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By using the cone theory and the Banach contraction mapping principle, the existence and uniqueness results are established for
nonlinear higher-order differential equation boundary value problemswith sign-changingGreen’s function.The theorems obtained
are very general and complement previous known results.

1. Introduction

Boundary value problems (BVPs for short) for nonlinear
differential equations arise in a variety of areas of applied
mathematics, physics, and variational problems of control
theory. The study of multipoint BVPs for second-order
differential equations was initiated by Bicadze and Samarskĭı
[1] and later continued by II’in and Moiseev [2, 3] and
Gupta [4]. Since then, great efforts have been devoted to
nonlinear multipoint BVPs due to their theoretical challenge
and great application potential. Many results on the existence
of solutions for multipoint BVPs have been obtained; the
methods used therein mainly depend on the fixed point
theorems, degree theory, upper and lower techniques, and
monotone iteration. The existence results are available in the
literature [5–25] and the references therein.

Recently, by applying the fixed point theorems on cones,
the authors of papers [5–7] established the existence and
multiplicity of positive solutions for the 𝑛th-order three-point
BVP:

𝑢
(𝑛)
(𝑡) + 𝑎 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢

(0) = ⋅ ⋅ ⋅ = 𝑢

(𝑛−2)
(0) = 0, 𝑢 (1) = 𝛼𝑢 (𝜂) ,

(1)

where 𝑛 ≤ 2, 0 < 𝜂 < 1 and 0 < 𝛼𝜂𝑛−1 < 1. The 𝑛th-order
𝑚-point BVP

𝑢
(𝑛)
(𝑡) + 𝑎 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢

(0) = ⋅ ⋅ ⋅ = 𝑢

(𝑛−2)
(0) = 0, 𝑢 (1) =

𝑚−2

∑

𝑖=1

𝛼𝑖𝑢 (𝜂𝑖)

(2)

has been studied in [8–10], where 𝑛 ≥ 2, 0 < 𝜂1 < 𝜂2 <
⋅ ⋅ ⋅ 𝜂𝑚−2 < 1 and 𝛼𝑖 > 0(𝑖 = 1, 2, . . . , 𝑚 − 2) with 0 <
∑
𝑚−2

𝑖=1 𝛼𝑖𝜂
𝑛−1
𝑖 < 1. The existence and multiplicity results of

solutions were shown by using various fixed point theorems
and fixed point index theory.

By using the cone theory and the Banach contraction
mapping principle, the author [26] established the existence
and uniqueness for singular third-order three-point bound-
ary value problems.

The purpose of this paper is to investigate the existence
and uniqueness of solution of the following higher-order
differential equation boundary value problem:

𝑢
(𝑛)
(𝑡) + 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢


(𝑡) , . . . , 𝑢

(𝑛−1)
(𝑡)) = 0, 𝑡 ∈ 𝐽,

𝑢 (0) = 𝑢

(0) = ⋅ ⋅ ⋅ = 𝑢

(𝑛−2)
(0) = 0, 𝑢 (1) =

𝑚−2

∑

𝑖=1

𝛼𝑖𝑢 (𝜂𝑖) ,

(3)
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where 𝑛 ≥ 2, 𝑓 ∈ 𝐶(𝐽 × R𝑛,R), 𝐽 = (0, 1), ∑𝑚−2𝑖=1 𝛼𝑖𝜂
𝑛−1
𝑖

̸= 1, and 0 < 𝜂1 < ⋅ ⋅ ⋅ < 𝜂𝑚−2 < 1.
Here, we give the unique solution of BVP (3) under the

conditions that 𝑓 is mixed nonmonotone. The methods used
in this paper are motivated by [26], and the arguments are
based upon the cone theory and the Banach contraction
mapping principle.

2. The Preliminary Lemmas

Lemma 1. For any 𝑓 ∈ 𝐿(𝐼), the BVP

𝑢

(𝑡) + 𝑓 (𝑡) = 0, 𝑡 ∈ 𝐽, (4)

∫

1

0

(1 − 𝑡)
𝑛−2
𝑢 (𝑡) 𝑑𝑡 =

𝑚−2

∑

𝑖=1

𝛼𝑖 ∫

𝜂𝑖

0

(𝜂𝑖 − 𝑡)
𝑛−2
𝑢 (𝑡) 𝑑𝑡 (5)

has a unique solution 𝑢(𝑡) = ∫1
0
𝐺(𝑡, 𝑠)𝑓(𝑠)𝑑𝑠, where

𝐺 (𝑡, 𝑠) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

−1 +

1

𝜎

[(1 − 𝑠)
𝑛−1
−

𝑚−2

∑

𝑖=1

𝛼𝑖(𝜂𝑖 − 𝑠)
𝑛−1
] ,

0 ≤ 𝑠 ≤ 𝜂1, 𝑠 ≤ 𝑡,

1

𝜎

[(1 − 𝑠)
𝑛−1
−

𝑚−2

∑

𝑖=1

𝛼𝑖(𝜂𝑖 − 𝑠)
𝑛−1
] ,

0 ≤ 𝑡 ≤ 𝑠 ≤ 𝜂1,

−1 +

1

𝜎

[(1 − 𝑠)
𝑛−1
−

𝑚−2

∑

𝑖=𝑗+1

𝛼𝑖(𝜂𝑖 − 𝑠)
𝑛−1
] ,

𝜂𝑗 ≤ 𝑠 ≤ 𝜂𝑗+1, 𝑠 ≤ 𝑡,

1

𝜎

[(1 − 𝑠)
𝑛−1
−

𝑚−2

∑

𝑖=𝑗+1

𝛼𝑖(𝜂𝑖 − 𝑠)
𝑛−1
] ,

𝜂𝑗 ≤ 𝑠 ≤ 𝜂𝑗+1, 𝑡 ≤ 𝑠,

−1 +

(1 − 𝑠)
𝑛−1

𝜎

, 𝜂𝑚−2 ≤ 𝑠 ≤ 𝑡 ≤ 1,

(1 − 𝑠)
𝑛−1

𝜎

, 𝜂𝑚−2 ≤ 𝑠 ≤ 1, 𝑡 ≤ 𝑠,

𝜎 = 1 −

𝑚−2

∑

𝑖=1

𝛼𝑖𝜂
𝑛−1

𝑖 , 𝐼 = [0, 1] .

(6)

Proof. First, suppose that 𝑢 ∈ 𝐶(𝐼) is a solution to problem
(4) and (5). It is easy to see by integration of (4) that

𝑢 (𝑡) = 𝑢 (0) − ∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠. (7)

Substituting (7) into (5), we obtain

∫

1

0

(1 − 𝑡)
𝑛−2
[𝑢 (0) − ∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠] 𝑑𝑡

=

𝑚−2

∑

𝑖=1

𝛼𝑖 ∫

𝜂𝑖

0

(𝜂𝑖 − 𝑡)
𝑛−2
[𝑢 (0) − ∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠] 𝑑𝑡,

(8)

and so

𝑢 (0) = [∫

1

0

(1 − 𝑡)
𝑛−2
𝑑𝑡 −

𝑚−2

∑

𝑖=1

𝛼𝑖 ∫

𝜂𝑖

0

(𝜂𝑖 − 𝑡)
𝑛−2
𝑑𝑡]

−1

× [∫

1

0

(1 − 𝑡)
𝑛−2
∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 𝑑𝑡

−

𝑚−2

∑

𝑖=1

𝛼𝑖 ∫

𝜂𝑖

0

(𝜂𝑖 − 𝑡)
𝑛−2
∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 𝑑𝑡]

= (

1 − ∑
𝑚−2

𝑖=1 𝛼𝑖𝜂
𝑛−1
𝑖

𝑛 − 1

)

−1

× [∫

1

0

(1 − 𝑡)
𝑛−2
∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 𝑑𝑡

−

𝑚−2

∑

𝑖=1

𝛼𝑖 ∫

𝜂𝑖

0

(𝜂𝑖 − 𝑡)
𝑛−2
∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 𝑑𝑡]

=

𝑛 − 1

𝜎

[∫

1

0

(1 − 𝑡)
𝑛−2
∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 𝑑𝑡

−

𝑚−2

∑

𝑖=1

𝛼𝑖 ∫

𝜂𝑖

0

(𝜂𝑖 − 𝑡)
𝑛−2
∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 𝑑𝑡]

=

𝑛 − 1

𝜎

[∫

1

0

𝑓 (𝑠) ∫

1

𝑠

(1 − 𝑡)
𝑛−2
𝑑𝑡 𝑑𝑠

−

𝑚−2

∑

𝑖=1

𝛼𝑖 ∫

𝜂𝑖

0

𝑓 (𝑠) ∫

𝜂𝑖

𝑠

(𝜂𝑖 − 𝑡)
𝑛−2
𝑑𝑡 𝑑𝑠]

=

1

𝜎

[∫

1

0

𝑓 (𝑠) (1 − 𝑠)
𝑛−1
𝑑𝑠

−

𝑚−2

∑

𝑖=1

𝛼𝑖 ∫

𝜂𝑖

0

𝑓 (𝑠) (𝜂𝑖 − 𝑠)
𝑛−1
𝑑𝑠] .

(9)

Substituting (9) into (7), we have

𝑢 (𝑡) = − ∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠

+

1

𝜎

[∫

1

0

𝑓 (𝑠) (1 − 𝑠)
𝑛−1
𝑑𝑠

−

𝑚−2

∑

𝑖=1

𝛼𝑖 ∫

𝜂𝑖

0

𝑓 (𝑠) (𝜂𝑖 − 𝑠)
𝑛−1
𝑑𝑠]

= ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠) 𝑑𝑠.

(10)

Conversely, suppose that 𝑢(𝑡) = ∫1
0
𝐺(𝑡, 𝑠)𝑓(𝑠)𝑑𝑠; then it is

easy to verify that (4) and (5) are satisfied. The lemma is
proved.
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For any 𝑢 ∈ 𝐶(𝐼), let

(𝐼𝑖𝑢) (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝑖−1

(𝑖 − 1)!

𝑢 (𝑠) 𝑑𝑠, 𝑖 = 1, 2, . . . , 𝑛 − 1,

(𝐹𝑢) (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, (𝐼𝑛−1𝑢) (𝑠) , . . . ,

(𝐼1𝑢) (𝑠) , 𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐼.

(11)

Lemma 2. (i) If 𝑢 ∈ 𝐶𝑛−1(𝐼) is a solution to problem (3), then
V(𝑡) = 𝑢(𝑛−1)(𝑡) ∈ 𝐶(𝐼) is a fixed point of 𝐹.
(ii) If V ∈ 𝐶(𝐼) is a fixed point of𝐹, then 𝑢(𝑡) = (𝐼𝑛−1V)(𝑡) =

∫

𝑡

0
((𝑡 − 𝑠)

𝑛−2
/(𝑛−2)!) V(𝑠)𝑑𝑠 ∈ 𝐶𝑛−1(𝐼) is a solution to problem

(3).

By Lemma 1, the proof follows by routine calculations.
Let

ℎ1 (𝑡) = max{∫
1

0

|𝐺 (𝑡, 𝑠)| 𝑑𝑠,∫

𝑡

0

∫

1

0

|𝐺 (𝑠, 𝑥)| 𝑑𝑥 𝑑𝑠},

ℎ𝑘 (𝑡) = max {∫
1

0

|𝐺 (𝑡, 𝑠)| ℎ𝑘−1 (𝑠) 𝑑𝑠,

∫

𝑡

0

∫

1

0

|𝐺 (𝑠, 𝑥)| ℎ𝑘−1 (𝑥) 𝑑𝑥 𝑑𝑠} ,

𝑘 = 2, 3, . . . ,

𝜌 (𝐺) = lim
𝑘→∞

(sup
𝑡∈𝐽

ℎ𝑘 (𝑡))

−1/𝑘

.

(12)

It is easy to see that 𝜌(𝐺) ≥ (sup𝑡∈𝐽ℎ𝑘(𝑡))
−1/𝑘

≥

(sup𝑡,𝑠∈𝐽|𝐺(𝑡, 𝑠)|)
−1
> 0.

Lemma3 (see [27, 28]). 𝑃 is a generating cone in Banach space
(𝐸, ‖ ⋅ ‖) if and only if there exists a constant 𝜏 > 0 such that
every element 𝑢 ∈ 𝐸 can be represented in the form 𝑢 = V − 𝑤,
where V, 𝑤 ∈ 𝑃 and ‖V‖ ≤ 𝜏‖𝑢‖, ‖𝑤‖ ≤ 𝜏‖𝑢‖.

3. Main Results

This section discusses the solution of nonlinear higher-order
differential equation BVP (3).

Let 𝑃 = {𝑢 ∈ 𝐶(𝐼) | 𝑢(𝑡) ≥ 0, for all 𝑡 ∈ [0, 1]}.
Obviously, 𝑃 is a normal solid cone of Banach space 𝐶(𝐼), by
Lemma 2.1.2 in [29], and we have that 𝑃 is a generating cone
in 𝐶(𝐼).

Theorem 4. Suppose that 𝑔 ∈ 𝐶(𝐽 × R2𝑛,R), 𝑓(𝑡, 𝑥0, 𝑥1, . . . ,
𝑥𝑛−1) = 𝑔(𝑡, 𝑥0, 𝑥0, 𝑥1, 𝑥1, . . . , 𝑥𝑛−1, 𝑥𝑛−1), and there exist
positive constants 𝐾0,𝑀0, 𝐾1,𝑀1, . . . , 𝐾𝑛−1,𝑀𝑛−1 with

𝐾0 +𝑀0

(𝑛 − 1)!

+

𝐾1 +𝑀1

(𝑛 − 2)!

+ ⋅ ⋅ ⋅ +

𝐾𝑛−3 +𝑀𝑛−3

2!

+ 𝐾𝑛−2

+𝑀𝑛−2 + 𝐾𝑛−1 +𝑀𝑛−1 < 𝜌 (𝐺) ,

(13)

such that for any 𝑡 ∈ 𝐼, 𝑠01, 𝑡01, 𝑠02, 𝑡02, 𝑠11, 𝑡11, 𝑠12, 𝑡12,
. . . , 𝑠1,𝑛−1, 𝑡1,𝑛−1, 𝑠2,𝑛−1, 𝑡2,𝑛−1 ∈ R with 𝑠01 ≤ 𝑡01, 𝑠02 ≥

𝑡02, 𝑠11 ≤ 𝑡11, 𝑠12 ≥ 𝑡12,. . . , 𝑠𝑛−1,1 ≤ 𝑡𝑛−1,1, 𝑠𝑛−1,2 ≥ 𝑡𝑛−1,2, one
has
− 𝐾0 (𝑡01 − 𝑠01) − 𝑀0 (𝑠02 − 𝑡02) − 𝐾1 (𝑡11 − 𝑠11)

− 𝑀1 (𝑠12 − 𝑡12) − ⋅ ⋅ ⋅ − 𝐾𝑛−1 (𝑡𝑛−1,1 − 𝑠𝑛−1,1)

− 𝑀𝑛−1 (𝑠𝑛−1,2 − 𝑡𝑛−1,2)

≤ 𝑔 (𝑡, 𝑠01, 𝑠02, 𝑠11, 𝑠12, . . . , 𝑠𝑛−1,1, 𝑠𝑛−1,2)

− 𝑔 (𝑡, 𝑡01, 𝑡02, 𝑡11, 𝑡12, . . . , 𝑡𝑛−1,1, 𝑡𝑛−1,2)

≤ −𝐾0 (𝑡01 − 𝑠01) − 𝑀0 (𝑠02 − 𝑡02) − 𝐾1 (𝑡11 − 𝑠11)

− 𝑀1 (𝑠12 − 𝑡12) − ⋅ ⋅ ⋅ − 𝐾𝑛−1 (𝑡𝑛−1,1 − 𝑠𝑛−1,1)

− 𝑀𝑛−1 (𝑠𝑛−1,2 − 𝑡𝑛−1,2) ,

(14)

and there exist 𝑢0, V0 ∈ 𝐶𝑛−1(𝐼), such that

∫

1

0

𝑔 (𝑡, 𝑢0 (𝑡) , V0 (𝑡) , 𝑢


0 (𝑡) , V


0 (𝑡) , ⋅ ⋅ ⋅ ,

𝑢
(𝑛−1)

0 (𝑡) , V(𝑛−1)0 (𝑡)) 𝑑𝑡

(15)

converges. Then, BVP (3) has a unique solution 𝐼𝑛−1𝑢∗ in 𝐶(𝐼),
and moreover, for any 𝑢0 ∈ 𝐶(𝐼), the iterative sequence

𝑢𝑚 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, (𝐼𝑛−1𝑢𝑚−1) (𝑠) , . . . ,

(𝐼1𝑢𝑚−1) (𝑠) , 𝑢𝑚−1 (𝑠)) 𝑑𝑠,

𝑚 = 1, 2, . . . ,

(16)

converges to 𝑢∗ in 𝐶(𝐼) (𝑚 → ∞).

Remark 5. Recently, in the study of BVP (3), almost all
the papers have supposed that Green’s function 𝐺(𝑡, 𝑠) is
nonnegative. However, the scope of 𝛼𝑖 is not limited to
∑
𝑚−2

𝑖=1 𝛼𝑖𝜂𝑖 < 1 in Theorem 4, so, we do not need to suppose
that 𝐺(𝑡, 𝑠) is nonnegative.

Remark 6. The function 𝑓 in Theorem 4 is not monotone or
convex; the conclusions and the proof used in this paper are
different from the known papers in essence.

Proof of Theorem 4. It is easy to see that, for any 𝑡 ∈ 𝐽, 𝐺(𝑡, 𝑠)
can be divided into finite partitionedmonotone and bounded
function on (0, 1), and then, by (15), we have that

∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠, 𝑢0 (𝑠) , V0 (𝑠) , 𝑢


0 (𝑠) , V


0 (𝑠) , . . . ,

𝑢
(𝑛−1)

0 (𝑠) , V(𝑛−1)0 (𝑠)) 𝑑𝑠

(17)

converges. Let 𝑝(𝑡) = 𝑢(𝑛−1)0 (𝑡), 𝑞(𝑡) = V(𝑛−1)0 (𝑡); then

∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠, (𝐼𝑛−1𝑝) (𝑠) , (𝐼𝑛−1𝑞) (𝑠) , . . . ,

(𝐼1𝑝) (𝑠) , (𝐼1𝑞) (𝑠) , 𝑝 (𝑡) , 𝑞 (𝑠)) 𝑑𝑠

(18)

converges.
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For any 𝑢, V ∈ 𝐶(𝐼), let 𝑥(𝑡) = |𝑝(𝑡)| + |𝑢(𝑡)|, 𝑦(𝑡) =
−|𝑞(𝑡)| − |V(𝑡)| and then 𝑥 ≥ 𝑝, 𝑦 ≤ 𝑞. By (14), we have

− 𝐾0 (𝐼𝑛−1𝑥 − 𝐼𝑛−1𝑝) (𝑡) − 𝑀0 (𝐼𝑛−1𝑞 − 𝐼𝑛−1𝑦) (𝑡)

− 𝐾1 (𝐼𝑛−2𝑥 − 𝐼𝑛−2𝑝) (𝑡) − 𝑀1 (𝐼𝑛−2𝑞 − 𝐼𝑛−2𝑦) (𝑡)

− ⋅ ⋅ ⋅ − 𝐾𝑛−2 (𝐼1𝑥 − 𝐼1𝑝) (𝑡) − 𝑀𝑛−2 (𝐼1𝑞 − 𝐼1𝑦) (𝑡)

− 𝐾𝑛−1 (𝑥 − 𝑝) (𝑡) − 𝑀𝑛−1 (𝑞 − 𝑦) (𝑡)

≤ 𝑔 (𝑡, (𝐼𝑛−1𝑥) (𝑡) , (𝐼𝑛−1𝑦) (𝑡) , . . . ,

(𝐼1𝑥) (𝑡) , (𝐼1𝑦) (𝑡) , 𝑥 (𝑡) , 𝑦 (𝑡))

− 𝑔 (𝑡, (𝐼𝑛−1𝑝) (𝑡) , (𝐼𝑛−1𝑞) (𝑡) , . . . ,

(𝐼1𝑝) (𝑡) , (𝐼1𝑞) (𝑡) , 𝑝 (𝑡) , 𝑞 (𝑡))

≤ 𝐾0 (𝐼𝑛−1𝑥 − 𝐼𝑛−1𝑝) (𝑡) + 𝑀0 (𝐼𝑛−1𝑞 − 𝐼𝑛−1𝑦) (𝑡)

+ 𝐾1 (𝐼𝑛−2𝑥 − 𝐼𝑛−2𝑝) (𝑡) + 𝑀1 (𝐼𝑛−2𝑞 − 𝐼𝑛−2𝑦) (𝑡)

+ ⋅ ⋅ ⋅ + 𝐾𝑛−2 (𝐼1𝑥 − 𝐼1𝑝) (𝑡) + 𝑀𝑛−2 (𝐼1𝑞 − 𝐼1𝑦) (𝑡)

+ 𝐾𝑛−1 (𝑥 − 𝑝) (𝑡) + 𝑀𝑛−1 (𝑞 − 𝑦) (𝑡) .

(19)

Hence,





𝐺 (𝑡, 𝑠) 𝑔 (𝑡, (𝐼𝑛−1𝑥) (𝑡) , (𝐼𝑛−1𝑦) (𝑡) , . . . ,

(𝐼1𝑥) (𝑡) , (𝐼1𝑦) (𝑡) , 𝑥 (𝑡) , 𝑦 (𝑡))

− 𝐺 (𝑡, 𝑠) 𝑔 (𝑡, (𝐼𝑛−1𝑝) (𝑡) , (𝐼𝑛−1𝑞) (𝑡) , . . . ,

(𝐼1𝑝) (𝑡) , (𝐼1𝑞) (𝑡) , 𝑝 (𝑡) , 𝑞 (𝑡))





≤ |𝐺 (𝑡, 𝑠)| [𝐾0




(𝐼𝑛−1𝑥) (𝑡) − (𝐼𝑛−1𝑝) (𝑡)






+ 𝑀0




(𝐼𝑛−1𝑞) (𝑡) − (𝐼𝑛−1𝑦) (𝑡)






+ 𝐾1




(𝐼𝑛−2𝑥) (𝑡) − (𝐼𝑛−2𝑝) (𝑡)






+ 𝑀1




(𝐼𝑛−2𝑞) (𝑡) − (𝐼𝑛−2𝑦) (𝑡)






+ ⋅ ⋅ ⋅ + 𝐾𝑛−2




(𝐼1𝑥) (𝑡) − (𝐼1𝑝) (𝑡)






+ 𝑀𝑛−2




(𝐼1𝑞) (𝑡) − (𝐼1𝑦) (𝑡)






+𝐾𝑛−1




𝑥 (𝑡) − 𝑝 (𝑡)





+ 𝑀𝑛−1





𝑞 (𝑡) − 𝑦 (𝑡)





]

≤ |𝐺 (𝑡, 𝑠)| [(𝐾0 + 𝐾1 + ⋅ ⋅ ⋅ + 𝐾𝑛−1)




𝑥 − 𝑝






+ (𝑀0 +𝑀1 + ⋅ ⋅ ⋅ + 𝑀𝑛−1)




𝑞 − 𝑦





] .

(20)

Following the former inequality, we can easily have that

∫

1

0

𝐺 (𝑡, 𝑠) [𝑔 (𝑠, (𝐼𝑛−1𝑥) (𝑠) , (𝐼𝑛−1𝑦) (𝑠) , . . . ,

(𝐼1𝑥) (𝑠) , (𝐼1𝑦) (𝑠) , 𝑥 (𝑠) , 𝑦 (𝑠))

− 𝑔 (𝑠, (𝐼𝑛−1𝑝) (𝑠) , (𝐼𝑛−1𝑞) (𝑠) , . . . ,

(𝐼1𝑝) (𝑠) , (𝐼1𝑞) (𝑠) , 𝑝 (𝑠) , 𝑞 (𝑠))] 𝑑𝑠

(21)

converges, thus,

∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠, (𝐼𝑛−1𝑥) (𝑠) , (𝐼𝑛−1𝑦) (𝑠) , . . . ,

(𝐼1𝑥) (𝑠) , (𝐼1𝑦) (𝑠) , 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠

= ∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠, (𝐼𝑛−1𝑝) (𝑠) , (𝐼𝑛−1𝑞) (𝑠) , . . . ,

(𝐼1𝑝) (𝑠) , (𝐼1𝑞) (𝑠) , 𝑝 (𝑠) , 𝑞 (𝑠)) 𝑑𝑠

+ ∫

1

0

𝐺 (𝑡, 𝑠) [𝑔 (𝑠, (𝐼𝑛−1𝑥) (𝑠) , (𝐼𝑛−1𝑦) (𝑠) , . . . ,

(𝐼1𝑥) (𝑠) , (𝐼1𝑦) (𝑠) , 𝑥 (𝑠) , 𝑦 (𝑠))

− 𝑔 (𝑠, (𝐼𝑛−1𝑝) (𝑠) , (𝐼𝑛−1𝑞) (𝑠) , . . . ,

(𝐼1𝑝) (𝑠) , (𝐼1𝑞) (𝑠) , 𝑝 (𝑠) , 𝑞 (𝑠))] 𝑑𝑠

(22)

is converged.
Similarly, by 𝑥 ≥ 𝑢, 𝑦 ≤ V,

∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠, (𝐼𝑛−1𝑥) (𝑠) , (𝐼𝑛−1𝑦) (𝑠) , . . . ,

(𝐼1𝑥) (𝑠) , (𝐼1𝑦) (𝑠) , 𝑥 (𝑠) , 𝑦 (𝑠)) 𝑑𝑠

(23)

is converged, and we have that

∫

1

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑠, (𝐼𝑛−1𝑢) (𝑠) , (𝐼𝑛−1V) (𝑠) , . . . ,

(𝐼1𝑢) (𝑠) , (𝐼1V) (𝑠) , 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠

(24)

converges.
Define the operator 𝐹 : 𝐶(𝐼) × 𝐶(𝐼) → 𝐶(𝐼) by

𝐹 (𝑢, V) (𝑡) = ∫
1

0

𝐺 (𝑡, 𝑠)

× 𝑔 (𝑠, (𝐼𝑛−1𝑢) (𝑠) , (𝐼𝑛−1V) (𝑠) , . . . ,

(𝐼1𝑢) (𝑠) , (𝐼1V) (𝑠) , 𝑢 (𝑠) , V (𝑠)) 𝑑𝑠,

∀𝑡 ∈ 𝐼.

(25)



Abstract and Applied Analysis 5

Let

(𝐴0𝑢) (𝑡) = ∫

1

0

|𝐺 (𝑡, 𝑠)| (𝐾0𝑢) (𝑠) 𝑑𝑠,

(𝐵0V) (𝑡) = ∫
1

0

|𝐺 (𝑡, 𝑠)| (𝑀0V) (𝑠) 𝑑𝑠,

(𝐴 𝑖𝑢) (𝑡) = ∫

1

0

|𝐺 (𝑡, 𝑠)| (𝐾𝑖 (𝐼𝑖𝑢)) (𝑠) 𝑑𝑠,

𝑖 = 1, 2, . . . , 𝑛 − 1,

(𝐵𝑖V) (𝑡) = ∫
1

0

|𝐺 (𝑡, 𝑠)| (𝑀𝑖 (𝐼𝑖V)) (𝑠) 𝑑𝑠,

𝑖 = 1, 2, . . . , 𝑛 − 1,

(𝐴𝑢) (𝑡) = (𝐴0𝑢 + 𝐴1𝑢 + ⋅ ⋅ ⋅ + 𝐴𝑛−1𝑢) (𝑡) ,

(𝐵V) (𝑡) = (𝐵0V + 𝐵1V + ⋅ ⋅ ⋅ + 𝐵𝑛−1V) (𝑡) .

(26)

By (14) and (25), for any 𝑢1, 𝑢2, V1, V2 ∈ 𝐶(𝐼), 𝑢1 ≤ 𝑢2, V1 ≥ V2,
we have
− 𝐴 (𝑢2 − 𝑢1) − 𝐵 (V1 − V2)

≤ 𝐹 (𝑢1, V1) − 𝐹 (𝑢2, V2)

≤ 𝐴 (𝑢2 − 𝑢1) + 𝐵 (V1 − V2) ,

(27)

((𝐴 + 𝐵) 𝑢) (𝑡)

= ∫

1

0

|𝐺 (𝑡, 𝑠)| [𝐾0𝑢 +𝑀0𝑢 + 𝐾1 (𝐼1𝑢) +𝑀1 (𝐼1𝑢) + ⋅ ⋅ ⋅

+ 𝐾𝑛−1 (𝐼𝑛−1𝑢) +𝑀𝑛−1 (𝐼𝑛−1𝑢)] (𝑠) 𝑑𝑠

≤ (

𝐾0 +𝑀0

(𝑛 − 2)!

+

𝐾1 +𝑀1

(𝑛 − 3)!

+ ⋅ ⋅ ⋅ +

𝐾𝑛−3 +𝑀𝑛−3

1!

+ 𝐾𝑛−2 +𝑀𝑛−2 + 𝐾𝑛−1 +𝑀𝑛−1) ⋅ ‖𝑢‖ ℎ1 (𝑡) ,

((𝐴 + 𝐵)
𝑚
𝑢) (𝑡)

= ∫

1

0

|𝐺 (𝑡, 𝑠)| (𝐴 + 𝐵) (𝐴 + 𝐵)
𝑚−1
(𝑢) (𝑠) 𝑑𝑠

≤ (

𝐾0 +𝑀0

(𝑛 − 2)!

+

𝐾1 +𝑀1

(𝑛 − 3)!

+ ⋅ ⋅ ⋅ +

𝐾𝑛−3 +𝑀𝑛−3

1!

+ 𝐾𝑛−2 +𝑀𝑛−2 + 𝐾𝑛−1 +𝑀𝑛−1)

𝑚

⋅ ‖𝑢‖ ℎ𝑚 (𝑡) ,

𝑚 = 2, 3, . . . ,





(𝐴 + 𝐵)

𝑚



≤ (

𝐾0 +𝑀0

(𝑛 − 2)!

+

𝐾1 +𝑀1

(𝑛 − 3)!

+ ⋅ ⋅ ⋅

+

𝐾𝑛−3 +𝑀𝑛−3

1!

+ 𝐾𝑛−2 +𝑀𝑛−2

+ 𝐾𝑛−1 +𝑀𝑛−1)

𝑚

⋅ sup
𝑡∈𝐽

𝑒𝑚 (𝑡) ,

𝑟 (𝐴 + 𝐵) ≤ (

𝐾0 +𝑀0

(𝑛 − 2)!

+

𝐾1 +𝑀1

(𝑛 − 3)!

+ ⋅ ⋅ ⋅

+

𝐾𝑛−3 +𝑀𝑛−3

1!

+ 𝐾𝑛−2 +𝑀𝑛−2

+ 𝐾𝑛−1 +𝑀𝑛−1)

× (𝜌 (𝐺))
−1
< 1.

(28)

So we can choose 𝛽 ∈ (0, 1), which satisfies lim𝑘→∞
‖(𝐴 + 𝐵)

𝑘
‖

1/𝑘
= 𝑟(𝐴 + 𝐵) < 𝛽 < 1, and so there exists a

positive integer 𝑘0 such that






(𝐴 + 𝐵)

𝑘



< 𝛽
𝑘
< 1, 𝑘 ≥ 𝑘0. (29)

Since𝑃 is a generating cone in𝐶(𝐼), from Lemma 3, there
exists 𝜏 > 0 such that every element 𝑢 ∈ 𝐶(𝐼) can be
represented in

𝑢 = V − 𝑤, V, 𝑤 ∈ 𝑃,

‖V‖ ≤ 𝜏 ‖𝑢‖ , ‖𝑤‖ ≤ 𝜏 ‖𝑢‖ ;

(30)

this implies

− (V + 𝑤) ≤ 𝑢 ≤ V + 𝑤. (31)

Let

‖𝑢‖0 = inf {‖ℎ‖ | ℎ ∈ 𝑃, −ℎ ≤ 𝑢 ≤ ℎ} . (32)

By (31), we know that ‖𝑢‖0 is well defined for any 𝑢 ∈ 𝐶(𝐼). It
is easy to verify that ‖ ⋅ ‖0 is a norm in 𝐶(𝐼). By (30)–(32), we
get

‖𝑢‖0 ≤ ‖V + 𝑤‖ ≤ 2𝜏 ‖𝑢‖ , ∀𝑢 ∈ 𝐶 (𝐼) . (33)

On the other hand, for any ℎ ∈ 𝑃which satisfies −ℎ ≤ 𝑢 ≤
ℎ, we have 0 ≤ 𝑢 + ℎ ≤ 2ℎ; thus, ‖𝑢‖ ≤ ‖𝑢 + ℎ‖ + ‖ − ℎ‖ ≤
(2𝑁+1)‖ℎ‖, where𝑁 denotes the normal constant of𝑃. Since
ℎ is arbitrary, we have

‖𝑢‖ ≤ (2𝑁 + 1) ‖𝑢‖0, ∀𝑢 ∈ 𝐶 (𝐼) . (34)

It follows from (33) and (34) that the norms ‖ ⋅ ‖0 and ‖ ⋅ ‖ are
equivalent. Now, for any 𝑢, V ∈ 𝐶(𝐼) and ℎ ∈ 𝑃which satisfies
−ℎ ≤ 𝑢 − V ≤ ℎ, let

𝑢1 =
1

2

(𝑢 + V − ℎ) ,

𝑢2 =
1

2

(𝑢 − V + ℎ) ,

𝑢3 =
1

2

(−𝑢 + V + ℎ) ,

(35)

then 𝑢 ≥ 𝑢1, V ≥ 𝑢1, 𝑢 − 𝑢1 = 𝑢2, V − 𝑢1 = 𝑢3, 𝑢2 + 𝑢3 = ℎ.
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It follows from (27) that

−𝐴𝑢2 ≤ 𝐹 (𝑢, 𝑢) − 𝐹 (𝑢1, 𝑢) ≤ 𝐴𝑢2, (36)

−𝐴𝑢3 − 𝐵𝑢2 ≤ 𝐹 (V, 𝑢1) − 𝐹 (𝑢1, 𝑢) ≤ 𝐴𝑢2 + 𝐵𝑢3, (37)

−𝐵𝑢3 ≤ 𝐹 (V, 𝑢1) − 𝐹 (V, V) ≤ 𝐹𝑢3; (38)

subtracting (37) from (36) + (38), we obtain

− (𝐴 + 𝐵) ℎ ≤ 𝐹 (𝑢, 𝑢) − 𝐹 (V, V) ≤ (𝐴 + 𝐵) ℎ. (39)

Let 𝐺(𝑢) = 𝐹(𝑢, 𝑢); then we have

− (𝐴 + 𝐵) ℎ ≤ 𝐺 (𝑢) − 𝐺 (V) ≤ (𝐴 + 𝐵) ℎ. (40)

As 𝐴 and 𝐵 are both positive linear bounded operators,
so 𝐴 + 𝐵 is a positive linear bounded operator, and therefore,
(𝐴 + 𝐵)ℎ ∈ 𝑃. Hence, by mathematical induction, it is easy to
know that for natural number 𝑘0 in (29), we have

−(𝐴 + 𝐵)
𝑘0
ℎ ≤ 𝐺

𝑘0
(𝑢) − 𝐺

𝑘0
(V)

≤ (𝐴 + 𝐵)
𝑘0
ℎ, (𝐴 + 𝐵)

𝑘0
ℎ ∈ 𝑃;

(41)

since (𝐴 + 𝐵)𝑘0ℎ ∈ 𝑃, we see that





𝐺
𝑘0
(𝑢) − 𝐺

𝑘0
(V)




0
≤






(𝐴 + 𝐵)

𝑘0





‖ℎ‖ , (42)

which implies by virtue of the arbitrariness of ℎ that





𝐺
𝑘0
𝑢 − 𝐺

𝑘0V




0
≤






(𝐴 + 𝐵)

𝑘0





‖𝑢 − V‖0

≤ 𝛽
𝑘0
‖𝑢 − V‖0.

(43)

By 0 < 𝛽 < 1, we have 0 < 𝛽𝑘0 < 1. Thus, the Banach
contraction mapping principle implies that 𝐺𝑘0 has a unique
fixed point 𝑢∗ in𝐶(𝐼), and so𝐺 has a unique fixed point 𝑢∗ in
𝐶(𝐼); by the definition of 𝐺, 𝐹 has a unique fixed point 𝑢∗ in
𝐶(𝐼); then, by Lemma 2, 𝐼𝑛−1𝑢

∗ is the unique solution of (3).
And, for any𝑢0 ∈ 𝐶(𝐼), let𝑢𝑚 = 𝐹(𝑢𝑚−1, 𝑢𝑚−1) (𝑚 = 1, 2, . . .);
we have ‖𝑢𝑚 − 𝑢

∗
‖0 → 0 (𝑘 → ∞). By the equivalence of

‖ ⋅ ‖0 and ‖ ⋅ ‖ again, we get ‖𝑢𝑚 − 𝑢
∗
‖ → 0 (𝑚 → ∞). This

completes the proof.

4. Example

In this paper, the results apply to a very wide range of
functions, andwe are following only one example to illustrate.

Consider the following 𝑛th-order three-point boundary
value problem:

𝑢
(𝑛)
(𝑡) + (𝑆0𝑢) (𝑡) + (𝑆1𝑢


) (𝑡)

+ 𝑘 (𝑡) ln (3 + |𝑥 (𝑡)|) , 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢

(0) = ⋅ ⋅ ⋅ = 𝑢

(𝑛−2)
(0) = 0,

𝑢 (1) = 2𝑢 (

1

2

) ,

(44)

where (𝑆𝑖𝑢
(𝑖)
)(𝑡) = ∫

1

0
ℎ𝑖(𝑡, 𝑠)𝑢

(𝑖)
(𝑠) 𝑑𝑠, ℎ𝑖, 𝑘 ∈ 𝐶(𝐼 × 𝐼,R), 𝑖 =

0, 1.
Applying Theorem 4, we can find that (44) has a unique

solution 𝐼𝑛𝑥
∗
(𝑡) ∈ 𝐶

(𝑛)
(𝐼) provided sup𝑡,𝑠∈𝐼|(ℎ0(𝑡, 𝑠)/(𝑛−2)!)+

(ℎ1(𝑡, 𝑠)/(𝑛 − 3)!) + (𝑘(𝑡)/3(𝑛 − 2)!)| < 1, and moreover, for
any 𝑢0 ∈ 𝐶(𝐼), the iterative sequence

𝑥𝑚 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) [𝑆0 (𝐼𝑛−1𝑥𝑚−1) (𝑠)

+ 𝑆1 (𝐼𝑛−2𝑥𝑚−1) (𝑠)

+𝑘 (𝑠) ln (3 + 

𝑥𝑚−1 (𝑠)





)] 𝑑𝑠

(45)

(𝑚 = 1, 2, . . .) converges to 𝑥∗ uniformly for all 𝑡 in 𝐼(𝑚 →

∞).
To see that, let

𝐺1 (𝑡, 𝑠) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

−1 +

2
𝑛−2

2
𝑛−2
− 1

[(1 − 𝑠)
𝑛−1
− 2(

1

2

− 𝑠)

𝑛−1

] ,

0 ≤ 𝑠 ≤

1

2

, 𝑠 ≤ 𝑡,

2
𝑛−2

2
𝑛−2
− 1

[(1 − 𝑠)
𝑛−1
− 2(

1

2

− 𝑠)

𝑛−1

] ,

0 ≤ 𝑡 ≤ 𝑠 ≤

1

2

,

−1 +

2
𝑛−2

2
𝑛−2
− 1

(1 − 𝑠)
𝑛−1
,

1

2

≤ 𝑠 ≤ 𝑡,

2
𝑛−2

2
𝑛−2
− 1

(1 − 𝑠)
𝑛−1
,

1

2

≤ 𝑠, 𝑡 ≤ 𝑠,

𝑒
∗

1 (𝑡) = max{∫
1

0





𝐺1 (𝑡, 𝑠)





𝑑𝑠, ∫

𝑡

0

∫

1

0





𝐺1 (𝑠, 𝑥)





𝑑𝑥 𝑑𝑠} ;

(46)

then𝐺1(𝑡, 𝑠) is Green’s function of (44). It is easy to verify that
|𝐺1(𝑡, 𝑠)| ≤ 1, and so 𝜌(𝐺1) ≥ (sup𝑡,𝑠∈𝐼𝑒

∗
1 (𝑡))
−1
≥ 1.

Let

𝑔 (𝑡, 𝑢 (𝑡) , V (𝑡) , 𝑢 (𝑡) , V (𝑡) , . . . , 𝑢(𝑛−1) (𝑡) , V(𝑛−1) (𝑡))

= (𝑆0𝑢) (𝑡) + (𝑆1𝑢

) (𝑡) + 𝑘 (𝑡) ln (3 + |V (𝑡)|) ,

(𝐾𝑖𝑢) (𝑡) = 𝐻
∗

𝑖 ∫

1

0

𝑢 (𝑠) 𝑑𝑠, 𝑖 = 0, 1,

(𝑀0V) (𝑡) =
𝐾
∗

3

∫

𝑡

0

V (𝑠) 𝑑𝑠,

(𝑀𝑖𝑢) (𝑡) = 0, 𝑖 = 1, . . . , 𝑛 − 1,

𝑢0 = V0 = 0,

(47)

where 𝐻∗𝑖 = sup𝑡,𝑠∈𝐼|ℎ𝑖(𝑡, 𝑠)|(𝑖 = 0, 1), 𝐾
∗
= sup𝑡∈𝐼|𝑘(𝑡)|;

then it is easy to verify that all conditions in Theorem 4 are
satisfied.
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