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By using the fixed point index theorem, this paper investigates a class of singular semipositone integral boundary value problem
for fractional 𝑞-derivatives equations and obtains sufficient conditions for the existence of at least two and at least three positive
solutions. Further, an example is given to illustrate the applications of our main results.

1. Introduction

Studies on 𝑞-difference equations appeared already at the
beginning of the 20th century in intensive works especially
by Jackson [1], Carmichael [2], and other authors such as
Poincare, Picard and, Ramanujan [3]. Up to date, it has
evolved into a multidisciplinary subject, for example, see [4–
7] and the references therein. For some recent work on 𝑞-
difference equations, we refer the reader to the papers [8–
21], and the basic definitions and properties of 𝑞-difference
calculus can be found in the book [3, 22]. On the other hand,
fractional differential equations have gained importance due
to their numerous applications in many fields of science and
engineering including fluid flow, rheology, diffusive transport
akin to diffusion, electrical networks, and probability [23].
Many researchers studied the existence of solutions to frac-
tional boundary value problems, for example, [24–35] and the
references therein.

The fractional 𝑞-difference calculus had its origin in the
works by Al-Salam [36] and Agarwal [37]. More recently,
perhaps due to the explosion in research within the fractional
differential calculus setting, new developments in this theory
of fractional 𝑞-difference calculus were made, specifically, 𝑞-
analogues of the integral and differential fractional operators
properties such as the Mittag-Leffler function, the 𝑞-Laplace
transform, and 𝑞-Taylor’s formula [3, 13, 22, 38], just to
mention some.

However, the theory of boundary value problems for
nonlinear 𝑞-difference equations is still in the initial stage and
many aspects of this theory need to be explored.

In [17], Ferreira considered a Dirichlet type nonlinear 𝑞-
difference boundary value problem as follows:

𝐷
𝛼

𝑞
𝑢 (𝑡) + 𝑓 (𝑢 (𝑡)) = 0, 0 < 𝑡 < 1, 1 < 𝛼 ≤ 2,

𝑢 (0) = 𝑢 (1) = 0.

(1)

By applying a fixed point theorem in cones, sufficient
conditions for the existence of nontrivial solutions were
enunciated.

In other paper, Ferreira [18] studied the existence of
positive solutions to nonlinear 𝑞-difference boundary value
problem as follows:

𝐷
𝛼

𝑞
𝑢 (𝑡) + 𝑓 (𝑢 (𝑡)) = 0, 0 < 𝑡 < 1, 2 < 𝛼 ≤ 3,

𝑢 (0) = 𝐷
𝑞
𝑢 (0) = 0, 𝐷

𝑞
𝑢 (1) = 𝛽 ≥ 0.

(2)

By using a fixed point theorem in a cone, El-Shahed and
Al-Askar [19] were concerned with the existence of positive
solutions to nonlinear 𝑞-difference equation:

𝐶
𝐷
𝛼

𝑞
𝑢 (𝑡) + 𝑎 (𝑡) 𝑓 (𝑢 (𝑡)) = 0, 0 < 𝑡 ≤ 1, 2 < 𝛼 ≤ 3,

𝑢 (0) = 𝐷
2

𝑞
𝑢 (0) = 0, 𝑎𝐷

𝑞
𝑢 (1) + 𝑏𝐷

2

𝑞
𝑢 (1) = 0,

(3)
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where 𝑎, 𝑏 ≥ 0 and
𝐶
𝐷
𝛼

𝑞
is the fractional 𝑞-derivatives of the

Caputo type.
Recently, Liang and Zhang [20] discussed the following

nonlinear 𝑞-fractional three-point boundary value problem:

(𝐷
𝛼

𝑞
𝑢) (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1, 2 < 𝛼 ≤ 3,

𝑢 (0) = (𝐷
𝑞
𝑢) (0) = 0, 𝐷

𝑞
𝑢 (1) = 𝛽𝐷

𝑞
𝑢 (𝜂) .

(4)

By using a fixed point theorem in partially ordered sets, the
authors obtained sufficient conditions for the existence and
uniqueness of positive and nondecreasing solutions to the
above boundary value problem.

In [21], Graef andKong investigated the following bound-
ary value problem with fractional 𝑞-derivatives:

(𝐷
𝛼

𝑞
𝑢) (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ N,

(𝐷
𝑖

𝑞
𝑢) (0) = 0, 𝑖 = 0, . . . , 𝑛 − 2,

𝑏𝐷
𝑞
𝑢 (1) =

𝑚

∑

𝑗=1

𝑎
𝑗
𝐷
𝑞
𝑢 (𝑡
𝑗
) + 𝜆,

(5)

where 𝜆 ≥ 0 is a parameter, and the uniqueness, existence,
and nonexistence of positive solutions are considered in
terms of different ranges of 𝜆.

Furthermore, Ahmad et al. [11] studied the following
nonlinear fractional 𝑞-difference equation with nonlocal
boundary conditions

(
𝐶
𝐷
𝛼

𝑞
𝑢) (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 0 ≤ 𝑡 ≤ 1, 1 < 𝛼 ≤ 2,

𝑎
1
𝑢 (0) − 𝑏

1
𝐷
𝑞
𝑢 (0) = 𝑐

1
𝑢 (𝜂
1
) ,

𝑎
2
𝑢 (1) + 𝑏

2
𝐷
𝑞
𝑢 (1) = 𝑐

2
𝑢 (𝜂
2
) ,

(6)

where
𝐶
𝐷
𝛼

𝑞
is the fractional 𝑞-derivative of the Caputo type,

and 𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, 𝜂
𝑖

∈ R. The existence of solutions for the
problem is shown by applying some well-known tools of
fixed point theory such as Banach’s contraction principle,
Krasnoselskii’s fixed point theorem, and the Leray-Schauder
nonlinear alternative.

It is known that the fractional 𝑞-derivative of Riemann-
Liouville type played an important role in the development
of the theory of fractional 𝑞-derivatives and 𝑞-integrals and
for its applications in pure mathematics, and is a useful tool
in the description of nonconservative models.The details can
be found in [22].

Since 𝑞-calculus has a tremendous potential for appli-
cations [3, 22], we find it pertinent to investigate problems
in this field. Motivated by the papers [20, 21, 30], we will
deal with the following integral boundary value problem of
nonlinear fractional 𝑞-derivatives equation:

(𝐷
𝛼

𝑞
𝑢) (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) , 2 < 𝛼 ≤ 3, (7)

subject to the boundary conditions

𝑢 (0) = (𝐷
𝑞
𝑢) (0) = 0, 𝑢 (1) = 𝜇∫

1

0

𝑢 (𝑠) 𝑑
𝑞
𝑠, (8)

where 𝑞 ∈ (0, 1), 𝜇 is parameter with 0 < 𝜇 < [𝛼]
𝑞
,

𝐷
𝛼

𝑞
is the 𝑞-derivative of Riemann-Liouville type of order

𝛼,𝑓 : [0, 1] × R+
0

→ R is continuous and semipositone
and may be singular at 𝑢 = 0, in which R+

0
= (0, +∞),R =

(−∞, +∞). In the present work, we investigate the existence
of positive solutions for fractional 𝑞-derivatives integral
boundary value problem (7) and (8) involving the Riemann-
Liouville’s fractional derivative, which is different from [11].
We gave the corresponding Green’s function of the boundary
value problem (7) and (8), gave some properties of Green’s
function, and constructed a cone by properties of Green’s
function. Moreover the existence of at least two and three
positive solutions to the boundary value problem (7) and (8)
is enunciated.

2. Preliminaries on 𝑞-Calculus and Lemmas

For the convenience of the reader, below we recall some
known facts on fractional 𝑞-calculus. The presentation here
can be found in, for example, [1, 3, 12, 19, 21, 22].

Let 𝑞 ∈ (0, 1) and define

[𝑎]
𝑞
=
1 − 𝑞
𝑎

1 − 𝑞
, 𝑎 ∈ R. (9)

The 𝑞-analogue of the power function (𝑎− 𝑏)𝑛 with 𝑛 ∈ N
0
:=

{0, 1, 2, . . .} is

(𝑎 − 𝑏)
(0)

= 1, (𝑎 − 𝑏)
(𝑛)

=

𝑛−1

∏

𝑘=0

(𝑎 − 𝑏𝑞
𝑘

) ,

𝑛 ∈ N, 𝑎, 𝑏 ∈ R.

(10)

More generally, if 𝛾 ∈ R, then

(𝑎 − 𝑏)
(𝛾)

= 𝑎
𝛾

∞

∏

𝑘=0

𝑎 − 𝑏𝑞
𝑘

𝑎 − 𝑏𝑞𝛾+𝑘
, 𝑎 ̸= 0. (11)

Clearly, if 𝑏 = 0 then 𝑎
(𝛾)

= 𝑎
𝛾. The 𝑞-gamma function is

defined by

Γ
𝑞
(𝑥) =

(1 − 𝑞)
(𝑥−1)

(1 − 𝑞)
𝑥−1

, 𝑥 ∈ R \ {0, −1, −2, . . .} , (12)

and satisfies Γ
𝑞
(𝑥 + 1) = [𝑥]

𝑞
Γ
𝑞
(𝑥).

The 𝑞-derivative of a function 𝑓 is defined by

(𝐷
𝑞
𝑓) (𝑥) =

𝑓 (𝑞𝑥) − 𝑓 (𝑥)

(𝑞 − 1) 𝑥
,

(𝐷
𝑞
𝑓) (0) = lim

𝑥→0

(𝐷
𝑞
𝑓) (𝑥) ,

(13)

and the 𝑞-derivatives of higher order by

(𝐷
0

𝑞
𝑓) (𝑥) = 𝑓 (𝑥) ,

(𝐷
𝑛

𝑞
𝑓) (𝑥) = 𝐷

𝑞
(𝐷
𝑛−1

𝑞
𝑓) (𝑥) , 𝑛 ∈ N.

(14)



Abstract and Applied Analysis 3

The 𝑞-integral of a function 𝑓 defined in the interval [0, 𝑏] is
given by

(𝐼
𝑞
𝑓) (𝑥) = ∫

𝑥

0

𝑓 (𝑠) 𝑑
𝑞
𝑠 = 𝑥 (1 − 𝑞)

∞

∑

𝑘=0

𝑓 (𝑥𝑞
𝑘

) 𝑞
𝑘

,

𝑥 ∈ [0, 𝑏] .

(15)

If 𝑎 ∈ [0, 𝑏] and 𝑓 is defined in the interval [0, 𝑏], then its
integral from 𝑎 to 𝑏 is defined by

∫

𝑏

𝑎

𝑓 (𝑠) 𝑑
𝑞
𝑠 = ∫

𝑏

0

𝑓 (𝑠) 𝑑
𝑞
𝑠 − ∫

𝑎

0

𝑓 (𝑠) 𝑑
𝑞
𝑠. (16)

Similar to that for derivatives, an operator 𝐼𝑛
𝑞
is given by

(𝐼
0

𝑞
𝑓) (𝑥) = 𝑓 (𝑥) ,

(𝐼
𝑛

𝑞
𝑓) (𝑥) = 𝐼

𝑞
(𝐼
𝑛−1

𝑞
𝑓) (𝑥) , 𝑛 ∈ N.

(17)

The fundamental theorem of calculus applies to these opera-
tors 𝐼
𝑞
and𝐷

𝑞
, that is,

(𝐷
𝑞
𝐼
𝑞
𝑓) (𝑥) = 𝑓 (𝑥) , (18)

and if 𝑓 is continuous at 𝑥 = 0, then

(𝐼
𝑞
𝐷
𝑞
𝑓) (𝑥) = 𝑓 (𝑥) − 𝑓 (0) . (19)

The following formulas will be used later, namely, the integra-
tion by parts formula:

∫

𝑥

0

𝑓 (𝑠) (𝐷
𝑞
𝑔) (𝑠) 𝑑

𝑞
𝑠

= [𝑓 (𝑠) 𝑔 (𝑠)]
𝑠=𝑥

𝑠=0
− ∫

𝑥

0

(𝐷
𝑞
𝑓) (𝑠) 𝑔 (𝑞𝑠) 𝑑

𝑞
𝑠,

[𝑎 (𝑡 − 𝑠)]
(𝛾)

= 𝑎
𝛾

(𝑡 − 𝑠)
(𝛾)

,

𝑡
𝐷
𝑞
(𝑡 − 𝑠)

(𝛾)

= [𝛾]
𝑞
(𝑡 − 𝑠)

(𝛾−1)

,

(20)

𝑠
𝐷
𝑞
(𝑡 − 𝑠)

(𝛾)

= [𝛾]
𝑞
(𝑡 − 𝑞𝑠)

(𝛾−1)

, (21)

(
𝑥
𝐷
𝑞
∫

𝑥

0

𝑓 (𝑥, 𝑠) 𝑑
𝑞
𝑠) (𝑥) = ∫

𝑥

0

𝑥
𝐷
𝑞
𝑓 (𝑥, 𝑠) 𝑑

𝑞
𝑠 + 𝑓 (𝑞𝑥, 𝑥) ,

(22)

where
𝑡
𝐷
𝑞
denotes the derivative with respect to the variable

𝑡.

Definition 1. Let 𝛼 ≥ 0 and 𝑓 be a function defined on
[0, 1]. The fractional 𝑞-integral of Riemann-Liouville type is
(𝐼
0

𝑞
𝑓)(𝑥) = 𝑓(𝑥) and

(𝐼
𝛼

𝑞
𝑓) (𝑥) =

1

Γ
𝑞
(𝛼)

∫

𝑥

0

(𝑥 − 𝑞𝑠)
(𝛼−1)

𝑓 (𝑠) 𝑑
𝑞
𝑠,

𝛼 > 0, 𝑥 ∈ [0, 1] .

(23)

The fractional 𝑞-derivative of order 𝛼 ≥ 0 is defined by
(𝐷
0

𝑞
𝑓)(𝑥) = 𝑓(𝑥) and (𝐷

𝛼

𝑞
𝑓)(𝑥) = (𝐷

𝑘

𝑞
𝐼
𝑘−𝛼

𝑞
𝑓)(𝑥) for 𝛼 > 0,

where 𝑘 is the smallest integer greater than or equal to 𝛼.

Remark 2. Let 𝛼 ≥ 0 and 𝑢, 𝑣 be two functions defined on
[0, 1], then𝐷

𝛼

𝑞
(𝑢(𝑡) + 𝑣(𝑡)) = 𝐷

𝛼

𝑞
𝑢(𝑡) + 𝐷

𝛼

𝑞
𝑣(𝑡).

Lemma 3. Assume that 𝛾 ≥ 0 and 𝑎 ≤ 𝑏 ≤ 𝑡, then (𝑡 − 𝑎)
(𝛾)

≥

(𝑡 − 𝑏)
(𝛾).

Lemma 4. Let 𝛼, 𝛽 ≥ 0 and 𝑓 be a function defined in [0, 1].
Then, the following formulas hold:

(1) (𝐼𝛽
𝑞
𝐼
𝛼

𝑞
𝑓)(𝑥) = (𝐼

𝛼+𝛽

𝑞
𝑓)(𝑥),

(2) (𝐷𝛼
𝑞
𝐼
𝛼

𝑞
𝑓)(𝑥) = 𝑓(𝑥).

Lemma 5 (see [17]). Let 𝛼 > 0 and 𝑛 be a positive integer.
Then, the following equality holds:

(𝐼
𝛼

𝑞
𝐷
𝑛

𝑞
𝑓) (𝑥) = (𝐷

𝑛

𝑞
𝐼
𝛼

𝑞
𝑓) (𝑥)

−

𝑛−1

∑

𝑘=0

𝑥
𝛼−𝑛+𝑘

Γ
𝑞
(𝛼 + 𝑘 − 𝑛 + 1)

(𝐷
𝑘

𝑞
𝑓) (0) .

(24)

Lemma 6. Let 𝑦 ∈ 𝐶[0, 1], 𝑞 ∈ (0, 1), 2 < 𝛼 ≤ 3, 1 < 𝜇 <

[𝛼]
𝑞
. Then the unique solution of the equation

(𝐷
𝛼

𝑞
𝑢) (𝑡) + 𝑦 (𝑡) = 0, 𝑡 ∈ (0, 1) , (25)

subject to BC (8) is given by

𝑢 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠, (26)

where

𝐺 (𝑡, 𝑠) =

{{{{{{{

{{{{{{{

{

(𝑡
𝛼−1

(1 − 𝑠)
(𝛼−1)

([𝛼]
𝑞
− 𝜇 + 𝜇𝑞

𝛼−1

𝑠)

− ([𝛼]
𝑞
− 𝜇) (𝑡 − 𝑠)

(𝛼−1)

)

×(([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼))
−1

, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

(𝑡
𝛼−1

(1 − 𝑠)
(𝛼−1)

([𝛼]
𝑞
− 𝜇 + 𝜇𝑞

𝛼−1

𝑠))

×(([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼))
−1

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(27)

Proof. Let us put 𝑛 = 3. In view of Definition 1 and Lemma 4,
we see that

(𝐷
𝛼

𝑞
𝑢) (𝑡) = −𝑦 (𝑡) ⇐⇒ (𝐼

𝛼

𝑞
𝐷
3

𝑞
𝐼
3−𝛼

𝑞
𝑢) (𝑡) = − (𝐼

𝛼

𝑞
𝑦) (𝑡) .

(28)

Then, it follows from Lemma 5 that the solution 𝑢(𝑡) of (25)
and BC (8) is given by

𝑢 (𝑡) = 𝑐
1
𝑡
𝛼−1

+ 𝑐
2
𝑡
𝛼−2

+ 𝑐
3
𝑡
𝛼−3

− ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑦 (𝑠) 𝑑
𝑞
𝑠,

(29)

for some constants 𝑐
1
, 𝑐
2
, 𝑐
3
∈ R. Since 𝑢(0) = 0, we have 𝑐

3
=

0. Differentiating both sides of (29) and with the help of (20)
and (22), we obtain

(𝐷
𝑞
𝑢) (𝑡) = [𝛼 − 1]

𝑞
𝑐
1
𝑡
𝛼−2

+ [𝛼 − 2]
𝑞
𝑐
2
𝑡
𝛼−3

− ∫

𝑡

0

[𝛼 − 1]
𝑞
(𝑡 − 𝑞𝑠)

(𝛼−2)

Γ
𝑞
(𝛼)

𝑦 (𝑠) 𝑑
𝑞
𝑠.

(30)
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Then by the boundary conditions (𝐷
𝑞
𝑢)(0) = 0, we get 𝑐

2
= 0.

Thus, (29) reduces to

𝑢 (𝑡) = 𝑐
1
𝑡
𝛼−1

− ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑦 (𝑠) 𝑑
𝑞
𝑠. (31)

Using the boundary condition 𝑢(1) = 𝜇 ∫
1

0

𝑢(𝑠)𝑑
𝑞
𝑠, we get

𝑐
1
= 𝜇∫

1

0

𝑢 (𝑠) 𝑑
𝑞
𝑠 + ∫

1

0

(1 − 𝑞𝑠)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑦 (𝑠) 𝑑
𝑞
𝑠. (32)

Hence, we have

𝑢 (𝑡) = 𝑡
𝛼−1

(𝜇∫

1

0

𝑢 (𝑠) 𝑑
𝑞
𝑠 + ∫

1

0

(1 − 𝑞𝑠)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑦 (𝑠) 𝑑
𝑞
𝑠)

− ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑦 (𝑠) 𝑑
𝑞
𝑠.

(33)

Integrate the above equation (33) from 0 to 1, and using (11),
(19) and (20), we obtain

∫

1

0

𝑢 (𝑡) 𝑑
𝑞
𝑡 = ∫

1

0

𝑡
𝛼−1

(𝜇∫

1

0

𝑢 (𝑠) 𝑑
𝑞
𝑠) 𝑑
𝑞
𝑡

+ ∫

1

0

𝑡
𝛼−1

(∫

1

0

(1 − 𝑞𝑠)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑦 (𝑠) 𝑑
𝑞
𝑠) 𝑑
𝑞
𝑡

− ∫

1

0

(∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑦 (𝑠) 𝑑
𝑞
𝑠) 𝑑
𝑞
𝑡

=
(1 − 𝑞) 𝜇

1 − 𝑞𝛼
∫

1

0

𝑢 (𝑠) 𝑑
𝑞
𝑠

+
1 − 𝑞

1 − 𝑞𝛼
∫

1

0

(1 − 𝑞𝑠)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑦 (𝑠) 𝑑
𝑞
𝑠

− ∫

1

0

(1 − 𝑞𝑠)
(𝛼)

[𝛼]
𝑞
Γ
𝑞
(𝛼)

𝑦 (𝑠) 𝑑
𝑞
𝑠

=
𝜇

[𝛼]
𝑞

∫

1

0

𝑢 (𝑠) 𝑑
𝑞
𝑠

+ ∫

1

0

(1 − 𝑞𝑠)
(𝛼−1)

𝑞
𝛼

𝑠

[𝛼]
𝑞
Γ
𝑞
(𝛼)

𝑦 (𝑠) 𝑑
𝑞
𝑠,

(34)

then

∫

1

0

𝑢 (𝑡) 𝑑
𝑞
𝑡 =

𝑞
𝛼

[𝛼]
𝑞
− 𝜇

∫

1

0

(1 − 𝑞𝑠)
(𝛼−1)

𝑠

Γ
𝑞
(𝛼)

𝑦 (𝑠) 𝑑
𝑞
𝑠. (35)

Combining this with (29) and (31) yields

𝑢 (𝑡) =
𝜇𝑞
𝛼

([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼)

∫

1

0

𝑡
𝛼−1

(1 − 𝑞𝑠)
(𝛼−1)

𝑠𝑦 (𝑠) 𝑑
𝑞
𝑠

+
1

Γ
𝑞
(𝛼)

∫

1

0

𝑡
𝛼−1

(1 − 𝑞𝑠)
(𝛼−1)

𝑦 (𝑠) 𝑑
𝑞
𝑠

−
1

Γ
𝑞
(𝛼)

∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

𝑦 (𝑠) 𝑑
𝑞
𝑠

= ∫

1

0

[𝛼]
𝑞
− 𝜇 + 𝜇𝑞

𝛼

𝑠

([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼)

⋅ 𝑡
𝛼−1

(1 − 𝑞𝑠)
(𝛼−1)

𝑦 (𝑠) 𝑑
𝑞
𝑠

−
1

Γ
𝑞
(𝛼)

∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

𝑦 (𝑠) 𝑑
𝑞
𝑠

= ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠.

(36)

This completes the proof of the lemma.

Remark 7. For the special case where 𝜇 = 0, Lemmas 6 has
been obtained by Ferreira [18].

Lemma 8. The function 𝐺(𝑡, 𝑠) defined by (27) satisfies the
following conditions:

(i) 𝐺(𝑡, 𝑠) is a continuous function on (𝑡, 𝑠) ∈ [0, 1] ×

[0, 1], and 𝐺(𝑡, 𝑞𝑠) ≥ 0, for (𝑡, 𝑠) ∈ [0, 1] × [0, 1];
(ii) 𝜇𝑞𝛼𝑡𝛼−1𝜌(𝑠) ≤ ([𝛼]

𝑞
−𝜇)Γ
𝑞
(𝛼)𝐺(𝑡, 𝑞𝑠) ≤ 𝜆𝑡

𝛼−1

, ([𝛼]
𝑞
−

𝜇)Γ
𝑞
(𝛼)𝐺(𝑡, 𝑞𝑠) ≤ 𝜆𝜌(𝑠), for (𝑡, 𝑠) ∈ [0, 1] × [0, 1],

where

𝜌 (𝑠) = (1 − 𝑞𝑠)
(𝛼−1)

𝑠,

𝜆 = max {[𝛼 − 1]
𝑞
([𝛼]
𝑞
− 𝜇) + 𝜇𝑞

𝛼

, 𝑞
𝛼−1

[𝛼]
𝑞
} .

(37)

Proof. The continuity of 𝐺 is easily checked. On the other
hand, when 0 ≤ 𝑞𝑠 ≤ 𝑡 ≤ 1, in view of Lemma 3, we have

([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼) 𝐺 (𝑡, 𝑞𝑠)

= 𝑡
𝛼−1

(1 − 𝑞𝑠)
(𝛼−1)

([𝛼]
𝑞
− 𝜇 + 𝜇𝑞

𝛼

𝑠)

− ([𝛼]
𝑞
− 𝜇) (𝑡 − 𝑞𝑠)

(𝛼−1)

= 𝑡
𝛼−1

(1 − 𝑞𝑠)
(𝛼−1)

([𝛼]
𝑞
− 𝜇 + 𝜇𝑞

𝛼

𝑠)

− ([𝛼]
𝑞
− 𝜇) 𝑡

𝛼−1

(1 − 𝑞
𝑠

𝑡
)

(𝛼−1)

≥ 𝑡
𝛼−1

(1 − 𝑞𝑠)
(𝛼−1)

([𝛼]
𝑞
− 𝜇 + 𝜇𝑞

𝛼

𝑠)

− ([𝛼]
𝑞
− 𝜇) 𝑡

𝛼−1

(1 − 𝑞𝑠)
(𝛼−1)

= 𝜇𝑞
𝛼

𝑡
𝛼−1

(1 − 𝑞𝑠)
(𝛼−1)

𝑠 = 𝜇𝑞
𝛼

𝑡
𝛼−1

𝜌 (𝑠) ≥ 0.

(38)
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Further, since we have

𝐺 (𝑡, 𝑞𝑠) = (([𝛼]
𝑞
− 𝜇) [𝑡

𝛼−1

(1 − 𝑞𝑠)
(𝛼−1)

− (𝑡 − 𝑞𝑠)
(𝛼−1)

]

+𝜇𝑞
𝛼

𝑡
𝛼−1

(1 − 𝑞𝑠)
(𝛼−1)

𝑠)

× (([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼))
−1

= (([𝛼]
𝑞
− 𝜇) [(𝑡 − 𝑡𝑞𝑠)

(𝛼−1)

− (𝑡 − 𝑞𝑠)
(𝛼−1)

]

+𝜇𝑞
𝛼

𝑡
𝛼−1

(1 − 𝑞𝑠)
(𝛼−1)

𝑠)

× (([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼))
−1

= (([𝛼]
𝑞
− 𝜇)∫

𝑡−𝑡𝑞𝑠

𝑡−𝑞𝑠

𝐷
𝑞
𝑥
(𝛼−1)

𝑑
𝑞
𝑥

+𝜇𝑞
𝛼

𝑡
𝛼−1

(1 − 𝑞𝑠)
(𝛼−1)

𝑠)

× (([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼))
−1

≤ ([𝛼 − 1]
𝑞
([𝛼]
𝑞
− 𝜇) (𝑡 − 𝑡𝑞𝑠)

(𝛼−2)

× [(𝑡 − 𝑡𝑞𝑠) − (𝑡 − 𝑞𝑠)] + 𝜇𝑞
𝛼

𝑡
𝛼−1

(1 − 𝑞𝑠)
(𝛼−1)

𝑠)

× (([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼))
−1

= (𝑞[𝛼 − 1]
𝑞
([𝛼]
𝑞
− 𝜇) 𝑡

𝛼−2

(1 − 𝑞𝑠)
(𝛼−2)

𝑠 (1 − 𝑡)

+𝜇𝑞
𝛼

𝑡
𝛼−1

(1 − 𝑞𝑠)
(𝛼−1)

𝑠)

× (([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼))
−1

≤ (𝑞[𝛼 − 1]
𝑞
([𝛼]
𝑞
− 𝜇) 𝑡

𝛼−2

(1 − 𝑞𝑠)
(𝛼−2)

𝑠 (1 − 𝑞𝑠)

+𝜇𝑞
𝛼

𝑡
𝛼−1

(1 − 𝑞𝑠)
(𝛼−1)

𝑠)

× (([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼))
−1

≤ (𝑞[𝛼 − 1]
𝑞
([𝛼]
𝑞
− 𝜇) 𝑡

𝛼−2

(1 − 𝑞𝑠)
(𝛼−2)

𝑠 (1 − 𝑞
𝛼

𝑠)

+𝜇𝑞
𝛼

𝑡
𝛼−1

(1 − 𝑞𝑠)
(𝛼−1)

𝑠)

× (([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼))
−1

= (𝑞[𝛼 − 1]
𝑞
([𝛼]
𝑞
− 𝜇) 𝑡

𝛼−2

(1 − 𝑞𝑠)
(𝛼−1)

𝑠

+𝜇𝑞
𝛼

𝑡
𝛼−1

(1 − 𝑞𝑠)
(𝛼−1)

𝑠)

× (([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼))
−1

,

(39)

we get

([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼) 𝐺 (𝑡, 𝑞𝑠)

≤ (𝑞[𝛼 − 1]
𝑞
([𝛼]
𝑞
− 𝜇) + 𝜇𝑞

𝛼

) (1 − 𝑞𝑠)
(𝛼−1)

𝑠

≤ 𝜆𝜌 (𝑠) ,

([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼) 𝐺 (𝑡, 𝑞𝑠)

≤ [𝛼 − 1]
𝑞
([𝛼]
𝑞
− 𝜇) 𝑡

𝛼−1

(1 − 𝑞𝑠)
(𝛼−1)

+ 𝜇𝑞
𝛼

𝑡
𝛼−1

(1 − 𝑞𝑠)
(𝛼−1)

𝑠

≤ ([𝛼 − 1]
𝑞
([𝛼]
𝑞
− 𝜇) (1 − 𝑞𝑠)

(𝛼−1)

+𝜇𝑞
𝛼

(1 − 𝑞𝑠)
(𝛼−1)

𝑠) 𝑡
𝛼−1

≤ ([𝛼 − 1]
𝑞
([𝛼]
𝑞
− 𝜇) + 𝜇𝑞

𝛼

) 𝑡
𝛼−1

≤ 𝜆𝑡
𝛼−1

.

(40)

When 0 ≤ 𝑡 ≤ 𝑞𝑠 ≤ 1, since 𝜇 < [𝛼]
𝑞
, we have

([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼) 𝐺 (𝑡, 𝑞𝑠)

= 𝑡
𝛼−1

(1 − 𝑞𝑠)
(𝛼−1)

([𝛼]
𝑞
− 𝜇 + 𝜇𝑞

𝛼

𝑠)

≥ 𝜇𝑞
𝛼

𝑡
𝛼−1

(1 − 𝑞𝑠)
(𝛼−1)

𝑠 = 𝜇𝑞
𝛼

𝑡
𝛼−1

𝜌 (𝑠) ,

([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼) 𝐺 (𝑡, 𝑞𝑠)

= 𝑡
𝛼−1

(1 − 𝑞𝑠)
(𝛼−1)

([𝛼]
𝑞
− 𝜇 + 𝜇𝑞

𝛼

𝑠)

≤ 𝑞
𝛼−1

[𝛼]
𝑞
𝑠
𝛼−1

(1 − 𝑞𝑠)
(𝛼−1)

≤ 𝜆𝜌 (𝑠) .

(41)

This completes the proof of the lemma.

Remark 9. If we let 0 < 𝜏 < 1, then

min
𝑡∈[𝜏,1]

𝐺 (𝑡, 𝑞𝑠) ≥
𝜇𝑞
𝛼

𝜏
𝛼−1

([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼)

𝜌 (𝑠) , for 𝑠 ∈ [0, 1] .

(42)

According to [16], we may take 𝜏 = 𝑞
𝑛

, 𝑛 ∈ N.

Lemma 10. Let 𝑝 ∈ 𝐶[0, 1].Then the boundary value problem

(𝐷
𝛼

𝑞
𝑢) (𝑡) + 𝑝 (𝑡) = 0, 𝑡 ∈ (0, 1) , 2 < 𝛼 ≤ 3,

𝑢 (0) = (𝐷
𝑞
𝑢) (0) = 0, 𝑢 (1) = 𝜇∫

1

0

𝑢 (𝑠) 𝑑
𝑞
𝑠,

(43)

has a unique solution 𝑤(𝑡) = ∫
1

0

𝐺(𝑡, 𝑞𝑠)𝑝(𝑠)𝑑
𝑞
𝑠 with

𝑤 (𝑡) ≤
𝜆

([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼)

𝑡
𝛼−1

∫

1

0

𝑝 (𝑠) 𝑑
𝑞
𝑠

= 𝜆
0
𝑡
𝛼−1

∫

1

0

𝑝 (𝑠) 𝑑
𝑞
𝑠,

(44)

where 𝜆
0
= 𝜆/([𝛼]

𝑞
− 𝜇)Γ
𝑞
(𝛼).
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From [39, Theorem 2.3.1], one has the following definition.
Let 𝑄 be a retract of real Banach space 𝐸, Ω be a relatively
bounded open subset of 𝑄, 𝑇 : Ω → 𝑄 be completely
continuous operator. The integer 𝑖(𝑇, Ω,𝑄) be defined by

𝑖 (𝑇, Ω,𝑄) = deg (𝐼 − 𝑇 ⋅ 𝜒, 𝐵 (𝜃, 𝑟) ∩ 𝜒
−1

(Ω) , 𝜃) , (45)

where 𝜒 : 𝐸 → 𝑄 is an arbitrary retraction and 𝑟 > 0 such
that 𝐵(𝜃, 𝑟) ⊃ Ω. Then the integer 𝑖(𝑇, Ω,𝑄) is called the fixed
point index of 𝑇 on Ω with respect to 𝑄.

Lemma 11 (see [39]). Let 𝑃 be a cone in a Banach space 𝐸. Let
Ω be an open bounded subset of 𝐸 with Ω

𝑟
= Ω ∩ 𝑃 ̸= 𝜙 and

Ω
𝑟

̸= 𝑃. Assume that 𝑇 : Ω
𝑟
→ 𝑃 is a compact map such that

𝑢 ̸= 𝑇𝑢 for 𝑢 ∈ 𝜕Ω
𝑟
. Then

(i) if 𝑇(Ω
𝑟
) ⊂ Ω

𝑟
for 𝑢 ∈ Ω

𝑟
, then 𝑖(𝑇, Ω

𝑟
, 𝑃) = 1;

(ii) if there exists 𝑢
0
∈ 𝑃\ {𝜃} such that 𝑢 ̸= 𝑇𝑢+𝜆𝑢

0
for all

𝑢 ∈ 𝜕Ω
𝑟
and 𝜆 > 0, then 𝑖(𝑇, Ω

𝑟
, 𝑃) = 0.

3. The Main Results

In order to abbreviate our discussion, we give the following
assumptions.

(𝐻0) There exists 𝑝(𝑡) ∈ C[0, 1], such that

𝜙 (𝑡) ℎ
0
(𝑢) ≤ 𝑓 (𝑡, 𝑢) + 𝑝 (𝑡) ≤ 𝜑 (𝑡) (𝑔 (𝑢) + ℎ (𝑢)) (46)

for all (𝑡, 𝑢) ∈ [0, 1] × R+
0
, where 𝜙, 𝜑 ∈ C([0, 1],R+

0
), 𝑔 ∈

C(R+
0
,R+
0
), and 𝑔(𝑢) is nonincreasing with respect to 𝑢; ℎ

0
,

ℎ ∈ (R+,R+) and ℎ
0
(𝑢), ℎ(𝑢) are nondecreasing with respect

to 𝑢, where R+ = [0, +∞).

(𝐻1) 0 < ∫
1

0

𝜑(𝑠)𝜌(𝑠)𝑑
𝑞
𝑠 < +∞.

Let𝑋 = 𝐶[0, 1] be the Banach space endowedwithmorm
‖𝑢‖ = max

𝑡∈[0,1]
|𝑢(𝑡)|, and define the cone Ω ∈ 𝑋 by

Ω = {𝑢 ∈ 𝑋 : 𝑢 (𝑡) ≥
𝜇𝑞
𝛼

𝑡
𝛼−1

𝜆
‖𝑢‖
𝑋
, 𝑞 ∈ (0, 1) , 2 < 𝛼 ≤ 3} .

(47)

By a positive solution of BVP (7) and (8), we mean a function
𝑢 ∈ 𝐶[0, 1] such that 𝑢(𝑡) satisfies (7) and (8) and 𝑢(𝑡) > 0 on
(0, 1).

Setting 𝐹(𝑡, 𝑢) = 𝑓(𝑡, 𝑢) + 𝑝(𝑡) and for any 𝑢 ∈ Ω,𝑚 ∈ 𝑁,
we consider the following singular nonlinear boundary value
problem:

(𝐷
𝛼

𝑞
𝑢) (𝑡) + 𝐹 (𝑡, [𝑢 (𝑡)]

∗

+
1

𝑚
) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = (𝐷
𝑞
𝑢) (0) = 0, 𝑢 (1) = 𝜇∫

1

0

𝑢 (𝑠) 𝑑
𝑞
𝑠,

(48)

where [𝑢(𝑡)]∗ = max{𝑢(𝑡) − 𝑤(𝑡), 0}.
According to Remark 2, we can see that if 𝑢(𝑡) ≥ 𝑤(𝑡) for

𝑡 ∈ [0, 1] is a positive solution of BVP (48), then 𝑢 − 𝑤 is a
positive solution of BVP (7) and (8).

Lemma 12. For any 𝑚 ∈ 𝑁, let 𝑇
𝑚
: Ω → Ω be the operator

defined by

(𝑇
𝑚
𝑢) (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝐹 (𝑠, [𝑢 (𝑠)]
∗

+
1

𝑚
)𝑑
𝑞
𝑠. (49)

Then 𝑇
𝑚
: Ω → Ω is completely continuous.

Proof. For any 𝑢 ∈ Ω, 𝑚 ∈ 𝑁, Lemma 8 implies that
(𝑇
𝑚
𝑢)(𝑡) ≥ 0 on [0, 1], and

(𝑇
𝑚
𝑢) (𝑡)

≥
𝜇𝑞
𝛼

𝑡
𝛼−1

([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼)

∫

1

0

𝜌 (𝑠) 𝐹 (𝑠, [𝑢 (𝑠)]
∗

+
1

𝑚
)𝑑
𝑞
𝑠.

(50)

On the other hand,
𝑇𝑚𝑢

𝑋 = max
0≤𝑡≤1

(𝑇
𝑚
𝑢) (𝑡)

≤
𝜆

([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼)

∫

1

0

𝜌 (𝑠) 𝐹 (𝑠, [𝑢 (𝑠)]
∗

+
1

𝑚
)𝑑
𝑞
𝑠.

(51)

Then (𝑇
𝑚
𝑢)(𝑡) ≥ (𝜇𝑞

𝛼

𝑡
𝛼−1

/𝜆)‖𝑇
𝑚
𝑢‖
𝑋
, which leads to

𝑇
𝑚
(Ω) ⊂ Ω. Thus 𝑇

𝑚
: Ω → Ω.

It follows from the nonnegativeness and continuity of
𝐺(𝑡, 𝑠) and 𝐹 that the operator 𝑇

𝑚
is continuous. Suppose

𝐵 ⊂ Ω is any bounded set; then, for any 𝑢 ∈ 𝐵, there is a
constant number𝑀 > 0 such that ‖𝑢‖

𝑋
≤ 𝑀. Let

𝐿 (𝑚
−1

,𝑀, 𝜆
0
) = 𝜆
0
[𝑔 (

1

𝑚
) + ℎ (𝑀 + 1)] . (52)

for all 𝑢 ∈ 𝐵, by Lemma 8, we have

(𝑇𝑚𝑢) (𝑡)
 ≤ ∫

1

0


𝐺 (𝑡, 𝑞𝑠) 𝐹 (𝑠, [𝑢 (𝑠)]

∗

+
1

𝑚
)


𝑑
𝑞
𝑠

≤ 𝜆
0
∫

1

0

𝜌 (𝑠)


𝐹 (𝑠, [𝑢 (𝑠)]

∗

+
1

𝑚
)


𝑑
𝑞
𝑠

≤ 𝜆
0
∫

1

0

𝜌 (𝑠) 𝜑 (𝑠) (𝑔 ([𝑢 (𝑠)]
∗

+
1

𝑚
)

+ℎ([𝑢 (𝑠)]
∗

+
1

𝑚
))𝑑
𝑞
𝑠

≤ 𝐿 (𝑚
−1

,𝑀, 𝜆
0
) ∫

1

0

𝜌 (𝑠) 𝜑 (𝑠) 𝑑
𝑞
𝑠 < +∞.

(53)

Hence, 𝑇
𝑚
(𝐵) is bounded.

On the other hand, for any 𝜀 > 0, according to (𝐻1), there
is a constant 𝛿 > 0 such that

∫

𝛿

0

𝜑 (𝑠) 𝜌 (𝑠) 𝑑
𝑞
𝑠 <

𝜀

6𝐿 (𝑚−1,𝑀, 𝜆
0
)
,

∫

1

1−𝛿

𝜑 (𝑠) 𝜌 (𝑠) 𝑑
𝑞
𝑠 <

𝜀

6𝐿 (𝑚−1,𝑀, 𝜆
0
)
.

(54)
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From the property of continuity of 𝐺, there exists 𝜂 with 0 <

𝜂 < 𝛿 such that for any 𝑡
1
, 𝑡
2
∈ [0, 1], and 𝑠 ∈ [0, 1], when

𝑡
2
− 𝑡
1
< 𝜂 we have

𝐺 (𝑡
2
, 𝑞𝑠) − 𝐺 (𝑡

1
, 𝑞𝑠)

 <
𝜀

3𝜑
0
𝐿 (𝑚−1,𝑀, 𝜆

0
)
,

(𝑇𝑚𝑢) (𝑡2) − (𝑇
𝑚
𝑢) (𝑡
1
)


≤ ∫

1

0

𝐺 (𝑡
2
, 𝑞𝑠) − 𝐺 (𝑡

1
, 𝑞𝑠)

 𝐹 (𝑠, [𝑢 (𝑠)]
∗

+
1

𝑚
)𝑑
𝑞
𝑠

≤ 𝐿 (𝑚
−1

,𝑀, 𝜆
0
)∫

1

0

𝐺 (𝑡
2
, 𝑞𝑠) − 𝐺 (𝑡

1
, 𝑞𝑠)

 𝜑 (𝑠) 𝑑𝑞𝑠

= 2𝐿 (𝑚
−1

,𝑀, 𝜆
0
)(∫

𝛿

0

𝜑 (𝑠) 𝐺 (𝑠, 𝑞𝑠) 𝑑
𝑞
𝑠

+∫

1

1−𝛿

𝜑 (𝑠) 𝐺 (𝑠, 𝑞𝑠) 𝑑
𝑞
𝑠)

+ 𝐿 (𝑚
−1

,𝑀, 𝜆
0
)∫

1−𝛿

𝛿

𝐺 (𝑡
2
, 𝑞𝑠) − 𝐺 (𝑡

1
, 𝑞𝑠)

 𝜑 (𝑠) 𝑑𝑞𝑠

<
2𝜀

3
+ 𝐿 (𝑚

−1

,𝑀, 𝜆
0
) 𝜑
0

× ∫

1−𝛿

𝛿

𝐺 (𝑡
2
, 𝑞𝑠) − 𝐺 (𝑡

1
, 𝑞𝑠)

 𝑑𝑞𝑠 < 𝜀,

(55)

where𝜑
0
= max{𝜑(𝑡) : 𝛿 ≤ 𝑡 ≤ 1−𝛿}. Bymeans of the Arzela-

Ascoli Theorem, 𝑇
𝑚
: Ω → Ω is completely continuous.

Theorem 13. Suppose (𝐻0) and (𝐻1) hold. In addition,
assume that the following conditions are satisfied.

(𝐶1) There exists a constant 𝑟 > 2𝜆
2

𝑘
0
/𝜇𝑞
𝛼 such that

𝜆
0
∫

1

0

𝜌 (𝑠) 𝜑 (𝑠) (𝑔(
𝜇𝑞
𝛼

𝑠
𝛼−1

2𝜆
𝑟) + ℎ (𝑟 + 1)) 𝑑

𝑞
𝑠 < 𝑟, (56)

where 𝑘
0
= ∫
1

0

𝑝(𝑠)𝑑
𝑞
𝑠/([𝛼]

𝑞
− 𝜇)Γ
𝑞
(𝛼).

(𝐶2) There exist constants 𝜉
1
, 𝜉
2
with 𝜉

2
> 𝜉
1
> 𝑟 such that

𝜇
∗

ℎ
0
(
1

2
𝜉
𝑖
)∫

1

𝜏

𝜌 (𝑠) 𝜙 (𝑠) 𝑑
𝑞
𝑠 > 𝜉
𝑖
, 𝑖 = 1, 2, (57)

where 𝜇∗ = 𝜇𝑞
𝛼

𝜏
𝛼−1

/([𝛼]
𝑞
− 𝜇)Γ
𝑞
(𝛼), 𝜏 = 𝑞

𝑛

, 𝑛 ∈ N.
(𝐶3)

lim
𝑢→+∞

ℎ (𝑢)

𝑢
= 0. (58)

Then BVP (7) and (8) has at least two positive solutions
𝑢
∗

, 𝑢
∗∗ with 𝑟 ≤ ‖𝑢

∗

‖
𝑋
≤ 𝜉
1
< 𝜉
2
≤ ‖𝑢
∗∗

‖
𝑋
.

Proof. First, we prove that

𝑖 (𝑇
𝑚
, Ω
0
, Ω) = 1, (59)

whereΩ
0
= {𝑢 ∈ Ω : ‖𝑢‖

𝑋
< 𝑟}.

To see this, let 𝑢 ∈ Ω ∩ 𝜕Ω
0
. Then ‖𝑢‖

𝑋
= 𝑟 and 𝑢(𝑡) ≥

(𝜇𝑞
𝛼

/𝜆)𝑡
𝛼−1

𝑟 for 𝑡 ∈ [0, 1]. Now for 𝑡 ∈ (0, 1), we get

𝑢 (𝑡) − 𝑤 (𝑡) ≥ 𝑢 (𝑡) −
𝜆

([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼)

𝑡
𝛼−1

∫

1

0

𝑝 (𝑠) 𝑑
𝑞
𝑠

≥ 𝑢 (𝑡) −
𝜇𝑞
𝛼

2𝜆
𝑡
𝛼−1

𝑟 ≥
1

2
𝑢 (𝑡)

≥
𝜇𝑞
𝛼

𝑡
𝛼−1

2𝜆
‖𝑢‖
𝑋
=
𝜇𝑞
𝛼

𝑡
𝛼−1

2𝜆
𝑟.

(60)

So, for any 𝑢 ∈ Ω ∩ 𝜕Ω
0
, 𝑡 ∈ (0, 1), we get

𝜇𝑞
𝛼

𝑡
𝛼−1

2𝜆
𝑟 ≤ 𝑢 (𝑡) − 𝑤 (𝑡) ≤ 𝑟. (61)

It follows from (𝐶1), (61) and Lemma 8 that, for any 𝑢 ∈ Ω ∩

𝜕Ω
0
,

(𝑇
𝑚
𝑢) (𝑡)

= ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝐹 (𝑠, [𝑢 (𝑠)]
∗

+
1

𝑚
)𝑑
𝑞
𝑠

≤ 𝜆
0
∫

1

0

𝜌 (𝑠) 𝜑 (𝑠) (𝑔 ([𝑢 (𝑠)]
∗

+
1

𝑚
)

+ℎ([𝑢 (𝑠)]
∗

+
1

𝑚
))𝑑
𝑞
𝑠

≤ 𝜆
0
∫

1

0

𝜌 (𝑠) 𝜑 (𝑠) (𝑔(
𝜇𝑞
𝛼

𝑠
𝛼−1

2𝜆
𝑟) + ℎ (𝑟 + 1)) 𝑑

𝑞
𝑠 < 𝑟

= ‖𝑢‖
𝑋
.

(62)

This together with (56) yields 𝑇
𝑚
(Ω
0
) ⊂ Ω

0
. From the (i) of

Lemma 11, (59) is satisfied.
Let us choose 𝜖 > 0 such that

𝜖𝜆
0
∫

1

0

𝜌 (𝑠) 𝜑 (𝑠) 𝑑
𝑞
𝑠 < 1. (63)

Then for the above 𝜖, according to (𝐶2) and (𝐶3), there exists
𝑅 > 𝜉
2
> 0 such that, for any 𝑢 ≥ 𝑅,

ℎ (𝑢) ≤ 𝜖𝑢. (64)

Take

𝑅
1
= 𝑅 + (𝜆

0
∫

1

0

𝜌 (𝑠) 𝜑 (𝑠)

×(𝑔(
𝜇𝑞
𝛼

𝑠
𝛼−1

2𝜆
𝑅) + ℎ (𝑅 + 1) + 𝜖)𝑑

𝑞
𝑠)

× (1 − 𝜖𝜆
0
∫

1

0

𝜌 (𝑠) 𝜑 (𝑠) 𝑑
𝑞
𝑠)

−1

,

(65)

then 𝑅
1
> 𝑅 > 𝜉

2
.
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Now let Ω
1
= {𝑢 ∈ Ω : ‖𝑢‖

𝑋
< 𝑅
1
} and 𝜕Ω

1
= {𝑢 ∈ Ω :

‖𝑢‖
𝑋
= 𝑅
1
}. Then, for any 𝑢 ∈ Ω ∩ 𝜕Ω

1
, we have

(𝑇
𝑚
𝑢) (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝐹 (𝑠, [𝑢 (𝑠)]
∗

+
1

𝑚
)𝑑
𝑞
𝑠

≤ 𝜆
0
∫

1

0

𝜌 (𝑠) 𝜑 (𝑠)

× (𝑔 ([𝑢 (𝑠)]
∗

+
1

𝑚
) + ℎ([𝑢 (𝑠)]

∗

+
1

𝑚
))𝑑
𝑞
𝑠

≤ 𝜆
0
∫

1

0

𝜌 (𝑠) 𝜑 (𝑠)

× (𝑔([𝑢 (𝑠)]
∗

+
1

𝑚
)

+ max
𝑢∈[0,𝑅]

ℎ ([𝑢 (𝑠)]
∗

+
1

𝑚
))𝑑
𝑞
𝑠

+ 𝜆
0
∫

1

0

𝜌 (𝑠) 𝜑 (𝑠) 𝜖 (‖𝑢‖
𝑋
+ 1) 𝑑

𝑞
𝑠

≤ 𝜆
0
∫

1

0

𝜌 (𝑠) 𝜑 (𝑠)

× (𝑔(
𝜇𝑞
𝛼

𝑠
𝛼−1

2𝜆
𝑅
1
) + ℎ (𝑅 + 1)) 𝑑

𝑞
𝑠

+ 𝜆
0
∫

1

0

𝜌 (𝑠) 𝜑 (𝑠) 𝜖 (𝑅
1
+ 1) 𝑑

𝑞
𝑠

≤ 𝜆
0
∫

1

0

𝜌 (𝑠) 𝜑 (𝑠)

× (𝑔(
𝜇𝑞
𝛼

𝑠
𝛼−1

2𝜆
𝑅) + ℎ (𝑅 + 1) + 𝜖)𝑑

𝑞
𝑠

+ 𝜖𝜆
0
∫

1

0

𝜌 (𝑠) 𝜑 (𝑠) 𝑑
𝑞
𝑠 ⋅ 𝑅
1
< 𝑅
1
= ‖𝑢‖
𝑋
.

(66)

This together with (56) yields 𝑇
𝑚
(Ω
1
) ⊂ Ω

1
, which implies

that

𝑖 (𝑇
𝑚
, Ω
1
, Ω) = 1. (67)

In the following, let

Ω
10

= {𝑢 ∈ Ω : ‖𝑢‖ < 𝑅
1
, min
𝑡∈[𝜏,1]

𝑢 (𝑡) > 𝜉
1
} ,

Ω
11

= {𝑢 ∈ Ω : ‖𝑢‖ < 𝑅
1
, min
𝑡∈[𝜏,1]

𝑢 (𝑡) > 𝜉
2
} .

(68)

It is easy to see that Ω
𝑖
, Ω
1𝑖
, (𝑖 = 0, 1) are bounded sets and

satisfy

Ω
0
⊂ Ω
1
, Ω
10

⊂ Ω
1
, Ω
11

⊂ Ω
10
, Ω
10
∩ Ω
0
= 0. (69)

For any 𝑢 ∈ Ω ∩ 𝜕Ω
10
, by Remark 9 and (61), we have

𝑢 (𝑡) − 𝑤 (𝑡) ≥
1

2
𝑢 (𝑡) ≥

1

2
𝜉
1
, for any 𝑡 ∈ [𝜏, 1] . (70)

Thus

min
𝑡∈[𝜏,1]

(𝑇
𝑚
𝑢) (𝑡)

= min
𝑡∈[𝜏,1]

∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝐹 (𝑠, [𝑢 (𝑠)]
∗

+
1

𝑚
)𝑑
𝑞
𝑠

≥ min
𝑡∈[𝜏,1]

∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝜙 (𝑠) ℎ
0
([𝑢 (𝑠)]

∗

+
1

𝑚
)𝑑
𝑞
𝑠

≥ 𝜇
∗

ℎ
0
(
1

2
𝜉
1
)∫

1

𝜏

𝜌 (𝑠) 𝜙 (𝑠) 𝑑
𝑞
𝑠 > 𝜉
1
.

(71)

This means that 𝑇
𝑚
(Ω
10
) ⊂ Ω

10
, for 𝑢 ∈ Ω

10
. Thus, it follows

from the (i) of Lemma 11 that

𝑖 (𝑇
𝑚
, Ω
10
, Ω) = 1. (72)

Similarly, we can prove that, for any 𝑢 ∈ Ω
11
,

𝑖 (𝑇
𝑚
, Ω
11
, Ω) = 1. (73)

Thus, using (59), (67), and (72), we obtain

𝑖 (𝑇
𝑚
, Ω
1
\ (Ω
0
∩ Ω
10
) , Ω)

= 𝑖 (𝑇
𝑚
, Ω
1
, Ω) − 𝑖 (𝑇

𝑚
, Ω
0
, Ω)

− 𝑖 (𝑇
𝑚
, Ω
10
, Ω) = −1

(74)

which implies that 𝑇
𝑚
has at least one fixed point 𝑢

𝑚1
∈ Ω
1
\

(Ω
0
∩ Ω
10
) and satisfies

𝑇
𝑚
𝑢
𝑚1

(𝑡) = ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝐹 (𝑠, [𝑢
𝑚1

(𝑠)]
∗

+
1

𝑚
)𝑑
𝑞
𝑠,

𝑡 ∈ [0, 1] ,

(75)

and 𝑟 ≤ ‖𝑢
𝑚1
‖
𝑋
≤ 𝜉
1
.

Obviously, 𝐹(𝑡, [𝑢
𝑚1
(𝑡)]
∗

+ 1/𝑚) is continuous for any
𝑢
𝑚1

∈ 𝐶([0, 1],R+), 𝑡 ∈ (0, 1). Also, it can be seen that 𝑢
𝑚1

has
uniform lower and upper bounds. This directly comes from
𝑢
𝑚1

∈ Ω
1
\ (Ω
0
∩ Ω
10
). Hence, in order to pass the solution

𝑢
𝑚1

of the problem (48) to that of the original problem (7)
and (8), we need the following fact:

{𝑢
𝑚1
}
∞

𝑚=1
is an equicontinuous family on [0, 1] . (76)

As in the proof of Lemma 12, we can prove that
the sequence {𝑢

𝑚1
}
∞

𝑚=1
is equicontinuous on [0, 1]. Now

the Arzela-Ascoli Theorem guarantees that the sequence
{𝑢
𝑚1
}
∞

𝑚=1
has a subsequence {𝑢

𝑚𝑘 ,1
}
∞

𝑘=1
, converging uniformly

on [0, 1] to 𝑢
1
∈ 𝑋. As for (61) and the fact 𝑟 ≤ ‖𝑢

𝑚1
‖
𝑋
≤ 𝜉
1
,

we obtain that

𝜇𝑞
𝛼

𝑡
𝛼−1

2𝜆
𝑟 ≤ 𝑢
1
(𝑡) − 𝑤 (𝑡) ≤ 𝜉

1
, ∀𝑡 ∈ [0, 1] . (77)

Moreover, 𝑢
𝑚𝑘,1

satisfies the following integral equation:

𝑢
𝑚𝑘,1

= ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝐹(𝑠, [𝑢
𝑚𝑘,1

(𝑠)]
∗

+
1

𝑚
𝑘

)𝑑
𝑞
𝑠. (78)
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Letting 𝑘 → +∞, we have

𝑢
1
= ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝐹 (𝑠, [𝑢
1
(𝑠)]
∗

) 𝑑
𝑞
𝑠. (79)

Let 𝑢∗(𝑡) = 𝑢
1
(𝑡) −𝑤(𝑡), then 𝑢

∗ is a positive solution of BVP
(7) and (8).

From (73), 𝑇
𝑚
has at least one fixed point 𝑢

𝑚2
∈ Ω
11
.

Similar to (76), there exists a subsequence {𝑢
𝑚𝑘 ,2

}
∞

𝑘=1
⊆

{𝑢
𝑚2
}
∞

𝑚=1
such that lim

𝑘→+∞
𝑢
𝑚𝑘 ,2

(𝑡) = 𝑢
2
(𝑡) ∈ 𝑋, and 𝜉

2
≤

‖𝑢
2
‖
𝑋

≤ 𝑅
1
. Let 𝑢∗∗(𝑡) = 𝑢

2
(𝑡) − 𝑤(𝑡), then 𝑢

∗∗ is also a
positive solution of BVP (7) and (8).

Since 𝜉
1
< 𝜉
2
, we have 𝑢∗ ̸= 𝑢

∗∗. This implies that 𝑢∗, 𝑢∗∗
are two different positive solutions of BVP (7) and (8).

Theorem 14. Suppose (𝐻0), (𝐻1), (𝐶1), and (𝐶2) hold. In
addition, assume that the following conditions are satisfied.

(𝐶4) There exists 𝑅
1
with 𝑅

1
> 𝜉
2
(𝜉
2
as given in (𝐶2)) such

that

𝜆
0
∫

1

0

𝜌 (𝑠) 𝜑 (𝑠) (𝑔(
𝜇𝑞
𝛼

𝑠
𝛼−1

2𝜆
𝑅
1
) + ℎ (𝑅

1
+ 1))𝑑

𝑞
𝑠 < 𝑅
1
.

(80)

(𝐶5)

lim
𝑢→+∞

ℎ
0
(𝑢)

𝑢
= +∞. (81)

Then BVP (7) and (8) has at least three different positive
solutions.

Proof. It can be seen that condition (𝐶4) is equivalent to
condition (𝐶3). As a consequence we obtain that the BVP (7)
and (8) has at least two different positive solutions 𝑢

1
, 𝑢
2
with

𝑟 ≤ ‖𝑢
1
‖
𝑋
< ‖𝑢
2
‖
𝑋
< 𝑅
1
.

On the other hand, choose a real number 𝑀∗ > 0 such
that

𝑀
∗

≥
2𝜆

𝜇∗𝜇𝑞𝛼𝜏𝛼−1 ∫
1

𝜏

𝜌 (𝑠) 𝜙 (𝑠) 𝑑
𝑞
𝑠

. (82)

By (𝐶5), there exists 𝑅∗
1
> 𝑅
1
such that

ℎ
0
(𝑢) ≥ 𝑀

∗

𝑢, 𝑢 ≥ 𝑅
∗

1
. (83)

Choose

𝑅
2
> max{𝑅

1
,

2𝜆𝑅
∗

1

𝜇𝑞𝛼𝜏𝛼−1
} , (84)

and let Ω
2
= {𝑢 ∈ Ω : ‖𝑢‖

𝑋
< 𝑅
2
}.

In the following, we will prove that

𝑢 ̸= 𝑇
𝑚
𝑢 + 𝜈ℎ, ℎ ∈ Ω \ {𝜃} , ∀𝑢 ∈ 𝜕Ω

2
, 𝜈 ∈ [0, 1] , 𝑚 ∈ N.

(85)

Suppose that (85) is false; then there exists 𝜈
0
∈ [0, 1], 𝑢

0
∈

𝜕Ω
2
, such that

𝑢
0
= 𝑇
𝑚
𝑢
0
+ 𝜈
0
ℎ. (86)

For 𝑢
0
∈ 𝜕Ω
2
and for any 𝑡 ∈ [𝜏, 1], we have

𝑢
0
(𝑡) − 𝑤 (𝑡) ≥ 𝑢

0
(𝑡) −

𝜆

([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼)

𝑡
𝛼−1

∫

1

0

𝑝 (𝑠) 𝑑
𝑞
𝑠

≥ (1 −
𝜆
2

∫
1

0

𝜌 (𝑠) 𝑑
𝑞
𝑠

𝜇𝑞𝛼 ([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼) 𝑅
2

)𝑢
0
(𝑡)

≥
1

2
𝑢
0
(𝑡) ≥

𝜇𝑞
𝛼

𝑡
𝛼−1

2𝜆

𝑢0
𝑋

≥
𝜇𝑞
𝛼

𝜏
𝛼−1

2𝜆
𝑅
2
> 𝑅
∗

1
> 0.

(87)

It follows from (83) and (85) that we have

𝑅
2
=
𝑢0

𝑋 =
𝑇𝑚𝑢0 + 𝜈

0
ℎ
𝑋

≥ ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝐹 (𝑠, [𝑢
0
(𝑠)]
∗

+
1

𝑚
)𝑑
𝑞
𝑠

> 𝜇
∗

∫

1

𝜏

𝜌 (𝑠) 𝜙 (𝑠) ℎ
0
([𝑢
0
(𝑠)]
∗

+
1

𝑚
)𝑑
𝑞
𝑠

≥ 𝜇
∗

∫

1

𝜏

𝜌 (𝑠) 𝜙 (𝑠) 𝑑
𝑞
𝑠 ⋅ 𝑀
∗

([𝑢
0
(𝑠)]
∗

+
1

𝑚
)

≥
𝑀
∗

𝜇
∗

𝜇𝑞
𝛼

𝜏
𝛼−1

∫
1

𝜏

𝜌 (𝑠) 𝜙 (𝑠) 𝑑
𝑞
𝑠

2𝜆
⋅ 𝑅
2
≥ 𝑅
2
,

(88)

which is a contradiction. Hence, (85) is ture; from the (ii) of
Lemma 11, we get

𝑖 (𝑇
𝑚
, Ω
2
, Ω) = 0. (89)

Combining this with (67) yields

𝑖 (𝑇
𝑚
, Ω
2
\ Ω
1
, Ω) = 𝑖 (𝑇

𝑚
, Ω
2
, Ω) − 𝑖 (𝑇

𝑚
, Ω
1
, Ω) = −1.

(90)

This implies that 𝑇
𝑚

has at least one fixed point 𝑢
𝑚3

∈

Ω
2
\ Ω
1
with 𝑅

1
< ‖𝑢

𝑚3
‖
𝑋

≤ 𝑅
2
. Similar to (76),

there exists a subsequence {𝑢
𝑚𝑘,3

}
∞

𝑘=1
⊆ {𝑢
𝑚3
}
∞

𝑚=1
such that

lim
𝑘→+∞

𝑢
𝑚𝑘,3

(𝑡) = 𝑢
∗

3
(𝑡) ∈ 𝑋, and 𝑅

1
< ‖𝑢
∗

3
‖
𝑋

≤ 𝑅
2
. Let

𝑢
3
(𝑡) = 𝑢

∗

3
(𝑡)−𝑤(𝑡), then 𝑢

3
is also a positive solution of BVP

(7) and (8). So the proof is complete.

By the induction method, we can obtain the following
multiplicity results for BVP (7) and (8).

Corollary 15. Suppose (𝐻0), (𝐻1), (𝐶1), and (𝐶5) hold. In
addition, there exist constants 𝑟

𝑖
, 𝜉
𝑖𝑘
, (𝑖 = 1, . . . , 𝑚; 𝑘 = 1, 2)
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with 𝑟 < 𝜉
11

< 𝜉
12

< 𝑟
1
< 𝜉
21

< 𝜉
22

< 𝑟
2
< ⋅ ⋅ ⋅ < 𝜉

𝑚1
< 𝜉
𝑚2

<

𝑟
𝑚
such that

𝜆∫

1

0

𝜌 (𝑠) 𝜑 (𝑠) (𝑔(
𝜇𝑞
𝛼

𝑠
𝛼−1

2𝜆
𝑟
𝑖
) + ℎ (𝑟

𝑖
+ 1))𝑑

𝑞
𝑠 < 𝑟
𝑖
,

𝑖 = 1, 2, . . . , 𝑚,

𝜇
∗

ℎ
0
(
1

2
𝜉
𝑖𝑘
)∫

1

𝜏

𝜌 (𝑠) 𝜙 (𝑠) 𝑑
𝑞
𝑠 > 𝜉
𝑖𝑘
, 𝑖 = 1, 2, . . . , 𝑚;

𝑘 = 1, 2,

(91)

where 𝜇∗ = 𝜇𝑞
𝛼

𝜏
𝛼−1

/([𝛼]
𝑞
− 𝜇)Γ
𝑞
(𝛼).

Then BVP (7) and (8) has at least 2𝑚 + 1 different positive
solutions.

Nowwe present an example to illustrate our main results.

Example 16. Consider the following problem:

𝐷
2.5

0.5
𝑢 (𝑡) +

𝑡

10
(

1

20𝑢
+ ℎ (𝑢)) − 40 (1 + 𝑡) = 0, 0 < 𝑡 < 1,

𝑢 (0) = (𝐷
0.5
𝑢) (0) = 0, 𝑢 (1) = 1.5 ∫

1

0

𝑢 (𝑠) 𝑑
0.5
𝑠,

(92)

where

ℎ (𝑢) =

{{{{{

{{{{{

{

8𝑢, 0 ≤ 𝑢 ≤ 60,

1

490
𝑢
3

, 60 ≤ 𝑢 ≤ 900,

30𝑢
2

, 900 ≤ 𝑢 ≤ 1600,

3.2 × 10
5

√𝑢, 𝑢 ≥ 1600.

(93)

Then BVP (91) has at least two positive solutions.

Proof. In this case, 𝛼 = 2.5, 𝑞 = 0.5, 𝜇 = 1.5, and

𝑓 (𝑡, 𝑢) =
𝑡

10
(

1

20𝑢
+ ℎ (𝑢)) − 40 (1 + 𝑡) . (94)

Let

𝑝 (𝑡) = 40 (1 + 𝑡) , 𝜙 (𝑡) =
𝑡

10
, 𝜑 (𝑡) =

√𝑡

10
,

𝑔 (𝑢) =
1

20𝑢
, ℎ

0
(𝑢) =

7

8
ℎ (𝑢) .

(95)

It is easy to see that the assumptions (𝐻0), (𝐻1) hold.
Take 𝑛 = 2, then 𝜏 = 𝑞

𝑛

= 0.25. By calculation, we get

𝜆 ≈ 0.7335, 𝜆
0
≈ 1.3913, 𝜇

∗

≈ 0.0524,

𝑘
0
=

∫
1

0

𝑝 (𝑠) 𝑑
𝑞
𝑠

([𝛼]
𝑞
− 𝜇) Γ

𝑞
(𝛼)

≈
∫
1

0

40 (1 + 𝑠) 𝑑
0.5
𝑠

0.5272
≈ 12.6454.

(96)

Set 𝑟 = 52, then

𝑟 = 52 >
2𝜆
2

𝑘
0

𝜇𝑞𝛼
≈ 51.3086,

Δ := 𝜆
0
∫

1

0

𝜌 (𝑠) 𝜑 (𝑠) (𝑔(
𝜇𝑞
𝛼

𝑠
𝛼−1

2𝜆
𝑟) + ℎ (𝑟 + 1)) 𝑑

𝑞
𝑠

=
𝜆
0

10
∫

1

0

(1 −
1

2
𝑠)

(3/2)

𝑠
3/2

× (
𝜆

10𝜇𝑞𝛼𝑠3/2𝑟
+ ℎ (𝑟 + 1)) 𝑑

𝑞
𝑠

≤
𝜆
0

10
(

𝜆

520𝜇𝑞𝛼
+ ℎ (𝑟 + 1))

× ∫

1

0

(1 −
1

2
𝑠)

(3/2)

𝑑
𝑞
𝑠 ≈ 35.8280 < 𝑟 = 52,

(97)

which implies that the assumption (𝐶1) holds.
On the other hand, take 𝜉

1
= 1 × 10

3, 𝜉
2
= 1.1 × 10

3, then

𝜇
∗

ℎ
0
(
1

2
𝜉
1
)∫

1

𝜏

𝜌 (𝑠) 𝜙 (𝑠) 𝑑
𝑞
𝑠

=
𝜇
∗

10
ℎ
0
(
1

2
𝜉
1
)∫

1

1/4

(1 −
1

2
𝑠)

(3/2)

𝑠
3/2

𝑑
𝑞
𝑠

≥
𝜇
∗

160
ℎ
0
(
1

2
𝜉
1
)∫

1

1/4

(1 −
1

2
𝑠)

(3/2)

𝑑
𝑞
𝑠

≈ 1.1681 × 10
3

> 1 × 10
3

= 𝜉
1
,

(98)

𝜇
∗

ℎ
0
(
1

2
𝜉
2
)∫

1

𝜏

𝜌 (𝑠) 𝜙 (𝑠) 𝑑
𝑞
𝑠

≥ 1.4135 × 10
3

> 1.1 × 10
3

= 𝜉
2

(99)

which implies that the assumption (𝐶2) holds.
Finally, we have

lim
𝑢→+∞

ℎ (𝑢)

𝑢
= lim
𝑢→+∞

3.2 × 10
5

√𝑢

𝑢

= lim
𝑢→+∞

3.2 × 10
5

√𝑢
= 0.

(100)

Thus (𝐶3) also holds. It follows from Theorem 13 that the
BVP (91) has at least two positive solutions 𝑢∗, 𝑢∗∗ with 52 ≤

‖𝑢
∗

‖ ≤ 1 × 10
3

< 1.1 × 10
3

≤ ‖𝑢
∗∗

‖.
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Mathématiques du Québec, vol. 23, no. 1, pp. 63–72, 1999.

[7] R. Floreanini and L. Vinet, “Quantum symmetries of q-
difference equations,” Journal of Mathematical Physics, vol. 36,
no. 6, pp. 3134–3156, 1995.

[8] G. Bangerezako, “Variational q-calculus,” Journal of Mathemati-
cal Analysis and Applications, vol. 289, no. 2, pp. 650–665, 2004.

[9] A. Dobrogowska andA.Odzijewicz, “Second order q-difference
equations solvable by factorization method,” Journal of Compu-
tational and Applied Mathematics, vol. 193, no. 1, pp. 319–346,
2006.

[10] M. E. H. Ismail and P. Simeonov, “q-difference operators for
orthogonal polynomials,” Journal of Computational and Applied
Mathematics, vol. 233, no. 3, pp. 749–761, 2009.

[11] B. Ahmad, S. Ntouyas, and I. Purnaras, “Existence results for
nonlocal boundary value problems of nonlinear fractional q-
difference equations,” Advances in Difference Equations, vol.
2012, article 140, 2012.

[12] M. El-Shahed and H. A. Hassan, “Positive solutions of q-
difference equation,” Proceedings of the American Mathematical
Society, vol. 138, no. 5, pp. 1733–1738, 2010.

[13] M. H. Annaby and Z. S. Mansour, “q-Taylor and interpolation
series for Jackson q-difference operators,” Journal of Mathemat-
ical Analysis and Applications, vol. 344, no. 1, pp. 472–483, 2008.

[14] B. Ahmad and S. K. Ntouyas, “Boundary value problems for q-
difference inclusions,” Abstract and Applied Analysis, vol. 2011,
Article ID 292860, 15 pages, 2011.

[15] G. Gasper and M. Rahman, “Some systems of multivariable
orthogonal q-Racah polynomials,”The Ramanujan Journal, vol.
13, no. 1–3, pp. 389–405, 2007.

[16] H. Gauchman, “Integral inequalities in q-calculus,” Computers
& Mathematics with Applications, vol. 47, no. 2-3, pp. 281–300,
2004.

[17] R. A. C. Ferreira, “Nontrivial solutions for fractional q-
difference boundary value problems,” Electronic Journal of
Qualitative Theory of Differential Equations, vol. 70, pp. 1–10,
2010.

[18] R. A. C. Ferreira, “Positive solutions for a class of boundary
value problems with fractional q-differences,” Computers &
Mathematics with Applications, vol. 61, no. 2, pp. 367–373, 2011.

[19] M. El-Shahed and F. M. Al-Askar, “Positive solutions for
boundary value problem of nonlinear fractional q-difference
equation,” ISRN Mathematical Analysis, vol. 2011, Article ID
385459, 12 pages, 2011.

[20] S. Liang and J. Zhang, “Existence and uniqueness of posi-
tive solutions for three-point boundary value problem with
fractional q-differences,” Journal of Applied Mathematics and
Computing, vol. 40, no. 1-2, pp. 277–288, 2012.

[21] J. R. Graef and L. Kong, “Positive solutions for a class of higher
order boundary value problems with fractional q-derivatives,”
Applied Mathematics and Computation, vol. 218, no. 19, pp.
9682–9689, 2012.

[22] M. H. Annaby and Z. S. Mansour, q-Fractional Calculus and
Equations, Springer, Berlin, Germany, 2012.

[23] I. Podlubny, Fractional Differential Equations, vol. 198 ofMath-
ematics in Science and Engineering, Academic Press, London,
UK, 1999.

[24] C. F. Li, X. N. Luo, and Y. Zhou, “Existence of positive solutions
of the boundary value problem for nonlinear fractional differ-
ential equations,” Computers & Mathematics with Applications,
vol. 59, no. 3, pp. 1363–1375, 2010.

[25] G. Wang, B. Ahmad, and L. Zhang, “Some existence results
for impulsive nonlinear fractional differential equations with
mixed boundary conditions,” Computers & Mathematics with
Applications, vol. 62, no. 3, pp. 1389–1397, 2011.

[26] B. Ahmad and S. Sivasundaram, “On four-point nonlocal
boundary value problems of nonlinear integro-differential
equations of fractional order,” Applied Mathematics and Com-
putation, vol. 217, no. 2, pp. 480–487, 2010.
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