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The problem of steady Marangoni boundary layer flow and heat transfer over a flat plate in a nanofluid is studied using different
types of nanoparticles. The general governing partial differential equations are transformed into a set of two nonlinear ordinary
differential equations using unique similarity transformation. Numerical solutions of the similarity equations are obtained using the
Runge-Kutta-Fehlberg (RKF)method.Three different types of nanoparticles are considered, namely, Cu, Al

2
O
3
, and TiO

2
, by using

water as a base fluid with Prandtl number Pr = 6.2. The effects of the nanoparticle volume fraction 𝜙 and the constant exponentm
on the flow and heat transfer characteristics are obtained and discussed.

1. Introduction

A nanofluid is a colloidal mixture of nanosized particles
(<100 nm) in a base fluid. It is known that nanofluid can
tremendously enhance the heat transfer characteristics of the
original (base) fluid. One such characteristic of nanofluid is
the anomalous high thermal conductivity at very low concen-
tration of nanoparticles and the considerable enhancement
of convective heat transfer. Thus, nanofluids have many
applications in industry such as coolants, lubricants, heat
exchangers, and microchannel heat sinks. Nanoparticles are
made of various materials such as oxide ceramics, and
nitride ceramics. The objective of nanofluids is to achieve
the best possible thermal properties with the least possible
(<1%) volume fraction of nanoparticles in the base fluid
[1]. There have been many studies in the literature to bet-
ter understand the mechanism behind the enhanced heat
transfer characteristics. An excellent collection of papers
on this topic can be found in the book by Das et al. [2]
and in several review papers ([3–8]). There are also several
experimental studies to better understand the mechanism

of heat transfer enhancement for natural convection heat
transfer in nanofluids ([1, 9–12]).

Marangoni flow induced by surface tension along a liquid
surface causes undesirable effects in crystal growth melts in
the same manner as buoyancy-induced natural convection
[13]. These undesirable effects also occur in space-based
crystal growth experiments since Marangoni flow is involved
in microgravity as well as in earth gravity. An excellent
view of the Marangoni effect from the perspective of all
three possible interfaces as motion inducing agents has been
done by Tadmor [14]. It is worth mentioning that there
are two existing models for Marangoni boundary layer that
have been studied, namely, model for nonisobaricMarangoni
boundary layer as discussed by Golia and Viviani [15] and
model for Marangoni boundary layer over a flat plate studied
by Christopher and Wang [13]. Marangoni boundary layer
studied by Golia and Viviani [15] has been extended by Pop
et al. [16] where they included the concentration equation.
Chamkha et al. [17] studied the same model with Golia and
Viviani [15] in which they considered the gravity effects.
Hamid et al. [18] extended the problem of the thermosolutal
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Marangoni forced convection boundary layer flow by Pop
et al. [16] when the wall is permeable. Very recently, Mat
el al. [19] discussed the radiation effects on the problem of
Marangoni boundary layer with permeable surface. On the
other hand, nanofluid equationsmodel as proposed by Tiwari
and Das [20] has been used by Arifin et al. [21] for the
Marangoni boundary layer problembyGolia andViviani [15].
They found that the numerical results also indicate that, for
both a regular fluid (𝜑 = 0) and a nanofluid (𝜑 ̸= 0), dual
solutions exist when 𝛽 < 0.5. These dual solutions were not
discussed by Golia and Viviani [15]. This problem has been
extended byRemeli et al. [22] to the problemwith suction and
injection effects. Mat et al. [23] also extended the problem of
Marangoni boundary layer in a nanofluid by Arifin et al. [21]
to the radiation effect.

It is worth mentioning that Christopher and Wang [13]
considered the Marangoni boundary layer over a flat plate
where the term𝑢

𝑒
(𝑥), which is the velocity of the external flow

in Golia and Viviani [15], has been neglected. The similarity
solutions of the Christopher and Wang [13] problem are
also different from the Golia and Viviani [15] problem. The
problem of Christopher and Wang [13] has been extended
by several researchers such as Al-Mudhaf and Chamkha [24]
where they have presented the similarity solutions for MHD
Marangoni convection in the presence of heat generation or
absorption effects and Magyari and Chamkha [25] reported
the exact analytical solutions of thermosolutal Marangoni
flows in the presence of temperature-dependent volumetric
heat source/sinks as well as of a first-order chemical reaction.
Recently, Hamid et al. [26] studied the two-dimensional
Marangoni convection flow past a flat plate in the presence
of thermal radiation, suction, and injection effects. Further
MHD thermosolutal Marangoni convection boundary layer
over a flat surface considering the effects of the thermal dif-
fusion and diffusion-thermo with fluid suction and injection
has been examined by Hamid et al. [27].

It should be highlighted that the present paper presents
a similarity solution for the steady Marangoni convection
boundary layer flow over a static semi-infinite flat plate due
to an imposed temperature gradient in a nanofluid, which
extends the problem by Christopher and Wang [13] to the
case of nanofluid. The nanofluid equations model proposed
by Tiwari and Das [20] has been used. This model has been
very successfully used in several papers [21, 28–32]. Thus,
we wish to highlight that this present study is original and
all the results are new. To the best of our knowledge, the
present problem has not been considered before. The study
of nanofluid is still at its early stage and it seems difficult to
have a precise idea on the way the use of nanoparticles acts in
heat transfer. A clear picture on the boundary layer flows of
nanofluid is yet to emerge.

2. Problem Formulation

We consider the steady two-dimensional boundary layer flow
past a semi-infinite flat plate in a water-based nanofluid
containing different types of nanoparticles, namely, copper
(Cu), alumina (Al

2
O
3
), and titania (TiO

2
), with Marangoni

effects.The nanofluid is assumed incompressible and the flow
is assumed to be laminar. It is also assumed that the base fluid
(i.e., water) and the nanoparticles are in thermal equilibrium
and no slip occurs between them. The thermophysical prop-
erties of the nanofluids are given in Table 1 (see Oztop and
Abu-Nada [29]). Further, we consider a Cartesian coordinate
system (𝑥, 𝑦), where 𝑥 and 𝑦 are the coordinates measured
along the plate and normal to it, respectively, and the flow
takes place at 𝑦 ≥ 0. It is also assumed that the temperature
of the plate is 𝑇

𝑤
(𝑥) and that of the ambient nanofluid is 𝑇

∞
.

Following [15–17, 25, 33, 34] the surface tension 𝜎 is assumed
to vary linearly with temperature as follow:

𝜎 = 𝜎
0
[1 − 𝛾 (𝑇 − 𝑇

0
)] , (1)

where 𝜎
0
and 𝑇

0
are the characteristics surface tension and

temperature, respectively, and we assume that 𝑇
0

≡ 𝑇
∞
.

Equation (1) is a commonly made assumption [34]. For most
liquids, the surface tension decreases with temperature; that
is, 𝛾 is a positive fluid property.

The steady boundary layer equations for a nanofluid in
the coordinates 𝑥 and 𝑦 are ([13, 20])

𝜕𝑢

𝜕𝑥

+

𝜕V
𝜕𝑦

= 0, (2)

𝑢
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𝜕
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(4)

subject to the boundary conditions

V = 0, 𝑇 = 𝑇
0
+ 𝐴𝑥

𝑚+1
, 𝜇nf

𝜕𝑢

𝜕𝑦
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𝜕𝜎
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at𝑦 = 0,

𝑢 = 0, 𝑇 = 𝑇
∞

as 𝑦 → ∞.

(5)

Here, 𝑢 and V are the velocity components along the 𝑥- and
𝑦-axes, respectively, 𝑇 is the temperature of the nanofluid,m
is the constant exponent of the temperature,𝛼nf is the thermal
diffusivity of the nanofluid, 𝜌nf is the effective density of the
nanofluid, 𝑘nf is the effective thermal conductivity of the
nanofluid, and 𝜇nf is the effective viscosity of the nanofluid,
which are given by

𝛼nf =
𝑘nf

(𝜌𝐶
𝑝
)

nf

, 𝜌nf = (1 − 𝜙) 𝜌
𝑓
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𝑠
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+ 2𝑘
𝑓
) − 2𝜙 (𝑘
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)

(𝑘
𝑠
+ 2𝑘
𝑓
) + 𝜙 (𝑘
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− 𝑘
𝑠
)

,

(6)

where 𝜙 is the nanoparticle volume fraction, 𝜌
𝑓

is the
reference density of the fluid fraction, 𝜌

𝑠
is the reference
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velocity of the solid fraction, 𝜇
𝑓
is the viscosity of the fluid

fraction, 𝑘
𝑓
is the thermal conductivity of the fluid, 𝑘

𝑠
is the

thermal conductivity of the solid, and (𝜌𝐶
𝑝
)nf is the heat

capacity of the nanofluid.
We look now for a similarity solution of (2)–(4) subject

to the boundary conditions (5) of the following form:

𝜓 = 𝐶
1
𝑥

(2+𝑚)/3
𝑓 (𝜂) , 𝜃 (𝜂) =
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∞

𝐴𝑥

1+𝑚
,
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2
𝑥

(𝑚−1)/3
𝑦,

(7)

where𝜓 is the stream function which is defined as 𝑢 = 𝜕𝜓/𝜕𝑦

and V = −𝜕𝜓/𝜕𝑥. Further,𝑚,𝐴,𝐶
1
, and𝐶

2
are constants with

𝐴, 𝐶
1
, and 𝐶

2
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(8)

with 𝐿 being the length of the surface and Δ𝑇 being the
constant characteristic temperature. Substituting (7) into (2)
and (3), we get the following ordinary differential equations:

1
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and the boundary conditions (5) become

𝑓 (0) = 0,

1

(1 − 𝜙)

2.5
𝑓


(0) = −1, 𝜃 (0) = 1,

𝑓
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(10)

We can now determine the surface velocity 𝑢(𝑥, 0) = 𝑢
𝑤
(𝑥)

as
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𝑤
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A quantity of interest is the local Nusselt number Nu
𝑥
which

is defined as

Nu
𝑥
=

𝑥𝑞
𝑤
(𝑥)

𝑘
𝑓 [

𝑇 (𝑥, 0) − 𝑇 (𝑥,∞)]

, (12)

where 𝑞
𝑤
(𝑥) is the heat flux from the surface of the plate and

it is given by

𝑞
𝑤
(𝑥) = −𝑘nf(

𝜕𝑇

𝜕𝑦

)

𝑦=0

. (13)

Using (7), (12), and (13), we get

Nu
𝑥
= −

𝑘nf
𝑘
𝑓

𝐶
2
𝑥

(2+𝑚)/3
𝜃


(0) . (14)

The average Nusselt number Nu
𝐿
based on the average tem-

perature difference between the temperature of the surface
and the temperature far from the surface (ambient fluid) is
given by

Nu
𝐿
= −

6 + 3𝑚

5 + 4𝑚

𝑘nf
𝑘
𝑓

Ma1/3
𝐿

Pr−1/3𝜃 (0) , (15)

where Ma
𝐿
is the Marangoni based on 𝐿 and is defined as

Ma
𝐿
=

𝜎
𝑇
𝐴𝐿

2+𝑚

𝜇
𝑓
𝛼
𝑓

=

𝜎
𝑇
Δ𝑇𝐿

𝜇
𝑓
𝛼
𝑓

. (16)

Also, the total mass flow �̇� in the boundary layer per unit
width is given by

�̇� = ∫

∞

0

𝜌
𝑓
𝑢 𝑑𝑦 =

3
√
𝜎
0
𝛾𝜌
𝑓
𝜇
𝑓
𝑥

(2+𝑚)/3
𝑓 (∞) . (17)

3. Results and Discussion

The nonlinear ordinary differential equation (9) subject to
the boundary conditions (10) forms a two-point boundary
value problem (BVP) and is solved numerically using the
Runge-Kutta-Fehlberg fourth-fifth-order (RKF45) method
using Maple 12- and the algorithm RKF45 in Maple has
been well tested for its accuracy and robustness [35]. In this
method, it is most important to choose the appropriate finite
value of the edge of boundary layer, 𝜂 → ∞ (say 𝜂

∞
) that is

between 4 and 10, which is in accordance with the standard
practice in the boundary layer analysis. We begin with some
initial guess value of 𝜂

∞
and solve (9) subject to the boundary

conditions (10) with some particular set of parameters to
obtain the surface velocity𝑓(0) and the temperature gradient
−𝜃


(0). The solution process is repeated until further changes

(increment) in 𝜂
∞

would not lead to any changes in the
values of 𝑓(0) and −𝜃


(0), or in other words, the results are

independent of the value of 𝜂
∞
.The initial step size employed

is ℎ = Δ𝜂 = 0.1. Following Oztop and Abu-Nada [29], we
considered the range of nanoparticles volume fraction 𝜙 as
0 ≤ 𝜙 ≤ 0.2. The Prandtl number of the base fluid (water) is
kept constant at 6.2. Further, it should also be pointed out that
the thermophysical properties of fluid and nanoparticles (Cu,
Al
2
O
3
, and TiO

2
) used in this study are given in Table 1. It is

worth mentioning that, the present study reduces to that of
a classical viscous (regular) fluid studied by Christopher and
Wang [13] when 𝜙 = 0.

Figures 1 and 2 show the distribution of the dimensionless
velocity 𝑓


(𝜂) and temperature 𝜃(𝜂) profiles for the three

types of the nanoparticles considered when the solid volume
fraction of the nanofluid parameter 𝜙 = 0.1 and𝑚 = 0 (which
corresponds to a linear variation of the surface temperature
with the distance 𝑥 measured along the flat plate), while
Figures 3 and 4 display the variation with 𝜙 of the reduced
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Table 1: Thermophysical properties of fluid and nanoparticles [29].

Physical properties Fluid phase (water) Cu Al2O3 TiO2

𝐶
𝑝
(J/kgK) 4179 385 765 686.2

𝜌 (kg/m3) 997.1 8933 3970 4250
𝑘 (W/mK) 0.613 400 40 8.9538

1
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0.2

0

0 1 2 3 4 5 6 7 8

𝜂

Cu, TiO2, Al2O3

f
 (
𝜂
)

Figure 1: Dimensionless velocity profiles 𝑓(𝜂) for different types of
nanoparticles when 𝜙 = 0.1 and𝑚 = 0.

surface velocity, 𝑓(0), and reduced temperature gradient,
−𝜃


(0), respectively. It is seen from Figure 1 that the velocity

profiles in Figure 1 for Al
2
O
3
and TiO

2
are almost identical

while the profile for Cu is smaller. This is consistent with the
variation of the reduced surface velocity 𝑓


(0) as shown in

Figure 3. In Figure 2, it is shown that the temperature profile
is the highest for higher thermal diffusivity nanoparticle (Cu).
On the other hand, the thermal boundary layer thickness
as shown in Figure 2 decreases with a decrease in thermal
diffusivity, which in turn gives rise to the −𝜃(0) as illustrated
in Figure 4. Figures 3 and 4 display the surface velocity,𝑓(0),
and the surface temperature gradient, −𝜃(0), respectively,
for different types of nanoparticles (Cu, Al

2
O
3
, and TiO

2
)

when 𝑚 = 0. One can see that the surface velocity, 𝑓(0)
and the surface temperature gradient, −𝜃(0) decrease as 𝜙
increases for all three nanoparticles (Cu, Al

2
O
3
, TiO

2
). It

should be noticed that the entire values of −𝜃(0) are always
positive; that is, the heat is transferred from hot surface to the
cold surface. In Figure 4, we are looking at the variation of
temperature gradient with the nanoparticle volume fraction
𝜙. It is observed that the reduced value of thermal diffu-
sivity leads to higher temperature gradients and, therefore,
higher enhancements in heat transfer. Nanoparticles with low
thermal diffusivity, TiO

2
, have better enhancement on heat

transfer compared to Cu and Al
2
O
3
. Further, Figure 5 shows

the variations of the reduced surface velocity 𝑓


(0) with 𝑚,

𝜃
(𝜂

)

𝜂

TiO2, Al2O3, Cu

1

0.8

0.6

0.4

0.2

0

0 1 2 3

Figure 2: Dimensionless temperature profiles 𝜃(𝜂) for different
types of nanoparticles when 𝜙 = 0.1 and𝑚 = 0.

Cu, TiO2, Al2O3

1.4
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1.1
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0.9

0.8

0.7

0 0.05 0.10 0.15 0.20

𝜙

f
 (
0)

Figure 3: Variation of surface velocity 𝑓


(0) with 𝜙 for different

types of nanoparticles when Pr = 6.2 and𝑚 = 0.

where 𝑚 = 0 refers to a linear variation of the surface
temperature with the distance 𝑥measured along the flat plate
and𝑚 = 1 is a quadratic variation of the surface temperature
with 𝑥, while 𝑚 = −0.5 refers to a temperature variation
relative to the square root of 𝑥. It should also be noticed that
for 𝜙 = 0 (regular fluid), we reproduced the variations of
surface velocity obtained by Christopher and Wang [13] as
illustrated by dashed lines in the figure.
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Figure 4: Variation of −𝜃(0) with 𝜙 for different types of nanopar-
ticles when Pr = 6.2 and𝑚 = 0.
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Figure 5: Variation of surface velocity 𝑓


(0) with 𝑚 for different

types of nanoparticles when Pr = 6.2, 𝜙 = 0 (regular fluid), and
𝜙 = 0.1.

Figures 6 to 11 show the dimensionless velocity 𝑓(𝜂) and
temperature 𝜃(𝜂) profiles for different values of 𝜙 in the range
0 ≤ 𝜙 ≤ 0.2when𝑚 = 0with different types of nanoparticles,
namely, Cu, Al

2
O
3
, and TiO

2
, respectively. It is worth men-

tioning that nanoparticle volume fraction is a key parameter
for studying the effect of nanoparticles on flow fields and

𝜙 = 0, 0.05, 0.1, 0.15, 0.2

𝜂

1.2

1

0.8

0.6

0.4

0.2

0

0 1 2 3 4 5 6 7 8

f
 (
𝜂
)

Figure 6:Dimensionless velocity profiles𝑓(𝜂) for Cu nanoparticles
with𝑚 = 0 and various values of 𝜙.
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𝜙 = 0, 0.05, 0.1, 0.15, 0.2

𝜂

1
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0.6

0.4

0.2

0

0 1 2 3

Figure 7: Dimensionless temperature profiles 𝜃(𝜂) for Cu nanopar-
ticles with𝑚 = 0 and various values of 𝜙.

temperature distributions. More fluid is heated for higher
values of nanoparticle volume fraction. Flow strength also
increases with increasing of nanoparticle volume fraction.
As the nanoparticle volume fraction increases, movements of
particles become irregular and random due to increasing of
energy exchange rates in the fluid (see [29]). It is observed
from these figures that, for any type of nanoparticles, as the
nanoparticle volume fraction 𝜙 increases, both the surface
velocities and the temperature gradients decrease, which is
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𝜙 = 0, 0.05, 0.1, 0.15, 0.2

𝜂
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0.4
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0 1 2 3 4 5 6 7 8

f
 (
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Figure 8: Dimensionless velocity profiles 𝑓(𝜂) for Al
2
O
3
nanopar-

ticles with𝑚 = 0 and various values of 𝜙.
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Figure 9: Dimensionless temperature profiles 𝜃(𝜂) for Al
2
O
3

nanoparticles with𝑚 = 0 and various values of 𝜙.

again in agreement with Figures 3 and 4. It should also be
noticed again, that for 𝜙 = 0 (regular fluid), we reproduced
the velocity and temperature profiles obtained byChristopher
and Wang [13].

4. Conclusion

Wehave theoretically and numerically studied the problem of
steady two-dimensional laminar Marangoni-driven bound-
ary layer flow in nanofluids. It is worth mentioning that the

f
 (
𝜂
)
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𝜂

1.2

1

0.8
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0.4

0.2

0

0

1 2 3 4 5 6 7 8

Figure 10: Dimensionless temperature profiles 𝜃(𝜂) for TiO
2

nanoparticles with𝑚 = 0 and various values of 𝜙.
𝜃
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𝜙 = 0, 0.05, 0.1, 0.15, 0.2

𝜂

1
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0.4

0.2

0

0 1 2 3

Figure 11: Dimensionless velocity profiles 𝑓(𝜂) for TiO
2
nanopar-

ticles with𝑚 = 0 and various values of 𝜙.

novelty of the present paper is to study numerically the heat
transfer in a liquid layer driven by Marangoni flow with vari-
ous types of nanoparticles (Cu, Al

2
O
3
, and TiO

2
) in the base

fluid which has not been considered before. The nonlinear
ordinary differential equation (9) subject to the boundary
conditions (10) forms a two-point boundary value problem
(BVP) and is solved numerically using the Runge-Kutta-
Fehlberg fourth-fifth-order (RKF45) method using Maple 12,
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and the algorithm RKF45 in Maple has been well tested for
its accuracy and robustness. Similarity solutions are obtained
for the surface velocity 𝑓


(0) and the surface temperature

gradient −𝜃


(0) as well as the velocity and temperature

profiles for some values of the governing parameters, namely,
the solid volume fraction of the nanofluid 𝜙 (0 ≤ 𝜙 ≤ 0.2),
the constant exponent 𝑚, and the Prandtl number Pr. It was
found that nanoparticles with low thermal diffusivity (TiO

2
)

have better enhancement on heat transfer compared to Al
2
O
3

and Cu.
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