1

− 𝑞
 .

(37)

So, we obtain

𝑥
𝑛

− 𝑞
 ≤

𝛼
𝑛

(1 − 𝑘) 𝛼
𝑛

+ 𝛽
𝑛

𝐴𝑞 − 𝑞


+
𝛽
𝑛

(1 − 𝑘) 𝛼
𝑛

+ 𝛽
𝑛

𝑥
𝑛−1

− 𝑞


=
(1 − 𝑘) 𝛼

𝑛

(1 − 𝑘) 𝛼
𝑛

+ 𝛽
𝑛

𝐴𝑞 − 𝑞


1 − 𝑘

+
𝛽
𝑛

(1 − 𝑘) 𝛼
𝑛

+ 𝛽
𝑛

𝑥
𝑛−1

− 𝑝


≤ max{
𝑥
𝑛−1

− 𝑞
 ,

𝐴𝑞 − 𝑞


1 − 𝑘
} .

(38)

By induction, we have

𝑥
𝑛

− 𝑞
 ≤ max {

𝑥
0

− 𝑞
 ,

1

1 − 𝑘

𝐴𝑞 − 𝑞
} for 𝑛 ≥ 1.

(39)
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Hence, {𝑥
𝑛
} is bounded. Since𝐴 is a boundedmapping, {𝐴𝑥

𝑛
}

is bounded. From (33), it follows that

𝑇𝑥
𝑛

 =
1

1 − 𝛼
𝑛

− 𝛽
𝑛

(
𝑥
𝑛

 + 𝛼
𝑛

𝐴𝑥
𝑛

 + 𝛽
𝑛

𝑥
𝑛−1

) , (40)

and so {𝑇𝑥
𝑛
} is bounded (as 𝑛 → ∞).

Step 2. We show that lim
𝑛→∞

‖𝑥
𝑛

− 𝑇𝑥
𝑛
‖ = 0. In fact, by (33)

and the condition (C1), we have
𝑥
𝑛

− 𝑇𝑥
𝑛

 ≤ 𝛼
𝑛

𝐴𝑥
𝑛

− 𝑇𝑥
𝑛

 + 𝛽
𝑛

𝑥
𝑛−1

− 𝑇𝑥
𝑛

 → 0.

(41)

Step 3.We show that

lim sup
𝑛→∞

⟨𝐴𝑝 − 𝑝, 𝐽 (𝑥
𝑛

− 𝑝)⟩ ≤ 0, (42)

where𝑝 = lim
𝑡→0

𝑥
𝑡
with𝑥

𝑡
∈ 𝐶 being defined by𝑥

𝑡
= 𝑡𝐴𝑥

𝑡
+

(1 − 𝑡)𝑇𝑥
𝑡
. To this end, we note that

𝑥
𝑡
− 𝑥
𝑛

= 𝑡𝐴𝑥
𝑡
+ (1 − 𝑡) 𝑇𝑥

𝑡
− 𝑥
𝑛

= 𝑡 (𝐴𝑥
𝑡
− 𝑥
𝑡
) + (𝑇𝑥

𝑡
− 𝑥
𝑛
) − 𝑡 (𝑇𝑥

𝑡
− 𝑥
𝑡
)

= 𝑡 (𝐴𝑥
𝑡
− 𝑥
𝑡
) + (𝑇𝑥

𝑡
− 𝑇𝑥
𝑛
)

+ (𝑇𝑥
𝑛

− 𝑥
𝑛
) + 𝑡
2

(𝐴𝑥
𝑡
− 𝑇𝑥
𝑡
) .

(43)

Then, it follows that
𝑥
𝑡
− 𝑥
𝑛



2

= 𝑡⟨𝐴𝑥
𝑡
− 𝑥
𝑡
, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
)⟩

+ ⟨𝑇𝑥
𝑡
− 𝑇𝑥
𝑛
, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
)⟩

+ ⟨𝑇𝑥
𝑛

− 𝑥
𝑛
, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
)⟩

+ 𝑡
2

⟨𝐴𝑥
𝑡
− 𝑇𝑥
𝑡
, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
)⟩

≤ 𝑡⟨𝐴𝑥
𝑡
− 𝑥
𝑡
, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
)⟩ +

𝑥
𝑡
− 𝑥
𝑛



2

+
𝑇𝑥
𝑛

− 𝑥
𝑛



𝑥
𝑡
− 𝑥
𝑛



+ 𝑡
2 𝐴𝑥
𝑡
− 𝑇𝑥
𝑡



𝑥
𝑡
− 𝑥
𝑛

 ,

(44)

which implies that

⟨𝐴𝑥
𝑡
− 𝑥
𝑡
, 𝐽 (𝑥
𝑛

− 𝑥
𝑡
)⟩ ≤

𝑇𝑥
𝑛

− 𝑥
𝑛



𝑡

𝑥
𝑡
− 𝑥
𝑛



+ 𝑡
𝐴𝑥
𝑡
− 𝑇𝑥
𝑡



𝑥
𝑡
− 𝑥
𝑛

 .

(45)

From Proposition 3, we know that {𝑥
𝑡
}, {𝐴𝑥

𝑡
} and {𝑇𝑥

𝑡
}, are

bounded. Since {𝑥
𝑛
} and {𝑇𝑥

𝑛
} are also bounded and 𝑥

𝑛
−

𝑇𝑥
𝑛

→ 0 by Step 2, taking the upper limit as 𝑛 → ∞ in
(45), we get

lim sup
𝑛→∞

⟨𝐴𝑥
𝑡
− 𝑥
𝑡
, 𝐽 (𝑥
𝑛

− 𝑥
𝑡
)⟩ ≤ 𝑡𝐿, (46)

where 𝐿 > 0 is a constant such that ‖𝐴𝑥
𝑡
− 𝑇𝑥
𝑡
‖‖𝑥
𝑡
− 𝑥
𝑛
‖ ≤ 𝐿

for all 𝑛 ≥ 0 and 𝑡 ∈ (0, 1). Taking the lim sup as 𝑡 → 0 in (46)
and noticing the fact that the two limits are interchangeable

due to the fact that 𝐽 is norm-to-weak∗ uniformly continuous
on each bounded subsets of 𝐸, we have

lim sup
𝑛→∞

⟨𝐴𝑝 − 𝑝, 𝐽 (𝑥
𝑛

− 𝑝)⟩ ≤ 0. (47)

Step 4. We show that lim
𝑛→∞

‖𝑥
𝑛

− 𝑝‖ = 0, where 𝑝 =

lim
𝑡→0

𝑥
𝑡
with 𝑥

𝑡
∈ 𝐶 being defined by 𝑥

𝑡
= 𝑡𝐴𝑥

𝑡
+ (1 − 𝑡)𝑇𝑥

𝑡

and 𝑝 is the unique solution of the variational inequality (34)
byTheorem 4. First, from (33) and (35), we have

𝑥
𝑛

− 𝑝


2

= ⟨𝑥
𝑛

− 𝑝, 𝐽 (𝑥
𝑛

− 𝑝)⟩

= ⟨𝛼
𝑛

(𝐴𝑥
𝑛

− 𝑝) + 𝛽
𝑛

(𝑥
𝑛−1

− 𝑝)

+ (1 − 𝛼
𝑛

− 𝛽
𝑛
) (𝑇𝑥
𝑛

− 𝑝) , 𝐽 (𝑥
𝑛

− 𝑝)⟩

= ⟨𝛼
𝑛

(𝐴𝑥
𝑛

− 𝐴𝑝) , 𝐽 (𝑥
𝑛

− 𝑝)⟩

+ 𝛽
𝑛
⟨𝑥
𝑛−1

− 𝑝, 𝐽 (𝑥
𝑛

− 𝑝)⟩

+ (1 − 𝛼
𝑛

− 𝛽
𝑛
) ⟨𝑇𝑥
𝑛

− 𝑝, 𝐽 (𝑥
𝑛

− 𝑝)⟩

+ 𝛼
𝑛
⟨𝐴𝑝 − 𝑝, 𝐽 (𝑥

𝑛
− 𝑝)⟩

≤ 𝛼
𝑛
𝑘
𝑥
𝑛

− 𝑝


2

+ 𝛽
𝑛

𝑥
𝑛−1

− 𝑝


𝑥
𝑛

− 𝑝


+ (1 − 𝛼
𝑛

− 𝛽
𝑛
)

𝑥
𝑛

− 𝑝


2

+ 𝛼
𝑛
⟨𝐴𝑝 − 𝑝, 𝐽 (𝑥

𝑛
− 𝑝)⟩

≤ 𝛼
𝑛
𝑘
𝑥
𝑛

− 𝑝


2

+
𝛽
𝑛

2
(
𝑥
𝑛−1

− 𝑝


2

+
𝑥
𝑛

− 𝑝


2

)

+ (1 − 𝛼
𝑛

− 𝛽
𝑛
)

𝑥
𝑛

− 𝑝


2

+ 𝛼
𝑛
⟨𝐴𝑝 − 𝑝, 𝐽 (𝑥

𝑛
− 𝑝)⟩.

(48)

This implies that

𝑥
𝑛

− 𝑝


2

≤
𝛽
𝑛

2 (1 − 𝑘) 𝛼
𝑛

+ 𝛽
𝑛

𝑥
𝑛−1

− 𝑝


2

+
2𝛼
𝑛

2 (1 − 𝑘) 𝛼
𝑛

+ 𝛽
𝑛

⟨𝐴𝑝 − 𝑝, 𝐽 (𝑥
𝑛

− 𝑝)⟩

= (1 −
2 (1 − 𝑘) 𝛼

𝑛

2 (1 − 𝑘) 𝛼
𝑛

+ 𝛽
𝑛

)
𝑥
𝑛−1

− 𝑝


2

+
2 (1 − 𝑘) 𝛼

𝑛

2 (1 − 𝑘) 𝛼
𝑛

+ 𝛽
𝑛

⟨𝐴𝑝 − 𝑝, 𝐽 (𝑥
𝑛

− 𝑝)⟩

1 − 𝑘

= (1 − 𝜆
𝑛
)

𝑥
𝑛−1

− 𝑝


2

+ 𝜆
𝑛
𝛿
𝑛
,

(49)

where 𝜆
𝑛

= 2(1 − 𝑘)𝛼
𝑛
/(2(1 − 𝑘)𝛼

𝑛
+ 𝛽
𝑛
) and 𝛿

𝑛
= (1/(1 −

𝑘))⟨𝐴𝑝 − 𝑝, 𝐽(𝑥
𝑛

− 𝑝)⟩. We observe that 0 ≤ 2(1 − 𝑘)𝛼
𝑛
/(2(1 −

𝑘)𝛼
𝑛

+ 𝛽
𝑛
) ≤ 1 and (1 − 𝑘)𝛼

𝑛
/(𝛼
𝑛

+ 𝛽
𝑛
) = 2(1 − 𝑘)𝛼

𝑛
/(2𝛼
𝑛

+

2𝛽
𝑛
) < 2(1 − 𝑘)𝛼

𝑛
/(2(1 − 𝑘)𝛼

𝑛
+ 𝛽
𝑛
). From the condition

(C2) and Step 3, it is easily seen that ∑
∞

𝑛=1
𝜆
𝑛

= ∞ and
lim sup

𝑛→∞
𝛿
𝑛

≤ 0. Thus, applying Lemma 2 to (49), we
conclude that lim

𝑛→∞
𝑥
𝑛

= 𝑝. This completes the proof.
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Corollary 6. Let 𝐸 be a uniformly smooth Banach space and
let 𝐶 be a nonempty closed convex subset of 𝐸. Let 𝑇 : 𝐶 → 𝐶

be a continuous pseudocontractive mapping such that 𝐹(𝑇) ̸= 0

and let 𝐴 : 𝐶 → 𝐶 be a continuous bounded strongly
pseudocontractive mapping with a pseudocontractive constant
𝑘 ∈ (0, 1). Let {𝛼

𝑛
} and {𝛽

𝑛
} be two sequences in (0, 1) satisfying

the conditions (C1) and (C2) inTheorem 5. For arbitrary initial
value 𝑥

0
∈ 𝐶, let the sequence {𝑥

𝑛
} be generated by (33) in

Theorem 5.Then {𝑥
𝑛
} converges strongly to a fixed point 𝑝 of𝑇,

which is the unique solution of the variational inequality (34).

Corollary 7 (see [16, Theorem 3.1]). Let 𝐸 be a uniformly
smooth Banach space and let 𝐶 be a nonempty closed convex
subset of 𝐸. Let 𝑇 : 𝐶 → 𝐶 be a continuous pseudocontractive
mapping such that 𝐹(𝑇) ̸= 0. Let {𝛼

𝑛
}, {𝛽
𝑛
} and {𝛾

𝑛
} be three

sequences in (0, 1) satisfying the conditions (C1) and (C2) in
Theorem 5 and 𝛾

𝑛
= 1 − 𝛼

𝑛
− 𝛽
𝑛
for 𝑛 ≥ 1. For arbitrary initial

value 𝑥
0

∈ 𝐶 and a fixed anchor 𝑢 ∈ 𝐶, let the sequence {𝑥
𝑛
}

be generated by

𝑥
𝑛

= 𝛼
𝑛
𝑢 + 𝛽
𝑛
𝑥
𝑛−1

+ 𝛾
𝑛
𝑇𝑥
𝑛
, ∀𝑛 ≥ 1. (50)

Then {𝑥
𝑛
} converges strongly to a fixed point 𝑝 of 𝑇, which is

the unique solution of the variational inequality

⟨𝑝 − 𝑢, 𝐽 (𝑝 − 𝑞)⟩ ≤ 0, ∀𝑞 ∈ 𝐹 (𝑇) . (51)

Proof. Taking 𝐴𝑥 = 𝑢, for all 𝑥 ∈ 𝐶 as a constant function,
the result follows from Corollary 6.

Corollary 8. Let 𝐸 be a uniformly convex Banach space
has a uniformly Gâteaux differentiable norm and let 𝐶 be a
nonempty closed convex subset of 𝐸. Let 𝑇 : 𝐶 → 𝐶 be
a continuous pseudocontractive mapping such that 𝐹(𝑇) ̸= 0

and let 𝐴 : 𝐶 → 𝐶 be a continuous bounded strongly
pseudocontractive mapping with a pseudocontractive constant
𝑘 ∈ (0, 1). Let {𝛼

𝑛
} and {𝛽

𝑛
} be two sequences in (0, 1) satisfying

the conditions (C1) and (C2) inTheorem 5. For arbitrary initial
value 𝑥

0
∈ 𝐶, let the sequence {𝑥

𝑛
} be generated by (33) in

Theorem 5.Then {𝑥
𝑛
} converges strongly to a fixed point 𝑝 of𝑇,

which is the unique solution of the variational inequality (34).

Remark 9.
(1) Theorem 5 extends and improves Theorem 3.1 of Yao

et al. [16] in the following aspects.

(a) 𝑢 is replaced by a continuous bounded strongly
pseudocontractive mapping 𝐴.

(b) The uniformly smooth Banach space is
extended to a reflexive Banach space having a
uniformly Gâteaux differentiable norm.

(c) The condition 𝛼
𝑛
/𝛽
𝑛

→ 0 in [16] is weakened
to 𝛼
𝑛

→ 0 and 𝛽
𝑛

→ 0 as 𝑛 → ∞.

(2) It is worth pointing out that in Corollaries 6 and 7,
we do not use the Reich inequality (11) in comparison
withTheorem 3.1 of Yao et al. [16].

(3) Theorem 5 and Corollary 8 also develop and com-
plement Theorem 3.1 and Corollary 3.2 of Song and

Chen [17] by replacing the contractive mapping with
a continuous bounded strongly pseudocontractive
mapping in the iterative scheme (1.7) in [17].

(4) The assumption (H1) in Theorems 4 and 5 appears to
be independent of the assumption (H2).

(5) We point out that the results in this paper apply to all
𝐿
𝑝 spaces, 1 < 𝑝 < ∞.
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