
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 636802, 8 pages
http://dx.doi.org/10.1155/2013/636802

Research Article
The Modified Trial Equation Method for Fractional Wave
Equation and Time Fractional Generalized Burgers Equation

Hasan Bulut,1 Haci Mehmet Baskonus,2 and Yusuf Pandir3

1 Department of Mathematics, Faculty of Science, Firat University, 23100 Elazig, Turkey
2Department of Computer Engineering, Faculty of Engineering, University of Tunceli, 62100 Tunceli, Turkey
3 Department of Mathematics, Faculty of Science, Bozok University, 66100 Yozgat, Turkey

Correspondence should be addressed to Haci Mehmet Baskonus; hmbaskonus@gmail.com

Received 24 May 2013; Revised 15 July 2013; Accepted 15 July 2013

Academic Editor: Juan J. Trujillo

Copyright © 2013 Hasan Bulut et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The fractional partial differential equations stand for natural phenomena all over the world from science to engineering. When it
comes to obtaining the solutions of these equations, there are many various techniques in the literature. Some of these give to us
approximate solutions; others give to us analytical solutions. In this paper, we applied the modified trial equation method (MTEM)
to the one-dimensional nonlinear fractional wave equation (FWE) and time fractional generalized Burgers equation. Then, we
submitted 3D graphics for different value of 𝛼.

1. Introduction

All over the world, a physical event may depend not only
on the time but also on the previous process, which can
be successfully formed by using the theory of derivatives
and integrals of fractional order. These processes represent
different physical problems in the manner of variable order.
In this sense, the fractional differential equations have been
used for the definition of nonlinear phenomena in applied
science, physics, chemistry, engineering, and other areas of
science. In order to solve these problems, a general method
cannot be defined even in the most useful works. Also, a
remarkable progress has been become in the construction
of the approximate solutions for fractional nonlinear partial
differential equations [1–3]. Several powerful methods [4–
13] have been proposed to obtain approximate and exact
solutions of fractional differential equations, such as the
Sumudu transform method, the Homotopy analysis method,
and the homotopy perturbation method.

Liu introduced a new approach called the complete dis-
crimination system for a polynomial to classify the traveling
wave solutions as nonlinear evolution equations and applied
this idea to some nonlinear partial differential equations
[14, 15]. So, to the best of our knowledge, the modified trial

equationmethod has not beenwidely applied for studying the
invariance properties of fractional PDEs. Furthermore, some
authors [16, 17] used the trial equation method proposed by
Liu. However, we established a new modified trial equation
method to obtain 1-soliton, singular soliton, hyperbolic func-
tion solutions [18, 19], elliptic integral function and Jacobi
elliptic function solutions, or the others to nonlinear partial
differential equations with generalized evolution in [20–22].

In Section 2, primarily we give some definitions and
properties of the fractional calculus and also produce a new
modified trial equation method for fractional nonlinear evo-
lution equations with higher order nonlinearity.The power of
this steerablemethod showed that thismethod can be applied
to different equations. In Section 3, as an application, we solve
the nonlinear fractional partial differential equation such as
one-dimensional nonlinear fractional wave equation [23]:

𝜕
𝛼

𝑢

𝜕𝑡
𝛼

+ 𝑎𝑢
𝑥𝑥

+ 𝛽𝑢 + 𝛾 𝑢
3

= 0, (1)

where 𝑎, 𝛽, and 𝛾 are arbitrary constants and 𝛼 is a param-
eter describing the order of the fractional time derivative.
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We consider time fractional generalized Burgers equation
[27] described as follows:

𝜕
𝛼

𝑢

𝜕𝑡
𝛼

− 𝑢
𝑥𝑥

− 𝛽𝑢
𝑝

𝑢
𝑥
= 0, (2)

where 0 < 𝛼 ≤ 1, 𝑝 > 0 which occur in different areas
in mathematical physics; here the time fractional derivative
leads to subdiffusion and subdispersion, respectively, and
extend the Lie symmetry analysis to derive their infinites-
imals [24]. In this research, we obtain the classification of
the wave solutions to (1) and (2) and derive some new
solutions. Using the modified trial equation method, we
found some new exact solutions of the fractional nonlinear
physical problem.The purpose of this paper is to obtain exact
solutions of the one-dimensional nonlinear fractional wave
equation by modified trial equation method.

2. Preliminaries

In this part of the paper, it would be helpful to give some
definitions and properties of the fractional calculus theory.
Here, we shortly review the modified Riemann-Liouville
derivative from the recent fractional calculus proposed by
Jumarie [25, 26]. Let𝑓 : [0, 1] → R be a continuous function
and 𝛼 ∈ (0, 1). The Jumarie modified fractional derivative
of order 𝛼 and 𝑓 may be defined by the expression of the
following [23]:

𝐷
𝛼

𝑥
𝑓 (𝑥)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1

Γ (−𝛼)

∫

𝑥

0

(𝑥 − 𝜉)
−𝛼−1

[𝑓 (𝜉) − 𝑓 (0)] 𝑑𝜉,

𝛼 < 0,

1

Γ (1 − 𝛼)

𝑑

𝑑𝑥

×∫

𝑥

0

(𝑥 − 𝜉)
−𝛼

[𝑓 (𝜉) − 𝑓 (0)] 𝑑𝜉,

0 < 𝛼 < 1,

(𝑓
(𝑛)

(𝜉))

𝛼−𝑛

, 𝑛 ≤ 𝛼 ≤ 𝑛 + 1, 𝑛 ≥ 1.

(3)

In addition to this expression, we may give a summary of the
fractional modified Riemann-Liouville derivative properties
which are used further in this paper. Some of the useful
formulas are given as [23]

𝐷
𝛼

𝑥
𝑘 = 0,

𝐷
𝛼

𝑥
𝑥
𝜇

=

{
{

{
{

{

0, 𝜇 ≤ 𝛼 − 1,

Γ (𝜇 + 1)

Γ (𝜇 − 𝛼 + 1)

𝑥
𝜇−𝑥

, 𝜇 > 𝛼 − 1.

(4)

In this paper, a new approach to the trial equationmethod
will be given. In order to apply this method to fractional
nonlinear partial differential equations, we consider the
following steps.

Step 1. We consider time fractional partial differential equa-
tion in two variables and a dependent variable 𝑢:

𝑃 (𝑢,𝐷
𝛼

𝑡
𝑢, 𝑢

𝑥
, 𝑢
𝑥𝑥

, 𝑢
𝑥𝑥𝑥

, . . .) = 0, (5)

and take the wave transformation

𝑢 (𝑥, 𝑡) = 𝑢 (𝜂) , 𝜂 = 𝑘𝑥 −

𝜆𝑡
𝛼

Γ (1 + 𝛼)

, (6)

where 𝜆 ̸= 0. Substituting (6) into (5) yields a nonlinear
ordinary differential equation:

𝑁(𝑢, 𝑢
󸀠

, 𝑢
󸀠󸀠

, 𝑢
󸀠󸀠󸀠

, . . .) = 0. (7)

Step 2. Take trial equation as follows:

𝑢
󸀠

=

𝐹 (𝑢)

𝐺 (𝑢)

=

∑
𝑛

𝑖=0
𝑎
𝑖
𝑢
𝑖

∑
𝑙

𝑗=0
𝑏
𝑗
𝑢
𝑗

=

𝑎
0
+ 𝑎

1
𝑢 + 𝑎

2
𝑢
2

+ ⋅ ⋅ ⋅ + 𝑎
𝑛
𝑢
𝑛

𝑏
0
+ 𝑏

1
𝑢 + 𝑏

2
𝑢
2
+ ⋅ ⋅ ⋅ + 𝑏

𝑙
𝑢
𝑙

,

(8)

𝑢
󸀠󸀠

=

𝐹 (𝑢) (𝐹
󸀠

(𝑢) 𝐺 (𝑢) − 𝐹 (𝑢) 𝐺
󸀠

(𝑢))

𝐺
3
(𝑢)

, (9)

where 𝐹(𝑢) and 𝐺(𝑢) are polynomials. Substituting above
relations into (7) yields an equation of polynomial Ω(𝑢) of
𝑢:

Ω (𝑢) = 𝜌
𝑠
𝑢
𝑠

+ ⋅ ⋅ ⋅ + 𝜌
1
𝑢 + 𝜌

0
= 0. (10)

According to the balance principle, we can get a relation of 𝑛
and 𝑙. We can compute some values of 𝑛 and 𝑙.

Step 3. Letting the coefficients of Ω(𝑢) all be zero will yield
an algebraic equations system:

𝜌
𝑖
= 0, 𝑖 = 0, . . . , 𝑠. (11)

By solving this system, we will specify the values of 𝑎
0
, . . . , 𝑎

𝑛

and 𝑏
0
, . . . , 𝑏

𝑙
.

Step 4. Reduce (8) to the elementary integral form

± (𝜇 − 𝜇
0
) = ∫

𝐺 (𝑢)

𝐹 (𝑢)

𝑑𝑢. (12)

Using a complete discrimination system for polynomial to
classify the roots of 𝐹(𝑢), we solve (12) with the help of
Mathematica7 and classify the exact solutions to (7). In
addition, we can write the exact traveling wave solutions to
(5), respectively. For a better interpretation of results obtained
in this way, we plotted 3D surfaces of (27), (40), (52), and (60)
in Figures 1, 2, 3, and 4 by taking into consideration suitable
parameter.

3. Applications

In this section,we applied themethod to the one-dimensional
nonlinear fractional wave equation and time fractional gen-
eralized Burgers equation.

Example 1. Firstly, we consider one-dimensional nonlinear
fractional wave equation [23]. In the case of 𝛼 = 1, (1)
reduces to the classical nonlinear one-dimensional nonlinear
wave equation. Many researchers have tried to get the exact
solutions of this equation by using a variety of methods.
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Figure 1: Graphics of the solution equation (27) corresponding to the values 𝛼 = 𝛽 = 0.01, 𝛼 = 𝛽 = 0.25, and 𝛼 = 𝛽 = 0.75 from left to right
when 𝑘 = 𝑎

1
= 1, 𝑎

2
= 0.1, 𝛾 = −1, −5 < 𝑥 < 5, and 0 < 𝑡 < 5.
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Figure 2: Graphics of the solution equation (40) corresponding to the values 𝛼 = 𝛽 = 0.01, 𝛼 = 𝛽 = 0.25, and 𝛼 = 𝛽 = 0.75 from left to right
when 𝑘 = 𝑎

1
= 𝑏

0
= 𝑏

1
= 𝛾 = 0.01, −5 < 𝑥 < 5, and 0 < 𝑡 < 5.
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Figure 3: Graphics of the solution equation (52) corresponding to the values 𝛼 = 𝛽 = 0.01, 𝛼 = 𝛽 = 0.25, and 𝛼 = 𝛽 = 0.75 from left to right
when 𝑘 = 𝑎

2
= 𝑏

0
= 0.1, −5 < 𝑥 < 5, and 0 < 𝑡 < 5.
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Figure 4: Graphics of the solution equation (60) corresponding to the values 𝛼 = 𝛽 = 0.01, 𝛼 = 𝛽 = 0.25, and 𝛼 = 𝛽 = 0.75 from left to right
when 𝑎

1
= 𝑏

0
= 𝑏

1
= 𝑝 = 𝑘 = 1, −5 < 𝑥 < 1, and 0 < 𝑡 < 5.
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Let us consider the travelling wave solutions of (1), and
then and we perform the transformation 𝑢(𝑥, 𝑡) = 𝑢(𝜂) and
𝜂 = 𝑘𝑥 − 𝜆𝑡

𝛼

/Γ(1 + 𝛼) where 𝑘 and 𝜆 are constants. Then,
integrating this equation with respect to 𝜂 and setting the
integration constant to zero. When it comes to converting
fractional order differential equation into differential equa-
tion with integer order, we can perform the following:

𝑑
𝛼

𝑢

𝑑𝑡
𝛼

=

𝑑
𝛼

𝑢

𝑑𝜂
𝛼

𝑑
𝛼

𝜂

𝑑𝑡
𝛼

= −𝜆𝑢
󸀠

,

𝑑
2

𝑢

𝑑𝑥
2

=

𝑑

𝑑𝜂

(

𝑑𝑢

𝑑𝜂

)

𝑑𝜂

𝑑𝑥

+

𝑑𝑢

𝑑𝜂

𝑑

𝑑𝜂

(

𝑑𝜂

𝑑𝑥

) = 𝑘
3

𝑢
󸀠󸀠

,

(13)

so, when we use 𝑑
𝛼

𝑢/𝑑𝑡
𝛼 and 𝑑

2

𝑢/𝑑𝑥
2 in (1), we get ordinary

differential equation as follows:

−𝜆𝑢
󸀠

+ 𝑎𝑘
3

𝑢
󸀠󸀠

+ 𝛽𝑢 + 𝛾𝑢
3

= 0. (14)

When we rearrange to (8) and (9) for balance principle, we
obtain the following:

𝑢
󸀠

=

𝑎
𝑛

𝑏
𝑙

𝑢
𝑛−𝑙

+ ⋅ ⋅ ⋅ , (15)

𝑢
󸀠󸀠

=

(𝑎
𝑛
𝑛𝑎
𝑛
𝑏
𝑙
− 𝑏

𝑙
𝑙𝑎
2

𝑛
)

𝑏
3

𝑙

𝑢
2𝑛−2𝑙−1

+ ⋅ ⋅ ⋅ . (16)

Balancing the highest order nonlinear terms of 𝑢󸀠󸀠 and 𝑢
3 in

(14), we get balance term for suitability

2𝑛 − 2𝑙 − 1 = 3 󳨐⇒ 𝑛 = 𝑙 + 2. (17)

This resolution procedure is applied, and we obtain results as
follows.

Case 1. If we take 𝑙 = 0 and 𝑛 = 2, then

𝑢
󸀠

=

𝐹 (𝑢)

𝐺 (𝑢)

=

∑
𝑛

𝑖=0
𝑎
𝑖
𝑢
𝑖

∑
𝑙

𝑗=0
𝑏
𝑗
𝑢
𝑗

=

𝑎
0
+ 𝑎

1
𝑢 + 𝑎

2
𝑢
2

𝑏
0

, (18)

and then

𝑢
󸀠󸀠

=

𝐹 (𝑢) [𝐹
󸀠

(𝑢) 𝐺 (𝑢) − 𝐹 (𝑢) 𝐺
󸀠

(𝑢)]

𝐺
3
(𝑢)

,

=

(𝑎
1
+ 2𝑎

2
𝑢) (𝑎

0
+ 𝑎

1
𝑢 + 𝑎

2
𝑢
2

)

𝑏
2

0

,

(19)

where 𝑎
2

̸= 0 and 𝑏
0

̸= 0Whenweuse𝑢󸀠 and𝑢
󸀠󸀠 in (14), we get a

system of algebraic equations for (14).Thus, we have a system
of algebraic equations from the coefficients of the polynomial
of 𝑢. Solving the algebraic equation system (14) by using
Mathematica programming yields the following coefficients:

𝑎
0
= 0, 𝑎

1
=

√𝛽𝑏
0

𝑘√2𝑎

, 𝑎
2
= ±

√−𝛾𝑏
0

𝑘√2𝑎

,

𝑏
0
= 𝑏

0
, 𝜆 =

3𝑘√𝛽𝑎

√2

.

(20)

By substituting these coefficients into (12), we have

± (𝜇 − 𝜇
0
) =

𝑘√2𝑎

√−𝛾

∫

𝑑𝑢

𝑢
2
+ (𝑎

1
/𝑎
2
) 𝑢

. (21)

Integrating (21) by using Mathematica programming, we
obtain the solutions to (1), as follows, for different values of
the roots of the polynomial equation:

± (𝜇 − 𝜇
0
) = −

𝐴

𝑢 − 𝛼
1

, 𝛼
1
= 𝛼

2
,

± (𝜇 − 𝜇
0
) =

𝐴

𝛼
1
− 𝛼

2

ln
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑢 − 𝛼
1

𝑢 − 𝛼
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, 𝛼
1

̸= 𝛼
2
,

(22)

where 𝐴 = ±𝑘√2𝑎/√−𝛾, and also 𝛼
1
and 𝛼

2
are the roots of

the polynomial equation as follows:

𝑢
2

+

𝑎
1

𝑎
2

𝑢 = 0. (23)

Therefore, we find solutions

𝑢 (𝑥, 𝑡) = 𝛼
1
+

𝐴

± (𝑘𝑥 − (3𝑘√𝛽𝑎 𝑡
𝛼
/√2 Γ (1 + 𝛼)) − 𝜂

0
)

,

(24)

𝑢(𝑥, 𝑡)

=𝛼
1
±

𝛼
1
− 𝛼

2

exp[((𝛼
1
− 𝛼

2
)/𝐴)(𝑘𝑥−(3𝑘√𝛽𝑎 𝑡

𝛼
/√2 Γ(1+𝛼))−𝜂

0
)]−1

.

(25)

For simplicity, if we take 𝜂
0
= 0, then the solutions equations

(24) and (25) can reduce to rational and single kink solution,
respectively,

𝑢 (𝑥, 𝑡) = 𝛼
1
+

𝐴

𝐵
1
(𝑥 − 𝜆

1
𝑡
𝛼
)

, (26)

𝑢 (𝑥, 𝑡) = 𝛼
1
±

𝛼
1
− 𝛼

2

exp [𝐵
2
(𝑥 − 𝜆

1
𝑡
𝛼
)] − 1

, (27)

where 𝐵
1
= ±𝑘, 𝐵

2
= 𝑘(𝛼

1
− 𝛼

2
)/𝐴, and 𝜆

1
= 3√𝛽𝑎/√2Γ(1 +

𝛼). Here, 𝐵
1
and 𝐵

2
are the inverse width of the soliton. We

can regulate (27) to rewrite in the hyperbolic form as follows:

𝑢 (𝑥, 𝑡) = 𝛼
1
+

𝛼
1
− 𝛼

2

exp [𝐵
2
(𝑥 − 𝜆

1
𝑡
𝛼
)] − 1

, (28)

𝑢 (𝑥, 𝑡) = 𝛼
2
+

𝛼
2
− 𝛼

1

exp [𝐵
2
(𝑥 − 𝜆

1
𝑡
𝛼
)] − 1

. (29)

If we consider the following equation for simplicity of (28):

𝑢 (𝜇) = 𝛼
1
+

𝛼
1
− 𝛼

2

exp [𝜇] − 1

, (30)

then, we get

𝑢 (𝜇) = 𝛼
1
+

𝛼
1
− 𝛼

2

exp [𝜇] − 1

=

𝛼
1
exp [𝜇] − 𝛼

2

exp [𝜇] − 1

= 𝛼
1

exp [𝜇] − 𝛼
2
/𝛼
1

exp [𝜇] − 1

.

(31)
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If it takes 𝛼
1

= −𝛼
2
for (28), we get the hyperbolic function

solution of (28):

𝑢 (𝜇) = 𝛼
1
coth [

𝜇

2

] , (32)

where 𝜇 = 𝐵
2
(𝑥 − 𝜆

1
𝑡
𝛼

).

Remark 2. The solutions equations (26)-(27) obtained by
using the extended trial equation method for (1) have been
checked by Mathematica. To our knowledge, the rational
function solution and single kink solution that we found in
this paper are not shown in the previous literature. These
results are new traveling wave solutions of (1).

Case 2. In the same way as in Case 1, If we take 𝑙 = 1 and
𝑛 = 3, then

𝑢
󸀠

=

𝑎
0
+ 𝑎

1
𝑢 + 𝑎

2
𝑢
2

+ 𝑎
3
𝑢
3

𝑏
0
+ 𝑏

1
𝑢

,

𝑢
󸀠󸀠

= ((𝑎
0
+ 𝑎

1
𝑢 + 𝑎

2
𝑢
2

+ 𝑎
3
𝑢
3

)

× ((𝑏
0
+ 𝑏

1
𝑢) (𝑎

1
+ 2𝑎

2
𝑢 + 3𝑎

3
𝑢
2

)

− 𝑏
1
(𝑎
0
+ 𝑎

1
𝑢 + 𝑎

2
𝑢
2

+ 𝑎
3
𝑢
3

)))

× ((𝑏
0
+ 𝑏

1
𝑢)
3

)

−1

,

(33)

where 𝑎
3

̸= 0, 𝑏
1

̸= 0. Respectively, solving the algebraic equa-
tion system (11) yields the following:

𝑎
0
= 0, 𝑎

1
= ±

√𝛽𝑏
0

𝑘√2𝑎

,

𝑎
2
= −

𝑏
0
√(−𝛾) − 𝑏

1
√𝛽

𝑘√2𝑎

,

𝑎
3
= −

𝑏
1√

𝛾

𝑘√2𝑎

, 𝑏
0
= 𝑏

0
,

𝑏
1
= 𝑏

1
, 𝜆 = ±

3𝑘√𝛽𝑎

√2

.

(34)

Substituting these coefficients into (12), we have

± (𝜇 − 𝜇
0
) = −

√𝛾

𝑘√2𝑎

∫

𝑢 + 𝑏
0
/𝑏
1

𝑢
3
+ (𝑎

2
/𝑎
3
) 𝑢

2
+ (𝑎

1
/𝑎
3
) 𝑢

𝑑𝑢.

(35)

Integrating (35), we procure the solution to (1) as follows:

± (𝜇 − 𝜇
0
) = −

𝐴
1
(𝑏
0
+ 2𝑏

1
𝑢 − 𝑏

1
𝛼
1
)

2𝑏
1
(𝑢 − 𝛼

1
)
2

, (36)

± (𝜇 − 𝜇
0
) =

𝐴
1

𝑏
1

(

𝑏
0
+ 𝑏

1
𝛼
2

(𝛼
1
− 𝛼

2
)
2
ln

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑢 − 𝛼
2

𝑢 − 𝛼
1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−

𝑏
0
+ 𝑏

1
𝛼
1

(𝑢 − 𝛼
1
) (𝛼

1
− 𝛼

2
)

) ,

± (𝜇 − 𝜇
0
) =

𝐴
1

𝑏
1
(𝛼
1
− 𝛼

2
) (𝛼

2
− 𝛼

3
) (𝛼

1
− 𝛼

3
)

× (ln
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝑢 − 𝛼
1
)
𝑀

(𝑢 − 𝛼
3
)
𝑁

(𝑢 − 𝛼
2
)
𝑃

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

) ,

(37)

where 𝐴
1

= −√𝛾/𝑘√2𝑎, 𝑀 = (𝛼
2
− 𝛼

3
)(𝑏
0
+ 𝑏

1
𝛼
1
), 𝑁 =

(𝛼
1
− 𝛼

2
)(𝑏
0
+ 𝑏

1
𝛼
3
) and 𝑃 = (𝛼

1
− 𝛼

3
)(𝑏
0
+ 𝑏

1
𝛼
2
). Also 𝛼

1
, 𝛼
2
,

and 𝛼
3
are the roots of the polynomial equation

𝑢
3

+

𝑎
2

𝑎
3

𝑢
2

+

𝑎
1

𝑎
3

𝑢 +

𝑎
0

𝑎
3

= 0. (38)

Therefore, we find a solution from (36):
𝑢 (𝑥, 𝑡)

= (𝑏
1
(2𝛼
1
(𝑘𝑥 ±

3𝑘𝑡
𝛼
√𝛽𝑎

√2Γ (1 + 𝛼)

− 𝜂
0
) − 𝐴

1
)

+√𝐴
1
𝑏
1
(𝐴
1
𝑏
1
− 2 (𝑏
0
+ 𝑏
1
𝛼
1
) (𝑘𝑥 ±

3𝑘𝑡
𝛼
√𝛽𝑎

√2Γ (1 + 𝛼)

− 𝜂
0
)))

×(2𝑏
1
(𝑘𝑥 ±

3𝑘𝑡
𝛼
√𝛽𝑎

√2Γ (1 + 𝛼)

− 𝜂
0
))

−1

.

(39)

For simplicity, if we take 𝜂
0

= 0, then the solution equation
(39) can reduce to rational solution

𝑢 (𝑥, 𝑡) = (𝑏
1
(2𝛼

1
(𝑘𝑥 ± 𝑘 𝜆

1
𝑡
𝛼

) − 𝐴
1
)

+ √𝐴
1
𝑏
1
(𝐴

1
𝑏
1
− 2 (𝑏

0
+ 𝑏

1
𝛼
1
) (𝑘𝑥 ± 𝑘 𝜆

1
𝑡
𝛼
)))

× (2𝑏
1
(𝑘𝑥 ± 𝑘 𝜆

1
𝑡
𝛼

))
−1

.

(40)

Remark 3. Thesolution equation (40) computed inCase 2 has
been checked by Mathematica. We think that these solutions
have not been found in the literature, and these results are
new traveling wave solutions of (1).

Example 4. Secondly, we consider the time fractional gener-
alized Burgers equation [24] as follows:

𝜕
𝛼

𝑢

𝜕𝑡
𝛼

− 𝑢
𝑥𝑥

− 𝛽 𝑢
𝑝

𝑢
𝑥
= 0. (41)

In the case of 𝛼 = 1 and 𝑝 = 1, (41) reduces to the well-known
classical nonlinear Burgers equation. Many researchers have
tried to get the exact solutions of this equation by using a
different method [28, 29].

Let us consider the travelling wave solutions of (41), and
then we perform the transformation 𝑢(𝑥, 𝑡) = 𝑢(𝜂) and
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𝜂 = 𝑘𝑥 − 𝜆𝑡
𝛼

/Γ(1 + 𝛼) where 𝑘, 𝜆 are constants. Then, in-
tegrating this equation with respect to 𝜂 and setting the
integration constant to zero, we get

−𝜆𝑢
󸀠

(𝜂) − 𝑘
2

𝑢
󸀠󸀠

(𝜂) − 𝛽𝑘𝑢
𝑝

(𝜂) 𝑢
𝑥
(𝜂) = 0. (42)

When we conduct once more transformation

𝑢 (𝜂) = V1/𝑝 (𝜂) , (43)

we get the following:

𝜆𝑝 (𝑝 + 1) V − 𝑘
2

(𝑝 + 1) V󸀠 − 𝛽𝑘V2 = 0. (44)

Substituting (8) into (44) and using balance principle yield
the following:

𝑛 = 𝑙 + 2. (45)

This resolution procedure is applied, and we obtain results as
follows.

Case 1. If we take 𝑙 = 0 and 𝑛 = 2, then

V󸀠 =
𝑎
0
+ 𝑎

1
V + 𝑎

2
V2

𝑏
0

, (46)

where 𝑎
2

̸= 0 and 𝑏
0

̸= 0. Thus, we have a system of algebraic
equations from the coefficients of the polynomial of V. Solving
the algebraic equation system (11) yields the following:

𝑎
0
= 0, 𝑎

1
= 𝑎

1
, 𝑎

2
= −

𝑝𝛽𝑏
0

𝑘 + 𝑘𝑝

,

𝑏
0
= 𝑏

0
, 𝜆 = −

𝑘
2

𝑎
1

𝑝𝑏
0

.

(47)

By substituting these coefficients into (11), we have

± (𝜇 − 𝜇
0
) = −

𝑘 + 𝑘𝑝

𝑝𝛽

∫

𝑑V

V2 + (𝑎
1
/𝑎
2
) V

. (48)

By integrating (48), we procure the solution to (41) as follows:

± (𝜇 − 𝜇
0
) = −

𝐴
2

V − 𝛼
1

,

± (𝜇 − 𝜇
0
) =

𝐴
2

𝛼
1
− 𝛼

2

ln
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

V − 𝛼
1

V − 𝛼
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

(49)

where 𝐴
2

= −(𝑘 + 𝑘𝑝)/𝑝𝛽. By substituting the solutions
equation (49) into (43), we found solutions of the following
exact traveling wave solutions, such as rational function
solution and single kink solution:

𝑢 (𝑥, 𝑡) = [𝛼
1
±

𝐴
2

(𝑘𝑥 + (𝑘𝑎
1
𝑡
𝛼
/𝑝𝑏

0
Γ (1 + 𝛼)) − 𝜂

0
)

]

1/𝑝

,

𝑢(𝑥, 𝑡)

=[𝛼
1
±

𝛼
1
− 𝛼

2

exp[((𝛼
1
−𝛼

2
)/𝐴

2
)(𝑘𝑥+(𝑘

2
𝑎
1
𝑡
𝛼
/𝑝𝑏

0
Γ(1+𝛼))−𝜂

0
)]−1

]

1/𝑝

.

(50)

For simplicity, if we take 𝜂
0
= 0, then the solutions equation

(50) can reduce to the following:

𝑢 (𝑥, 𝑡) = [𝛼
1
±

𝐵
3

(𝑥 − 𝜆
2
𝑡
𝛼
)

]

1/𝑝

, (51)

𝑢 (𝑥, 𝑡) = [𝛼
1
±

𝛼
1
− 𝛼

2

exp [𝐵
4
(𝑥 − 𝜆

2
𝑡
𝛼
)] − 1

]

1/𝑝

, (52)

where 𝐵
3
= 𝐴

2
/𝑘, 𝐵

4
= 𝑘(𝛼

1
− 𝛼

2
)/𝐴

2
, and 𝜆

2
= −𝑘𝑎

1
/𝑝𝑏

0
Γ

(1 + 𝛼).

Remark 5. The solutions equations (51) and (52) obtained by
using the modified trial equation method for (41) have been
checked by Mathematica. To our knowledge, the rational
function solution and single kink solution that we found in
this paper are new traveling wave solutions of (41).

Case 1. If we take 𝑙 = 1 and 𝑛 = 3, then

V󸀠 =
𝑎
0
+ 𝑎

1
V + 𝑎

2
V2 + 𝑎

3
V3

𝑏
0
+ 𝑏

1
V

, (53)

where 𝑎
3

̸= 0, 𝑏
1

̸= 0. Thus, we have a system of algebraic
equations from the coefficients of the polynomial of V. Solving
the algebraic equation system (11) yields the following:

𝑎
0
= 0, 𝑎

1
= 𝑎

1
, 𝑎

2
= 𝑎

2
,

𝑎
3
= −

𝑝𝛽𝑏
0
(𝑘 (1 + 𝑝) 𝑎

2
+ 𝑝𝛽𝑏

0
)

𝑘
2
(1 + 𝑝)

2

𝑎
1

,

𝑏
0
= 𝑏

0
,

𝑏
1
= −

𝑏
0
(𝑘 (1 + 𝑝) 𝑎

2
+ 𝑝𝛽𝑏

0
)

𝑘 (1 + 𝑝) 𝑎
1

,

𝜆 = −

𝑘
2

𝑎
1

𝑝𝑏
0

.

(54)

By substituting these coefficients into (11), we have

± (𝜇 − 𝜇
0
) =

𝑘 (1 + 𝑝)

𝑝𝛽

∫

V + 𝑏
0
/𝑏
1

V3 + (𝑎
2
/𝑎
3
) V2 + (𝑎

1
/𝑎
3
) V

𝑑V,

(55)

where 𝐴
3
= (𝑘 + 𝑘𝑝)/𝑝𝛽. By integrating (55), we procure the

solution to (41) as follows:

± (𝜇 − 𝜇
0
) = −

𝐴
3
(𝑏
0
+ 2𝑏

1
V − 𝑏

1
𝛼
1
)

2𝑏
1
(V − 𝛼

1
)
2

, (56)
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± (𝜇 − 𝜇
0
) =

𝐴
3

𝑏
1

(

𝑏
0
+ 𝑏

1
𝛼
2

(𝛼
1
− 𝛼

2
)
2
ln

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

V − 𝛼
2

V − 𝛼
1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

−

𝑏
0
+ 𝑏

1
𝛼
1

(V − 𝛼
1
) (𝛼

1
− 𝛼

2
)

) ,

± (𝜇 − 𝜇
0
) =

𝐴
3

𝑏
1
(𝛼
1
− 𝛼

2
) (𝛼

2
− 𝛼

3
) (𝛼

1
− 𝛼

3
)

× (ln
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(V − 𝛼
1
)
𝑀

(V − 𝛼
3
)
𝑁

(V − 𝛼
2
)
𝑃

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

) ,

(57)

where 𝐴
3

= 𝑘(1 + 𝑝)/𝑝𝛽, 𝑀 = (𝛼
2
− 𝛼

3
)(𝑏
0
+ 𝑏

1
𝛼
1
), 𝑁 =

(𝛼
1
−𝛼

2
)(𝑏
0
+ 𝑏

1
𝛼
3
), and 𝑃 = (𝛼

1
−𝛼

3
)(𝑏
0
+ 𝑏

1
𝛼
2
). Also 𝛼

1
, 𝛼
2
,

and 𝛼
3
are the roots of the polynomial equation:

V3 +
𝑎
2

𝑎
3

V2 +
𝑎
1

𝑎
3

V +

𝑎
0

𝑎
3

= 0. (58)

By substituting the solution equation (56) into (43), we found
solution of the following exact traveling wave solutions, such
as rational function solution:

𝑢 (𝑥, 𝑡)

= [(𝑏
1
(2𝛼

1
(𝑘𝑥 +

𝑘
2

𝑎
1
𝑡
𝛼

𝑝𝑏
0
Γ (1 + 𝛼)

− 𝜂
0
) − 𝐴

3
)

+ √𝐴
3
𝑏
1
(𝐴

3
𝑏
1
− 2 (𝑏

0
+ 𝑏

1
𝛼
1
)(𝑘𝑥 +

𝑘
2

𝑎
1
𝑡
𝛼

𝑝𝑏
0
Γ (1 + 𝛼)

− 𝜂
0
)))

×(2𝑏
1
(𝑘𝑥 +

𝑘
2

𝑎
1
𝑡
𝛼

𝑝𝑏
0
Γ (1 + 𝛼)

− 𝜂
0
))

−1

]

1/𝑝

.

(59)

For simplicity, if we take 𝜂
0

= 0, then the solution equation
(59) can reduce to rational solution:

𝑢 (𝑥, 𝑡) = [ (𝑏
1

(2𝛼
1
(𝑘𝑥 ± 𝑘𝜆

2
𝑡
𝛼

) − 𝐴
3
)

+√𝐴
3
𝑏
1
(𝐴

3
𝑏
1
− 2 (𝑏

0
+ 𝑏

1
𝛼
1
) (𝑘𝑥 ± 𝑘𝜆

2
𝑡
𝛼
)))

× (2𝑏
1
(𝑘𝑥 ± 𝑘𝜆

2
𝑡
𝛼

))
−1

]

1/𝑝

.

(60)

Remark 6. Thesolution equation (60) computed inCase 2 has
been checked by Mathematica. We think that these solutions
have not been found in the literature, and these results are
new traveling wave solutions of (41).

4. Conclusions

In this paper, the modified trial equation method has been
applied to the one-dimensional nonlinear fractional wave
equation and time fractional generalized Burgers equation.
We used it to obtain some soliton and rational function
solutions to the one-dimensional nonlinear fractional wave
equation and time fractional generalized Burgers equation.

This method is reliable and effective and gives several new
solution functions such as rational function solutions and
single kink solutions. We think that the proposed method
can also be applied to other generalized fractional nonlinear
differential equations. In our future studies, we will solve
nonlinear fractional partial differential equations by this
approach.
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