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We present a fuzzy version of theGarman-Kohlhagen (FG-K) formula for pricing European currency option based on the extension
principle. In order to keep consistent with the real market, we assume that the interest rate, the spot exchange rate, and the volatility
are fuzzy numbers in the FG-K formula. The conditions of a basic proposition about the fuzzy-valued functions of fuzzy subsets
are modified. Based on the modified conditions and the extension principle, we prove that the fuzzy price obtained from the FG-K
formula for European currency option is a fuzzy number. To simplify the trade, the weighted possibilistic mean (WPM) value with
a weighting function is adopted to defuzzify the fuzzy price to a crisp price. The numerical example shows our method makes
the 𝛼-level set of fuzzy price smaller, which decreases the fuzziness. The example also indicates that the WPM value has different
approximation effects to real market price by taking different values of weighting parameter in the weighting function. Inspired by
this example, we provide a method, which can identify the optimal parameter.

1. Introduction

With the fast growing of the trading volume in the for-
eign exchange market, the trading of currency option has
increased. It is well know that currency option manages the
risk of the foreign exchange market. Hence, an appropriate
formula for pricing currency option is becoming extremely
significant. Garman and Kohlhagen (1983) [1] derived the
closed-form formula (G-K formula) for pricing European
currency option by the method of Black and Scholes (1973)
[2]. There are six variables in the G-K formula, that is, the
spot exchange rate, the volatility of spot exchange rate, the
domestic and foreign risk-free interest rate, the strike price,
and the time tomaturity date. However, some variables in the
G-K formula are assumed as constants, which is inconsistent
with the empirical phenomena, such as the volatility smile.
According to these empirical phenomena, many researchers

have been devoted tomodify theG-Kmodel, such as Chesney
and Scott (1989) [3], Amin and Jarrow (1991) [4], Heston
(1993) [5], Bates (1996) [6], Sarwar and Krehbiel (2000) [7],
and Carr and Wu (2007) [8].

In general, the data, for instance, the spot exchange rate,
the domestic or foreign risk-free interest rate, cannot be
recorded or collected precisely. Usually, these financial tools
may have different values in different commercial banks
and financial institutions. Meanwhile, there are differences
between the buy (bid) and the sale (ask) price for these
financial tools, which are similar to bid-ask spreads in dealer
markets for the stock.The existence of bid-ask spreads implies
that we cannot precisely get the true market price. The bid-
ask spreads are considered to be natural bands to represent
the uncertainty around the market price, which is similar
to fuzzy number. Furthermore, expert opinions or statistical
estimators of market parameters may be expressed as fuzzy
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numbers. Therefore, the fuzzy set theory proposed by Zadeh
(1965) [9] is useful to model such uncertainty. In a parallel
development, the fuzzy set theory is applied to option pricing.
Yoshida (2003) [10, 11] discussed the valuation of European
call and put options in fuzzy environment. Muzzioli and
Torricelli (2004) [12] discussed the pricing of European
options in a multiperiod binomial model. Wu (2007) [13]
obtained the fuzzy pattern of Black-Scholes formula using
the extension principle. Xu et al. (2009) [14] and Zhang et
al. (2012) [15] investigated a jump-diffusion option pricing
model under fuzzy environment. Liu (2009) [16] applied
fuzzy approach in [17] to the G-K formula of currency
option. Xu et al. (2010) [18] and Guerra et al. (2011) [19]
calculated the Greek letters of currency option and stock
option under uncertainty environment, respectively, where
the Greek letters are useful tools for managing option risk for
an option writer. But the division operation of fuzzy numbers
in Liu [16], Xu et al. [18] is invalid occasionally. In this paper,
we adopt the extension principle to obtain the fuzzy version
of G-K formula for European currency option.

Owing to the vague of the currency market data as we
just described above, some input variables, especially the
interest rate, the spot exchange rate, and the volatility in the
G-K formula, cannot always be expected in a precise sense.
Therefore, it is reasonable to assume these input variables
in the G-K formula are fuzzy numbers. Then, the fuzzy
version of the G-K formula for pricing European currency
option is obtained via the extension principle. It is found that
one of the conditions of the basic proposition in [13] is not
verified. Actually, it is difficult to be verified. So we modify
the conditions such that they can be satisfied easily. Based
on the modified conditions and the extension principle, we
prove that the fuzzy price obtained from the FG-K formula
for European currency option is a fuzzy number. Meanwhile,
we obtain the explicit expressions of the endpoints of every 𝛼-
level set (the closed interval) of the fuzzy price for European
currency option. In so doing, the investor can pick any value
from some closed interval (𝛼-level set) of the fuzzy price with
an acceptable belief degree 𝛼 as European currency option
trading price. To simplify the trade convenient, the weighted
possibilisticmean (WPM) valuewithweighting function [20]
is adopted to defuzzify the fuzzy price. Usually, the process
of defuzzification is to find a crisp number that synthesizes
the fuzzy price. Compared with the methods in [16, 18], the
numerical example shows our method makes the 𝛼-level set
of fuzzy price smaller, which decreases the fuzziness. The
reason of the differences is also discussed. The example also
indicates that the WPM value has different approximation
effects to real market price by taking different values of
weighting parameter in the weighting function. Inspired by
this example, we provide a method, which can identify the
the optimal parameter.

The rest of the paper is organized as follows. In Section 2,
some terminologies, notations of fuzzy number, and the
main results of [16, 18] are introduced. The fundamental
theories about the fuzzy-valued functions of fuzzy subsets are
proposed in Section 3. In Section 4, the fuzzy version of the

G-K formula for European currency option is obtained by the
extension principle. About the fuzzy price for European cur-
rency option, defuzzification via weighting parameter iden-
tification and numerical analysis are discussed in Section 5.
Finally, the conclusions are stated in Section 6.

2. Preliminaries

In this section, we will introduce some definitions and
propositions that will be used in the sequel. In order to
weaken the conditions of the basic proposition in [13], we
modify the definition of fuzzy number by another definitions
of the 0-level set and the support set of fuzzy subset. Let𝑋 be
the universe of discourse.Throughout this paper, the universe
set𝑋 is assumed to be the set of all real number (R) endowed
with a usual topology.

Definition 1 (see [9]). A fuzzy subset �̃� of𝑋 is a set of ordered
pairs �̃� = {(𝑥, 𝜇

̃

𝐴

(𝑥)) | 𝑥 ∈ 𝑋}, where 𝜇
̃

𝐴

: 𝑋 → [0, 1] is
called membership function of �̃�.

The concept of fuzzy subset was first introduced by [9].
The value 𝜇

̃

𝐴

(𝑥) can be interpreted as themembership degree
of a point 𝑥 to the set �̃�.

Definition 2 (see [9]). A fuzzy subset �̃� of𝑋 is called normal
if there exists at least one element 𝑥 ∈ 𝑋 such that 𝜇

̃

𝐴

(𝑥) = 1.

Definition 3 (see [21]). Let �̃� be a fuzzy subset of 𝑋. The
support of �̃�, denoted by Supp(�̃�), is the crisp set cl{𝑥 ∈ 𝑋 |

𝜇
̃

𝐴

(𝑥) > 0}.

Definition 4 (see [9]). Let �̃� be a fuzzy subset of𝑋.The𝛼-level
set of �̃�, denoted by �̃�

𝛼

, is the crisp set {𝑥 ∈ 𝑋 | 𝜇
̃

𝐴

(𝑥) ≥ 𝛼},
where 𝛼 ∈ [0, 1].

Definition 5 (see [9]). A fuzzy subset �̃� of 𝑋 is called convex
if for all 𝛼 ∈ [0, 1] its 𝛼-level sets �̃�

𝛼

are (crisp) convex sets.

Alternatively, a fuzzy subset �̃� of 𝑋 is a convex fuzzy
subset if and only if 𝜇

̃

𝐴

(𝜆𝑥 + (1 − 𝜆)𝑦) ≥ min{𝜇
̃

𝐴

(𝑥), 𝜇
̃

𝐴

(𝑦)}

for all 𝜆 ∈ [0, 1]; that is, 𝜇
̃

𝐴

(𝑥) is a quasi-concave function.

Definition 6 (see [22]). A real-valued function 𝑓 : R →

R is called upper semicontinuous at a point 𝑥 ∈ R if
𝑓(𝑥) ≥ lim sup

𝑘→∞

𝑓(𝑥
𝑘

) for every sequence {𝑥
𝑘

} ⊂ R that
converges to 𝑥. If 𝑓 : R → R is upper semicontinuous at
every point in R, we say that 𝑓(𝑥) is upper semicontinuous.

A real-valued function 𝑓(𝑥) is upper semicontinuous if
and only if {𝑥 | 𝑓(𝑥) ≥ 𝛼} is closed for all 𝛼 ∈ R [22].

Definition 7 (fuzzy number). Let �̃� be a fuzzy subset of R.
Then �̃� is called a fuzzy number if the following conditions
are satisfied:

(i) �̃� is a normal and convex fuzzy subset,
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(ii) its membership function 𝜇
�̃�

(𝑥) is upper semicontinu-
ous,

(iii) the Supp(�̃�) is bounded.

Note that if �̃� is a fuzzy number, then the 𝛼-level set �̃�
𝛼

,
for all 𝛼 ∈ (0, 1], is a compact (closed and bounded inR) and
convex set; that is, �̃�

𝛼

is a bounded and closed interval for all
𝛼 ∈ (0, 1].Then, the𝛼-level set of �̃� is denoted as �̃�

𝛼

= [�̃�
𝐿

𝛼

, �̃�
𝑈

𝛼

]

for all 𝛼 ∈ (0, 1], and �̃�
0

= R especially. For convenience,
we consider the fuzzy input variables as triangular fuzzy
numbers; that is, the graph of themembership function looks
like triangles.

Definition 8. A fuzzy number �̃� ∈ F is a triangular fuzzy
number if its membership function 𝜇

�̃�

(𝑥) is characterized as
follows:

𝜇
�̃�

(𝑥) =

{
{
{
{
{
{

{
{
{
{
{
{

{

𝑥 − 𝑎
1

𝑎
2

− 𝑎
1

𝑎
1

≤ 𝑥 ≤ 𝑎
2

,

𝑥 − 𝑎
3

𝑎
2

− 𝑎
3

𝑎
2

≤ 𝑥 ≤ 𝑎
3

,

0 otherwise.

(1)

Here, [𝑎
1

, 𝑎
3

] is the support set and the membership function
has a peak at 𝑎

2

. The triangular fuzzy number �̃� usually is
denoted as �̃� = (𝑎

1

, 𝑎
2

, 𝑎
3

).

Definition 9 (see [20]). Let �̃� ∈ F be a fuzzy number with
�̃�
𝛼

= [�̃�
𝐿

𝛼

, �̃�
𝑈

𝛼

], 𝛼 ∈ [0, 1]. A function 𝑓 : [0, 1] → R is said
to be a weighting function if 𝑓(𝑥) is nonnegative, monotone
increasing and satisfies the normalization condition:

∫

1

0

𝑓 (𝛼) d𝛼 = 1. (2)

We define the 𝑓-weighted possibilistic mean (WPM) value of
the fuzzy number �̃� as

𝑀
𝑓

(�̃�) = ∫

1

0

�̃�
𝐿

𝛼

+ �̃�
𝑈

𝛼

2

𝑓 (𝛼) d𝛼. (3)

Next, the decomposition theory is introduced which
establishes an important connection between fuzzy sets and
crisp sets. That is, we can get the expression of membership
function of a fuzzy set if all its 𝛼-level sets are available.

Proposition 10 (decomposition theorem [23–25]). Let �̃� be
a fuzzy subset with membership function 𝜇

̃

𝐴

(𝑥) and 𝛼-level set
�̃�
𝛼

= {𝑥 | 𝜇
̃

𝐴

(𝑥) ≥ 𝛼}. Then

𝜇
̃

𝐴

(𝑥) = sup
0≤𝛼≤1

𝛼 ⋅ 1
̃

𝐴

𝛼

(𝑥) , (4)

where 1
̃

𝐴

𝛼

(𝑥) is an indicator function of set �̃�
𝛼

, that is,
1
̃

𝐴

𝛼

(𝑥) = 1 if 𝑥 ∈ �̃�
𝛼

and 1
̃

𝐴

𝛼

(𝑥) = 0 if 𝑥 ∉ �̃�
𝛼

.

LetF denote all the fuzzy subsets of R. Assume �̃�
𝑖

∈ F,
𝑖 = 1, 2, . . . , 𝑛. Let �̃� ≜ �̃�

1

× �̃�
2

× ⋅ ⋅ ⋅ × �̃�
𝑛

and Supp(�̃�) ≜

Supp(�̃�
1

) × Supp(�̃�
2

) × ⋅ ⋅ ⋅ × Supp(�̃�
𝑛

), where × is Cartesian

product. A fruitful and powerful tool of fuzzy set theory for
calculating the fuzzy-valued functions on fuzzy sets is the
extension principle.

Proposition 11 (extension principle [23–25]). Let 𝑓 : R𝑛

→

R be a real-valued function and let �̃�
1

, �̃�
2

, . . . , �̃�
𝑛

be fuzzy
subsets of R. Then one can induce a fuzzy-valued function
̃
𝑓 : F𝑛

→ F according to the real-valued function
𝑓(𝑥

1

, 𝑥
2

, . . . , 𝑥
𝑛

). In fact, ̃
𝑓(�̃�

1

, �̃�
2

, . . . , �̃�
𝑛

) is a fuzzy subset
of R. Then the membership function of ̃

𝑓(�̃�
1

, �̃�
2

, . . . , �̃�
𝑛

) is
characterized as follows:

𝜇
̃

𝑓(

̃

𝐴

1
,

̃

𝐴

2
,...,

̃

𝐴

𝑛
)

(𝑟)

= sup
{(𝑥1 ,...,𝑥𝑛)|𝑟=𝑓(𝑥1 ,...,𝑥𝑛)}∩ Supp (̃𝐴)

min
1≤𝑖≤𝑛

{𝜇
̃

𝐴

𝑖

(𝑥
𝑖

)} ,

(5)

where sup
𝑥∈0

𝑔(𝑥) = 0.

Remark 12. It is necessary to point out that there is a term
Supp(�̃�) in (5), which does not exist in [23–25]. Since
sup

𝑥∈0

𝑔(𝑥) = 0, the term Supp(�̃�) does not affect the
proposition. However, it plays an important role in our
results.

Proposition 13 (see [22]). Let 𝑆 be a nonempty compact set in
R𝑛. If𝑓 is upper semicontinuous on 𝑆, then𝑓 attainsmaximum
over 𝑆 and if 𝑓 is lower semicontinuous on 𝑆, then 𝑓 attains
minimum over 𝑆.

Proposition 14. (i) [26, Theorem 4.25] Let 𝑓 : 𝑆 → 𝑇 be a
function from one metric space (𝑆, 𝑑

𝑆

) to another (𝑇, 𝑑
𝑇

). If 𝑓
is continuous on a compact subset𝑋 of 𝑆, then the image 𝑓(𝑋)

is a compact subset of 𝑇; in particular, 𝑓(𝑋) is a closed and
bounded in 𝑇.

(ii) [26, Theorem 4.37] Let 𝑓 : 𝑆 → 𝑇 be a function from
onemetric space (𝑆, 𝑑

𝑆

) to another (𝑇, 𝑑
𝑇

). Let𝑋 be a connected
subset of 𝑆. If𝑓 is continuous on𝑋, then the𝑓(𝑋) is a connected
subset of 𝑇.

We also review the results in [16, 18] about the formula for
currency option under uncertain environment as follows:

(�̃�
𝑡

)

𝐿

𝛼

= (�̃�
𝑡

)

𝐿

𝛼

⋅ 𝑒
−(�̃�

𝑓
)

𝑈

𝛼

×(𝑇−𝑡)

⋅ 𝑁 ((
̃
𝑑
1

)

𝐿

𝛼

)

− 𝐾 ⋅ 𝑒
−(�̃�

𝑑
)

𝐿

𝛼
×(𝑇−𝑡)

⋅ 𝑁 ((
̃
𝑑
2

)

𝑈

𝛼

) ,

(�̃�
𝑡

)

𝑈

𝛼

= (�̃�
𝑡

)

𝑈

𝛼

⋅ 𝑒
−(�̃�

𝑓
)

𝐿

𝛼

×(𝑇−𝑡)

⋅ 𝑁 ((
̃
𝑑
1

)

𝑈

𝛼

)

− 𝐾 ⋅ 𝑒
−(�̃�

𝑑
)

𝑈

𝛼
×(𝑇−𝑡)

⋅ 𝑁 ((
̃
𝑑
2

)

𝐿

𝛼

) ,

(6)
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where

(
̃
𝑑
1

)

𝐿

𝛼

= (ln(

(�̃�
𝑡

)

𝐿

𝛼

𝐾

)

+ [(�̃�
𝑑

)
𝐿

𝛼

− (�̃�
𝑓

)

𝑈

𝛼

+

1

2

((�̃�
𝑄

)
𝐿

𝛼

)

2

]

× (𝑇 − 𝑡)) ((�̃�
𝑄

)
𝑈

𝛼

√𝑇 − 𝑡)

−1

,

(
̃
𝑑
1

)

𝑈

𝛼

= (ln(

(�̃�
𝑡

)

𝑈

𝛼

𝐾

)

+ [(�̃�
𝑑

)
𝑈

𝛼

− (�̃�
𝑓

)

𝐿

𝛼

+

1

2

((�̃�
𝑄

)
𝑈

𝛼

)

2

]

× (𝑇 − 𝑡)) ((�̃�
𝑄

)
𝐿

𝛼

√𝑇 − 𝑡)

−1

,

(
̃
𝑑
2

)

𝐿

𝛼

= (
̃
𝑑
1

)

𝐿

𝛼

− (�̃�
𝑄

)
𝑈

𝛼

√𝑇 − 𝑡,

(
̃
𝑑
2

)

𝑈

𝛼

= (
̃
𝑑
1

)

𝑈

𝛼

− (�̃�
𝑄

)
𝐿

𝛼

√𝑇 − 𝑡.

(7)

3. Expressing of 𝛼-Level Set of the
Fuzzy-Valued Functions of Fuzzy Numbers

In this section, we will establish the fundamental proposition
for this paper, which based on the decomposition theorem,
the extension principle, and some properties about continu-
ous function. The following proposition is a result about the
fuzzy-valued functions of fuzzy subsets.

Proposition 15. Let 𝑓 : R𝑛

→ R be a continuous, surjective,
real-valued function and let �̃�

1

, �̃�
2

, . . . , �̃�
𝑛

be fuzzy subsets of
R. Let ̃

𝑓 : F𝑛

→ F be a fuzzy-valued function induced
by 𝑓(𝑥

1

, 𝑥
2

, . . . , 𝑥
𝑛

) via the extension principle defined in (5).
Suppose that

(i) 𝜇
̃

𝐴

𝑖

(𝑥
𝑖

) is upper semicontinuous on R, 𝑖 = 1, 2, . . . , 𝑛,
(ii) Supp( 0A) is a bounded set of R𝑛,

then
(a) (

̃
𝑓 (�̃�

1

, �̃�
2

, . . . , �̃�
𝑛

))
𝛼

= {𝑓 (𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

) | 𝑥
1

∈ (�̃�
1

)
𝛼

,

𝑥
2

∈ (�̃�
2

)
𝛼

, . . . , 𝑥
𝑛

∈ (�̃�
𝑛

)
𝛼

} ,

∀𝛼 ∈ [0, 1] ,

(8)

(b) Supp(̃𝑓 (�̃�
1

, �̃�
2

, . . . , �̃�
𝑛

))

= {𝑓 (𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

) | 𝑥
1

∈ Supp(�̃�
1

) ,

𝑥
2

∈ Supp (�̃�
2

) , . . . , 𝑥
𝑛

∈ Supp(�̃�
𝑛

)} .

(9)

Proof. (a) For 𝛼 = 0, (8) holds from Definition 4 and the
property of surjection of 𝑓(𝑥

1

, 𝑥
2

, . . . , 𝑥
𝑛

).
For 𝛼 ∈ (0, 1], let 𝑟 ∈ {𝑓(𝑥

1

, 𝑥
2

, . . . , 𝑥
𝑛

) | 𝑥
1

∈ (�̃�
1

)
𝛼

, 𝑥
2

∈

(�̃�
2

)
𝛼

, . . . , 𝑥
𝑛

∈ (�̃�
𝑛

)
𝛼

}. Then there exists (𝑥
∗

1

, 𝑥
∗

2

, . . . , 𝑥
∗

𝑛

) ∈

(�̃�
1

)
𝛼

× (�̃�
2

)
𝛼

× ⋅ ⋅ ⋅ × (�̃�
𝑛

)
𝛼

such that 𝑟 = 𝑓(𝑥
∗

1

, 𝑥
∗

2

, . . . , 𝑥
∗

𝑛

).
Thus min

1≤𝑖≤𝑛

{𝜇
̃

𝐴

𝑖

(𝑥
∗

𝑖

)} ≥ 𝛼. It follows that

𝜇
̃

𝑓(

̃

𝐴

1
,

̃

𝐴

2
,...,

̃

𝐴

𝑛
)

(𝑟)

= sup
{(𝑥1 ,...,𝑥𝑛)|𝑟=𝑓(𝑥1 ,...,𝑥𝑛)}∩Supp(̃𝐴)

min
1≤𝑖≤𝑛

{𝜇
̃

𝐴

𝑖

(𝑥
𝑖

)} ≥ 𝛼,

(10)

which means that

{𝑓 (𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

) | 𝑥
1

∈ (�̃�
1

)
𝛼

,

𝑥
2

∈ (�̃�
2

)
𝛼

, . . . , 𝑥
𝑛

∈ (�̃�
𝑛

)
𝛼

} ⊂ (
̃
𝑓 (�̃�

1

, �̃�
2

, . . . , �̃�
𝑛

))
𝛼

.

(11)

On the other hand, 𝜇
̃

𝐴

𝑖

(𝑥
𝑖

) is upper semicontinuous on R,
then 𝑈

𝑖

= {𝑥
𝑖

| 𝜇
̃

𝐴

𝑖

(𝑥
𝑖

) ≥ 𝛼} is a closed subset of R, 𝑖 =

1, 2, . . . , 𝑛. Therefore, 𝐶
𝑖

= R × ⋅ ⋅ ⋅ × R⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑖−1

×𝑈
𝑖

×R × ⋅ ⋅ ⋅ × R⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−𝑖

is a

closed subset of R𝑛

𝑖 = 1, 2, . . . , 𝑛. Since

{(𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

) | min
1≤𝑖≤𝑛

{𝜇
̃

𝐴

𝑖

(𝑥
𝑖

)} ≥ 𝛼}

= {(𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

) | 𝜇
̃

𝐴

𝑖

(𝑥
𝑖

) ≥ 𝛼, 𝑖 = 1, 2, . . . , 𝑛}

=

𝑛

⋂

𝑖=1

𝐶
𝑖

(12)

is a closed subset of R𝑛, we have min
1≤𝑖≤𝑛

{𝜇
̃

𝐴

𝑖

(𝑥
𝑖

)} is upper

semicontinuous on R𝑛. Let 𝑟 ∈ (
̃
𝑓(�̃�

1

, �̃�
2

, . . . , �̃�
𝑛

))
𝛼

, that is,

sup
{(𝑥1 ,...,𝑥𝑛)|𝑟=𝑓(𝑥1,...,𝑥𝑛)}∩Supp(̃𝐴)

min
1≤𝑖≤𝑛

{𝜇
̃

𝐴

𝑖

(𝑥
𝑖

)} ≥ 𝛼. (13)

Since {(𝑥
1

, . . . , 𝑥
𝑛

) | 𝑟 = 𝑓(𝑥
1

, . . . , 𝑥
𝑛

)} is a closed
subset of R𝑛and Supp(�̃�) is a compact set of R𝑛 and
min

1≤𝑖≤𝑛

{𝜇
̃

𝐴

𝑖

(𝑥
𝑖

)} is upper semicontinuous on R𝑛, we con-
clude from Proposition 13 that there exists (𝑥

1

, 𝑥
2

, . . . , 𝑥
𝑛

)

such that 𝑟 = 𝑓(𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

) and min
1≤𝑖≤𝑛

{𝜇
̃

𝐴

𝑖

(𝑥
𝑖

)} ≥ 𝛼.
Therefore 𝜇

̃

𝐴

𝑖

(𝑥
𝑖

) ≥ 𝛼, that is, 𝑥
𝑖

∈ (�̃�
𝑖

)
𝛼

, 𝑖 = 1, 2, . . . , 𝑛. This
means

𝑟 ∈ {𝑓 (𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

) | 𝑥
1

∈ (�̃�
1

)
𝛼

,

𝑥
2

∈ (�̃�
2

)
𝛼

, . . . , 𝑥
𝑛

∈ (�̃�
𝑛

)
𝛼

} .

(14)

Therefore,

(
̃
𝑓 (�̃�

1

, �̃�
2

, . . . , �̃�
𝑛

))
𝛼

⊂ {𝑓 (𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

) | 𝑥
1

∈ (�̃�
1

)
𝛼

,

𝑥
2

∈ (�̃�
2

)
𝛼

, . . . , 𝑥
𝑛

∈ (�̃�
𝑛

)
𝛼

}

(15)

which completes the proof of (a).
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(b) Let 𝑟 ∈ Supp (
̃
𝑓(�̃�

1

, �̃�
2

, . . . , �̃�
𝑛

)), we conclude
from Definition 3 that there exists a sequence {𝑟

𝑚

}
∞

𝑚=1

which
satisfies 𝑟

𝑚

→ 𝑟 and 𝜇
̃

𝑓(

̃

𝐴

1
,

̃

𝐴

2
,...,

̃

𝐴

𝑛
)

(𝑟
𝑚

) > 0, that is,

sup
{(𝑥1 ,...,𝑥𝑛)|𝑟𝑚=𝑓(𝑥1 ,...,𝑥𝑛)}∩Supp(̃𝐴)

min
1≤𝑖≤𝑛

{𝜇
̃

𝐴

𝑖

(𝑥
𝑖

)} > 0. (16)

Since {(𝑥
1

, . . . , 𝑥
𝑛

) | 𝑟
𝑚

= 𝑓(𝑥
1

, . . . , 𝑥
𝑛

)} is closed
and Supp(�̃�) is bounded and closed, then {(𝑥

1

, . . . , 𝑥
𝑛

) |

𝑟
𝑚

= 𝑓(𝑥
1

, . . . , 𝑥
𝑛

)} ∩ Supp(�̃�) is compact. Moreover, we
deduce thatmin

1≤𝑖≤𝑛

{𝜇
̃

𝐴

𝑖

(𝑥
𝑖

)} is upper semicontinuous onR𝑛

according to the proof of (a). Consequently, we conclude from
Proposition 13 that there exist {𝑥𝑚

1

}
∞

𝑚=1

, {𝑥
𝑚

2

}
∞

𝑚=1

, . . . , {𝑥
𝑚

𝑛

}
∞

𝑚=1

such that

𝜇
̃

𝑓(

̃

𝐴

1
,

̃

𝐴

2
,...,

̃A
𝑛
)

(𝑟
𝑚

)

= min
1≤𝑖≤𝑛

{𝜇
̃

𝐴

𝑖

(𝑥
𝑚

𝑖

)} > 0 for 𝑚 ∈ N, 𝑖 = 1, 2, . . . , 𝑛,

(17)

where 𝑟
𝑚

= 𝑓(𝑥
𝑚

1

, . . . , 𝑥
𝑚

𝑛

) and 𝑥
𝑚

𝑖

∈ Supp(�̃�
𝑖

). Since
Supp(�̃�) ∩ {(𝑥

1

, . . . , 𝑥
𝑛

) | 𝑟
𝑚

= 𝑓(𝑥
1

, . . . , 𝑥
𝑛

)} is compact, for
each 𝑖 ∈ {1, 2, . . . , 𝑛}, there exists a subsequence {𝑥

𝑚

𝑘

𝑖

}
∞

𝑘=1

of
{𝑥

𝑚

𝑖

}
∞

𝑚=1

such that 𝑥𝑚𝑘
𝑖

→ 𝑥
𝑖

∈ Supp(�̃�
𝑖

) as 𝑘 → ∞. Notice
that

𝑟
𝑚

𝑘

= 𝑓 (𝑥
𝑚

𝑘

1

, . . . , 𝑥
𝑚

𝑘

𝑛

) → 𝑟,

𝑓 (𝑥
𝑚

𝑘

1

, . . . , 𝑥
𝑚

𝑘

𝑛

) → 𝑓 (𝑥
1

, . . . , 𝑥
𝑛

) as 𝑘 → ∞.

(18)

We have 𝑟 = 𝑓(𝑥
1

, . . . , 𝑥
𝑛

), where 𝑥
𝑖

∈ Supp(�̃�
𝑖

). Then

Supp (
̃
𝑓 (�̃�

1

, �̃�
2

, . . . , �̃�
𝑛

))

⊂ {𝑓 (𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

) | 𝑥
1

∈ Supp (�̃�
1

) , . . . ,

𝑥
𝑛

∈ Supp (�̃�
𝑛

)} .

(19)

For the converse, let 𝑧 ∈ {𝑓(𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

) | 𝑥
1

∈

Supp(�̃�
1

), . . . , 𝑥
𝑛

∈ Supp(�̃�
𝑛

)}. Then there exist sequences
{𝑥

𝑚

𝑖

}
∞

𝑚=1

, 𝑖 = 1, 2, . . . , 𝑛, which satisfy 𝜇
̃

𝐴

𝑖

(𝑥
𝑚

𝑖

) > 0 and
𝑥
𝑚

𝑖

→ 𝑥
𝑖

as 𝑚 → ∞, where 𝑥
𝑖

∈ Supp(�̃�
𝑖

) and 𝑧 =

𝑓(𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

). Recall the continuity of 𝑓(𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

),
we have

{𝑓 (𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

) | 𝑥
1

∈ Supp (�̃�
1

) , . . . , 𝑥
𝑛

∈ Supp (�̃�
𝑛

)}

⊂ Supp (
̃
𝑓 (�̃�

1

, �̃�
2

, . . . , �̃�
𝑛

)) .

(20)

This completes the proof.

Remark 16. One of the conditions of Proposition in [13] is
that {(𝑥

1

, . . . , 𝑥
𝑛

) | 𝑟 = 𝑓(𝑥
1

, . . . , 𝑥
𝑛

)} is compact for all 𝑟 ∈

Range(𝑓).This one is not verified there. Actually, it is difficult
to be verified. Meanwhile, (8) only holds for 𝛼 ∈ (0, 1].
We change the above conditions to (i) 𝜇

̃

𝐴

𝑖

(𝑥
𝑖

) is upper

semicontinuous onR, 𝑖 = 1, 2, . . . , 𝑛; (ii) Supp(�̃�) is bounded
of R𝑛 and; (iii) 𝑓 : R𝑛

→ R is a continuous, surjective, real-
valued function. Conditions (i)–(iii) can be easily satisfied. At
the same time, (8) holds for 𝛼 ∈ [0, 1] and (9) is also obtained.

The following is the fundamental proposition for dis-
cussing the Garman-Kohlhagen formula for European cur-
rency option via the extension principle.

Proposition 17. Let 𝑓 : R𝑛

→ R be a continuous, surjective,
real-valued function and let �̃�

1

, �̃�
2

, . . . , �̃�
𝑛

be fuzzy numbers.
Let ̃

𝑓 : F𝑛

→ F be a fuzzy-valued function induced by
𝑓(𝑥

1

, 𝑥
2

, . . . , 𝑥
𝑛

) via the extension principle defined in (5).
Then ̃

𝑓(�̃�
1

, �̃�
2

, . . . , �̃�
𝑛

) is a fuzzy number and its 𝛼-level set is

(
̃
𝑓 (�̃�

1

, �̃�
2

, . . . , �̃�
𝑛

))
𝛼

= {𝑓 (𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

) | 𝑥
1

∈ (�̃�
1

)
𝛼

,

𝑥
2

∈ (�̃�
2

)
𝛼

, . . . , 𝑥
𝑛

∈ (�̃�
𝑛

)
𝛼

}

= {𝑓 (𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

) | (�̃�
1

)
𝐿

𝛼

≤ 𝑥
1

≤ (�̃�
1

)
𝑈

𝛼

, . . . , (�̃�
𝑛

)
𝐿

𝛼

≤ 𝑥
𝑛

≤ (�̃�
𝑛

)
𝑈

𝛼

} .

(21)

Proof. Let 𝑋
𝛼

≜ {(𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

) | 𝑥
1

∈ (�̃�
1

)
𝛼

, 𝑥
2

∈

(�̃�
2

)
𝛼

, . . . , 𝑥
𝑛

∈ (�̃�
𝑛

)
𝛼

} for all 𝛼 ∈ (0, 1]. Then it follows from
Definition 7 that 𝑋

𝛼

is an 𝑛-dimensional bounded interval;
that is,𝑋

𝛼

is a compact and connected subset ofR𝑛. Next, we
conclude from Propositions 15 and 14 that

(i) {𝜇
̃

𝑓(�̃�

1
,�̃�

2
,...,�̃�

𝑛
)

≥ 𝛼} = (
̃
𝑓(�̃�

1

, �̃�
2

, . . . , �̃�
𝑛

))
𝛼

= {𝑓(𝑥
1

, 𝑥
2

,

. . . , 𝑥
𝑛

) | (𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

) ∈ 𝑋
𝛼

} is a compact and
connected subset of R for all 𝛼 ∈ (0, 1];

(ii) (
̃
𝑓(�̃�

1

, �̃�
2

, . . . , �̃�
𝑛

))
0

= R is closed and convex set;

(iii) Supp(̃𝑓(�̃�
1

, �̃�
2

, . . . , �̃�
𝑛

)) = {𝑓(𝑥
1

, 𝑥
2

, . . . , 𝑥
𝑛

) | 𝑥
1

∈

Supp(�̃�
1

), 𝑥
2

∈ Supp(�̃�
2

), . . . , 𝑥
𝑛

∈ Supp(�̃�
𝑛

)}.

Furthermore,

(i) the membership function 𝜇
̃

𝑓(�̃�

1
,�̃�

2
,...,�̃�

𝑛
)

of ̃
𝑓(�̃�

1

, �̃�
2

,

. . . , �̃�
𝑛

) is upper semicontinuous;
(ii) ̃

𝑓(�̃�
1

, �̃�
2

, . . . , �̃�
𝑛

) is a convex fuzzy subset;

(iii) Supp(̃𝑓(�̃�
1

, �̃�
2

, . . . , �̃�
𝑛

)) is bounded.

Obviously, ̃
𝑓(�̃�

1

, �̃�
2

, . . . , �̃�
𝑛

) is a normal fuzzy subset, as
𝑋
1

is nonempty. Therefore, from Definition 7 we conclude
that ̃

𝑓(�̃�
1

, �̃�
2

, . . . , �̃�
𝑛

) is a fuzzy number and its 𝛼-level set is
(21). This completes the proof.

4. Fuzzy Currency Options Pricing Formula
via the Extension Principle

4.1. The G-K Formula for European Currency Option. The
closed-form solution for European currency option pricing
formula has been derived by Garman and Kohlhagen [1].
The G-K formula for European call currency option with the
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expiry date 𝑇 and the strike price 𝐾 is described as follows.
Let 𝑄

𝑡

, 𝐶
𝑡

denote the spot exchange rate, and the price of
European call currency option at time 𝑡 ∈ [0, 𝑇], respectively,
then

𝐶
𝑡

= 𝑄
𝑡

⋅ 𝑒
−𝑟

𝑓
𝜏

⋅ 𝑁 (𝑑
1

) − 𝐾 ⋅ 𝑒
−𝑟

𝑑
𝜏

⋅ 𝑁 (𝑑
2

) , (22)

where 𝜏 = 𝑇−𝑡,𝑑
1

= [ln(𝑄
𝑡

/𝐾)+(𝑟
𝑑

−𝑟
𝑓

+(1/2)𝜎
2

𝑄

)𝜏]/(𝜎
𝑄

√𝜏),
𝑑
2

= 𝑑
1

− 𝜎
𝑄

√𝜏, 𝑟
𝑓

, 𝑟
𝑑

, 𝜎
𝑄

, 𝑁(⋅) denote the foreign
interest rate, the domestic interest rate, the volatility of
spot exchange rate and the standard Gaussian cumulative
distribution function, respectively. Let

𝑓 (𝑞, 𝑡, 𝐾, 𝑟
𝑑

, 𝑟
𝑓

, 𝜎) = 𝑞 ⋅ 𝑒
−𝑟

𝑓
𝑡

⋅ 𝑁 (𝑑
1

) − 𝐾 ⋅ 𝑒
−𝑟

𝑑
𝑡

⋅ 𝑁 (𝑑
2

) ,

(23)

then

𝐶
𝑡

= 𝑓 (𝑄
𝑡

, 𝑇 − 𝑡, 𝐾, 𝑟
𝑑

, 𝑟
𝑓

, 𝜎
𝑄

) , (24)

for all 𝑡 ∈ [0, 𝑇]. Furthermore, the price 𝑃
𝑡

of European
put option at time 𝑡 ∈ [0, 𝑇] with same expiry date 𝑇 and
strike price𝐾 can be obtained by the following put-call parity
relationship (Musiela and Rutkowski [27]):

𝐶
𝑡

− 𝑃
𝑡

= 𝑒
−𝑟

𝑓
(𝑇−𝑡)

⋅ 𝑄
𝑡

− 𝑒
−𝑟

𝑑
(𝑇−𝑡)

⋅ 𝐾. (25)

Let

𝑔 (𝑞, 𝑡, 𝐾, 𝑟
𝑑

, 𝑟
𝑓

, 𝜎)

= 𝑓 (𝑞, 𝑡, 𝐾, 𝑟
𝑑

, 𝑟
𝑓

, 𝜎) − 𝑒
−𝑟

𝑓
𝑡

⋅ 𝑞 + 𝑒
−𝑟

𝑑
𝑡

⋅ 𝐾

(26)

for all 𝑡 ∈ [0, 𝑇], then

𝑃
𝑡

= 𝑔 (𝑄
𝑡

, 𝑇 − 𝑡, 𝐾, 𝑟
𝑑

, 𝑟
𝑓

, 𝜎
𝑄

) . (27)

4.2. The Fuzzy Version of the G-K Formula for European
Currency Option. As the discussion in Section 1, it is suitable
to represent the four input variables in the G-K formula by
fuzzy numbers. Thus, we give the following assumptions.

Assumption 1.

(i) The spot exchange rate at time 𝑡 ∈ [0, 𝑇] is fuzzy
number �̃�

𝑡

;
(ii) the domestic interest rate is fuzzy number �̃�

𝑑

;
(iii) the foreign interest rate is fuzzy number �̃�

𝑓

;
(iv) the volatility of spot exchange rate is fuzzy number

�̃�
𝑄

.

Based on Assumption 1, (24) and the extension principle
(Proposition 11), the original price for European call currency
option 𝐶

𝑡

at time 𝑡 ∈ [0, 𝑇] turns into fuzzy subset �̃�
𝑡

∈ F
with the membership function

𝜇
̃

𝐶

𝑡

(𝑐) = sup
{(𝑞,𝑟𝑑,𝑟𝑓,𝜎𝑄)|𝑐=𝑓(𝑞,𝑇−𝑡,𝐾,𝑟𝑑,𝑟𝑓,𝜎𝑄)}∩Supp(̃𝐴)

× min {𝜇
̃

𝑄

𝑡

(𝑞) , 𝜇
�̃�

𝑑

(𝑟
𝑑

) , 𝜇
�̃�

𝑓

(𝑟
𝑓

) , 𝜇
�̃�

𝑄

(𝜎
𝑄

)} ,

(28)

where Supp(�̃�) = Supp(�̃�
𝑡

)×Supp(�̃�
𝑑

)×Supp(�̃�
𝑓

)×Supp(�̃�
𝑄

).
Since the function 𝑓(𝑄

𝑡

, 𝑇 − 𝑡, 𝐾, 𝑟
𝑑

, 𝑟
𝑓

, 𝜎
𝑄

) satisfies condi-
tions of Proposition 17, we conclude that the fuzzy price �̃�

𝑡

at
time 𝑡 ∈ [0, 𝑇] is a fuzzy number. Furthermore, its 𝛼-level set
(�̃�

𝑡

)
𝛼

is

(�̃�
𝑡

)
𝛼

= {𝑓 (𝑞, 𝑇 − 𝑡, 𝐾, 𝑟
𝑑

, 𝑟
𝑓

, 𝜎
𝑄

) | 𝑞 ∈ (�̃�
𝑡

)
𝛼

,

𝑟
𝑑

∈ (�̃�
𝑑

)
𝛼

, 𝑟
𝑓

∈ (�̃�
𝑓

)
𝛼

, 𝜎
𝑄

∈ (�̃�
𝑄

)
𝛼

} ,

(29)

for all 𝛼 ∈ [0, 1]. On the other hand, from Definition 7, the
𝛼-level set (�̃�

𝑡

)
𝛼

of �̃�
𝑡

is a closed interval

(�̃�
𝑡

)
𝛼

= [(�̃�
𝑡

)

𝐿

𝛼

, (�̃�
𝑡

)

𝑈

𝛼

] . (30)

Notice that the 𝛼-level set of �̃�
𝑡

, �̃�
𝑑

, �̃�
𝑓

, and �̃�
𝑄

are (�̃�
𝑡

)
𝛼

=

[(�̃�
𝑡

)
𝐿

𝛼

, (�̃�
𝑡

)
𝑈

𝛼

], (�̃�
𝑑

)
𝛼

= [(�̃�
𝑑

)
𝐿

𝛼

, (�̃�
𝑑

)
𝑈

𝛼

], (�̃�
𝑓

)
𝛼

= [(�̃�
𝑓

)
𝐿

𝛼

, (�̃�
𝑓

)
𝑈

𝛼

],
and (�̃�

𝑄

)
𝛼

= [(�̃�
𝑄

)
𝐿

𝛼

, (�̃�
𝑄

)
𝑈

𝛼

], respectively. Therefore, from
(29) and (30), the left endpoint (�̃�

𝑡

)
𝐿

𝛼

and the right-end point
(�̃�

𝑡

)
𝑈

𝛼

can be displayed as

(�̃�
𝑡

)

𝐿

𝛼

= min
(
̃

𝑄

𝑡)
𝐿

𝛼
≤𝑞≤(

̃

𝑄

𝑡)
𝑈

𝛼
,(�̃�𝑑)
𝐿

𝛼
≤𝑟

𝑑
≤(�̃�𝑑)

𝑈

𝛼
,

(�̃�𝑓)
𝐿

𝛼

≤𝑟

𝑓
≤(�̃�𝑓)

𝑈

𝛼

,(�̃�𝑄)
𝐿

𝛼
≤𝜎

𝑄
≤(�̃�𝑄)

𝑈

𝛼

𝑓 (𝑞, 𝑇 − 𝑡, 𝐾, 𝑟
𝑑

, 𝑟
𝑓

, 𝜎
𝑄

) ,

(�̃�
𝑡

)

𝑈

𝛼

= max
(
̃

𝑄

𝑡)
𝐿

𝛼
≤𝑞≤(

̃

𝑄

𝑡)
𝑈

𝛼
,(�̃�𝑑)
𝐿

𝛼
≤𝑟

𝑑
≤(�̃�𝑑)

𝑈

𝛼
,

(�̃�𝑓)
𝐿

𝛼

≤𝑟

𝑓
≤(�̃�𝑓)

𝑈

𝛼

,(�̃�𝑄)
𝐿

𝛼
≤𝜎

𝑄
≤(�̃�𝑄)

𝑈

𝛼

𝑓 (𝑞, 𝑇 − 𝑡, 𝐾, 𝑟
𝑑

, 𝑟
𝑓

, 𝜎
𝑄

) .

(31)

Moreover, according to the sensitivity analysis (Greek letters)
of the G-K formula [18], we have

𝜕𝑓

𝜕𝑞

= 𝑒
−𝑟

𝑓
𝑡

𝑁(𝑑
1

) > 0,

𝜕𝑓

𝜕𝑟
𝑑

= 𝑡 ⋅ 𝐾 ⋅ 𝑒
−𝑟

𝑑
𝑡

𝑁(𝑑
2

) > 0,

𝜕𝑓

𝜕𝑟
𝑓

= −𝑡 ⋅ 𝑞 ⋅ 𝑒
−𝑟

𝑓
𝑡

𝑁(𝑑
1

) < 0,

𝜕𝑓

𝜕𝜎
𝑄

= 𝑞 ⋅ 𝑒
−𝑟

𝑓
𝑡

𝑁


(𝑑
1

) ⋅ √𝑡 > 0.

(32)

This mean 𝑓 is increasing with respect to 𝑞, 𝑟
𝑑

, and 𝜎
𝑄

and
is decreasing with respect to 𝑟

𝑓

. Therefore, from (31), we
conclude that

(�̃�
𝑡

)

𝐿

𝛼

= 𝑓((�̃�
𝑡

)

𝐿

𝛼

, 𝑇 − 𝑡, 𝐾, (�̃�
𝑑

)
𝐿

𝛼

, (�̃�
𝑓

)

𝑈

𝛼

, (�̃�
𝑄

)
𝐿

𝛼

) ,

(�̃�
𝑡

)

𝑈

𝛼

= 𝑓((�̃�
𝑡

)

𝑈

𝛼

, 𝑇 − 𝑡, 𝐾, (�̃�
𝑑

)
𝑈

𝛼

, (�̃�
𝑓

)

𝐿

𝛼

, (�̃�
𝑄

)
𝑈

𝛼

) .

(33)

On the other hand, from Proposition 10, the membership
function of �̃�

𝑡

can also be written as

𝜇
̃

𝐶

𝑡

(𝑐) = sup
0≤𝛼≤1

𝛼 ⋅ 1
(

̃

𝐶

𝑡
)

𝛼

(𝑐) . (34)
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Finally, (28), (33), and (34) constitute the fuzzy version of the
G-K formula for European call currency option.

Similarly, the conclusions about European put currency
option are as follows, through the above discussions.

The original price of European put currency option 𝑃
𝑡

at time 𝑡 ∈ [0, 𝑇] turns into fuzzy subset �̃�
𝑡

∈ F with the
membership function under Assumption 1

𝜇
̃

𝑃

𝑡

(𝑝) = sup
{(𝑞,𝑟𝑑,𝑟𝑓 ,𝜎𝑄)|𝑝=𝑔(𝑞,𝑇−𝑡,𝐾,𝑟𝑑,𝑟𝑓,𝜎𝑄)}∩Supp(̃𝐴)

× min {𝜇
̃

𝑄

𝑡

(𝑞) , 𝜇
�̃�

𝑑

(𝑟
𝑑

) , 𝜇
�̃�

𝑓

(𝑟
𝑓

) , 𝜇
�̃�

𝑄

(𝜎
𝑄

)} ,

(35)

where Supp(�̃�) is as above. Furthermore, the fuzzy price �̃�
𝑡

at time 𝑡 ∈ [0, 𝑇] is a fuzzy number and the 𝛼-level set (�̃�
𝑡

)
𝛼

of �̃�
𝑡

is a closed interval

(�̃�
𝑡

)
𝛼

= [(�̃�
𝑡

)

𝐿

𝛼

, (�̃�
𝑡

)

𝑈

𝛼

] . (36)

Moreover, the left endpoint (�̃�
𝑡

)
𝐿

𝛼

and the right endpoint
(�̃�

𝑡

)
𝑈

𝛼

can be displayed as

(�̃�
𝑡

)

𝐿

𝛼

= 𝑔 ((�̃�
𝑡

)

𝑈

𝛼

, 𝑇 − 𝑡, 𝐾, (�̃�
𝑑

)
𝑈

𝛼

, (�̃�
𝑓

)

𝐿

𝛼

, (�̃�
𝑄

)
𝐿

𝛼

) ,

(�̃�
𝑡

)

𝑈

𝛼

= 𝑔 ((�̃�
𝑡

)

𝐿

𝛼

, 𝑇 − 𝑡, 𝐾, (�̃�
𝑑

)
𝐿

𝛼

, (�̃�
𝑓

)

𝑈

𝛼

, (�̃�
𝑄

)
𝑈

𝛼

) .

(37)

On the other hand, the membership function of �̃�
𝑡

can also
be written as

𝜇
̃

𝑃

𝑡

(𝑝) = sup
0≤𝛼≤1

𝛼 ⋅ 1
(

̃

𝑃

𝑡
)

𝛼

(𝑝) . (38)

Finally, (35), (37), and (38) constitute the fuzzy version of
the G-K formula for European put currency option.

5. Defuzzification via Weighting Parameter
Identification and Numerical Analysis

In this section, we defuzzify the fuzzy price for European cur-
rency option �̃�

𝑡

(�̃�
𝑡

).Then an numerical example is presented.
Up to now, it is proved that the fuzzy price for European
currency option is a fuzzy number under Assumption 1. For
practical purposes, it may be convenient to find a crisp
number that synthesizes the fuzzy number �̃�

𝑡

(�̃�
𝑡

). This type
of problem is known as the “defuzzification procedure” in
the literature. Defuzzification is the process to select an
appropriate crisp value based on a fuzzy set such that the
selected crisp valuemay represent the fuzzy set in some sense.

Of all the methods of defuzzification, two most popular
methods are the center of area (COA) and the mean of max-
ima (MOM) which require explicit membership function.
Now, themembership function of �̃�

𝑡

(�̃�
𝑡

) cannot be expressed
explicitly; it can be deduced by the decomposition theorem
(see (34) or (38)) or the extension principle (see (28) or (35))
only. Since its 𝛼-level sets of �̃�

𝑡

(�̃�
𝑡

) are available (see (33)
or (37)), the weighted possibilistic mean value of Fullér and

Majlender [20] about fuzzy number is fited to be the crisp
number that we needed (see Definition 9) in the following.

Next, the proposed fuzzy version of the G-K formula
(28) is tested with the daily market price data of EUR/USD
currency option. To compare with the results in [16, 18] con-
veniently, the market data from [16] are used in Example 18.
In the following example, we assumed that the weighting
function is 𝑓

𝑛

(𝑥) ≜ (1 + 𝑛)𝛼
𝑛, where 0 ≤ 𝛼 ≤ 1 is the belief

degree and 𝑛 is the belief degree of weighting parameter.

Example 18. A European EUR/USD currency call option
is studied on march 16, 2006. For the EUR/USD currency
option, the spot exchange rate is 1.215, the 3-month volatility
is around 9.0%, the domestic 3-month interest rate is around
4.93%, the foreign 3-month interest rate is around 2.71%, and
the strike price is 1.21 with 3-month to expiry. The market
price of this currency option is 0.0274USD.The fuzzy foreign
and domestic interest rates, the fuzzy spot exchange rate, and
the fuzzy volatility are assumed to triangular fuzzy numbers:
�̃�
𝑡

= (1.2138, 1.2150, 1.2162), �̃�
𝑄

= (7.2%, 9.0%, 10.8%),
�̃�
𝑑

= (4.91%, 4.93%, 4.95%), and �̃�
𝑓

= (2.69%, 2.71%, 2.72%),
respectively.

The fuzzy price �̃�
𝑡

of European call currency option can
be obtained by (28). Table 1 gives the 𝛼-level set of the fuzzy
price �̃�

𝑡

for different belief degrees 𝛼 and the 𝑓-weighted
possibilistic mean value 𝑀

𝑓

𝑛

(�̃�
𝑡

) for different belief degrees
of weighting parameters 𝑛, respectively. In fact, if𝑄

𝑡

= 1.215,
𝑟
𝑑

= 4.93%, 𝑟
𝑓

= 2.71%, and 𝜎
𝑄

= 9.0%, then European call
currency option price is 0.027872$ by the G-K formula (24).
This situation matches the observation 𝐶

𝑡

= 0.027872$ with
belief degree 1.

Remark 19. There are some differences between the 𝛼-level
sets of fuzzy call option price in this paper and those in [16,
18], which are shown in Table 1.The reason is that the division
operation of fuzzy numbers in [16, 18] is invalid occasionally.
Table 1 also shows that 𝑀

𝑓

𝑛

(�̃�
𝑡

) is the best approximation to
the real price when 𝑛 = 2.

Next, assuming the currency option prices 𝐶
𝑡

1

, 𝐶
𝑡

2

,

. . . , 𝐶
𝑡

𝑁

at 𝑡
1

, 𝑡
2

, . . . , 𝑡
𝑁

dates are available, how to acquire a
more accurate 𝐶

𝑡

𝑁+1

at 𝑡
𝑁+1

date is an important question.
Based on minimizing the mean square error between the
market prices and WPMs, a method of weighting parameter
identification is presented as follows.

Frame:

(i) collect the market price data: 𝐶
𝑡

1

, 𝐶
𝑡

2

, . . . , 𝐶
𝑡

𝑁

;

(ii) calculate the performance index 𝐽(𝑛) =

∑
𝑁

𝑖=1

(∫

1

0

(((�̃�
𝑡

𝑖

)
𝐿

𝛼

+ (�̃�
𝑡

𝑖

)
𝑈

𝛼

)/2)(1 + 𝑛)𝛼
𝑛 d𝛼 − 𝐶

𝑡

𝑖

)

2

;

(iii) solve min
0≤𝑛≤1

𝐽(𝑛) and optimal solution 𝑛
∗ is

obtained and;

(iv) calculate𝑀
𝑓

𝑛

(�̃�
𝑡

𝑁+1

) = ∫

1

0

(((�̃�
𝑡

𝑁+1

)
𝐿

𝛼

+(�̃�
𝑡

𝑁+1

)
𝑈

𝛼

)/2)(1+

𝑛
∗

)𝛼
𝑛

∗

d𝛼, and let 𝐶
𝑡

𝑁+1

= 𝑀
𝑓

𝑛

(�̃�
𝑡

𝑁+1

).
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Table 1: Fuzzy EUR/USD currency option price.

𝛼-level set of this paper 𝛼-level set of paper [16, 18] WPM
Market price

𝛼 [(�̃�
𝑡

)
𝐿

𝛼

, (�̃�
𝑡

)
𝑈

𝛼

] [(�̃�
𝑡

)
𝐿

𝛼

, (�̃�
𝑡

)
𝑈

𝛼

] 𝑛 𝑀
𝑓

𝑛

(�̃�
𝑡

)

0.0 [0.022898, 0.032859] [−0.05526, 0.11108] 0 0.02787
0.1 [0.023394, 0.032360] [−0.04644, 0.10225] 1 0.027589
0.2 [0.023890, 0.031860] [−0.037785, 0.093576] 2 0.02745
0.3 [0.024386, 0.031360] [−0.029274, 0.085052] 3 0.027312
0.4 [0.024883, 0.030860] [−0.020886, 0.076652] 4 0.027174
0.5 [0.025379, 0.030361] [−0.012604, 0.068359] 5 0.027036 0.0274
0.6 [0.025876, 0.029861] [−0.0044076, 0.060155] 6 0.0269
0.7 [0.026373, 0.029362] [0.0037199, 0.052020] 7 0.026763
0.8 [0.026870, 0.028862] [0.011796, 0.043938] 8 0.026628
0.9 [0.027367, 0.028363] [0.019839, 0.035892] 9 0.026492
1.0 [0.027864, 0.027864] [0.027864, 0.027864] 10 0.026358

6. Conclusions

In this paper, the Fuzzy version of the Garman-Kohlhagen
(FG-K) formula for pricing European currency option via
the extension principle is proposed. In the FG-K formula,
the interest rate, the spot exchange rate, and the volatility in
conventional G-K formula are replaced by fuzzy numbers.
So the FG-K formula is able to keep consistent with the real
market. We prove that the fuzzy price for European currency
option is a fuzzy number. And then the fuzzy price �̃�

𝑡

(�̃�
𝑡

)
is defuzzified by the weighted possibilistic mean value. The
example shows that the fuzzy price in this paper is more
accurate than the ones in [16, 18] and the fuzzy prices in [16,
18] are just approximations to our fuzzy price for European
currency option. In addition, the example indicates that the
WPMvalue has different approximation effects to realmarket
price by taking different values of weighting parameter in the
weighting function. So an identificationmethod is presented.
And the optimal parameter is obtained if we have already
known some market prices for European currency option.
The method in this paper can be extended to other option
pricing. How to find out different kinds of weighting function
in defuzzification requires a further study.
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