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We consider multivalued nonself-weak contractions on convex metric spaces and establish the existence of a fixed point of such
mappings. Presented theorem generalizes results of M. Berinde and V. Berinde (2007), Assad and Kirk (1972), and many others
existing in the literature.

1. Introduction

The study of fixed points of single-valued self-mappings
or multivalued self-mappings satisfying certain contraction
conditions has a great majority of results inmetric fixed point
theory. All these results are mainly generalizations of Banach
contraction principle.

The Banach contraction principle guarantees the exis-
tence and uniqueness of fixed points of certain self-maps in
complete metric spaces. This result has various applications
to operator theory and variational analysis. So, it has been
extended in many ways until now. One of these is related to
multivalued mappings. Its starting point is due to Nadler Jr.
[1].

The fixed point theory for multivalued nonself-mappings
developed rapidly after the publication of Assad and Kirk’s
paper [2] in which they proved a non-self-multivalued
version of Banach’s contraction principle. Further results for
multivalued non-self-mappings were proved in, for example,
[3–7]. For other related results, see also [8–38].

On the other hand, Berinde [11–13] introduced a new class
of self-mappings (usually called weak contractions or almost
contractions) that satisfy a simple but general contraction
condition that includes most of the conditions in Rhoades’
classification [39]. He obtained a fixed point theorem for
such mappings which generalized the results of Kannan [40],
Chatterjea [41], and Zamfirescu [42]. As shown in [43], the
weakly contractive metric-type fixed point result in [12] is

“almost” covered by the related altering metric one due to
Khan et al. [21].

In [9], M. Berinde and V. Berinde extendedTheorem 8 to
the case of multivalued weak contractions.

Definition 1. Let (𝑋, 𝑑) be a metric space and 𝐾 a nonempty
subset of 𝑋. A map 𝑇 : 𝐾 → 𝐶𝐵(𝑋) is called a multivalued
almost contraction if there exist a constant 𝛿 ∈ (0, 1) and
some 𝐿 ≥ 0 such that

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝛿 ⋅ 𝑑 (𝑥, 𝑦) + 𝐿𝐷 (𝑦, 𝑇𝑥) , ∀𝑥, 𝑦 ∈ 𝐾. (1)

Theorem 2 (see [9]). Let 𝑋 be a complete metric space and
𝑇 : 𝑋 → 𝐶𝐵(𝑋) a multivalued almost contraction. Then 𝑇

has a fixed point.

The aim of this paper is to prove a fixed point theorem
for multivalued nonself almost contractions on convex met-
ric spaces. This theorem extends several important results
(including the above) in the fixed point theory of self-
mappings to the case on nonself-mappings and generalizes
several fixed point theorems for nonself-mappings.

2. Preliminaries

We recall some basic definitions and preliminaries that will
be needed in this paper.
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Let (𝑋, 𝑑) be a metric space and 𝐶𝐵(𝑋) the set of all
nonempty bounded and closed subsets of 𝑋. For 𝐴, 𝐵 ∈

𝐶𝐵(𝑋), define

𝐷 (𝑥, 𝐴) = inf{𝑑 (𝑥, 𝑦) : 𝑦 ∈ 𝐴} ,

𝐷 (𝐴, 𝐵) = inf{𝑑 (𝑥, 𝑦) : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} ,

𝐻 (𝐴, 𝐵) = max{sup
𝑥∈𝐴

𝐷(𝑥, 𝐵) , sup
𝑦∈𝐵

𝐷(𝑦, 𝐴)} .

(2)

It is known that 𝐻 is a metric on 𝐶𝐵(𝑋) and 𝐻 is called the
Hausdorff metric or Pompeiu-Hausdorff metric induced by
𝑑. It is also known that (𝐶𝐵(𝑋),𝐻) is a complete metric space
whenever (𝑋, 𝑑) is a complete metric space.

Definition 3. Let 𝑇 : 𝑋 → 𝐶𝐵(𝑋) be a multivalued map. An
element 𝑥 ∈ 𝑋 is said to be a fixed point of 𝑇 if 𝑥 ∈ 𝑇𝑥.

In this paper we assume that (𝑋, 𝑑) is a convex metric
space which is defined as follows.

Definition 4. Ametric space (𝑋, 𝑑) is convex if for each 𝑥, 𝑦 ∈

𝑋 with 𝑥 ̸= 𝑦 there exists 𝑧 ∈ 𝑋, 𝑥 ̸= 𝑧 ̸= 𝑦, such that

𝑑 (𝑥, 𝑦) = 𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦) . (3)

This notion is similar to the definition of metric space
of hyperbolic type. The class of metric spaces of hyperbolic
type includes all normed linear spaces and all spaces with
hyperbolic metric.

It is known that in a convex metric space each two points
are the endpoints of at least one metric segment (see [2]).

Proposition 5 (see [2]). Let𝐾 be a closed subset of a complete
and convex metric space 𝑋. If 𝑥 ∈ 𝐾 and 𝑦 ∉ 𝐾, then there
exists a point 𝑧 ∈ 𝜕𝐾 (the boundary of 𝐾) such that

𝑑 (𝑥, 𝑦) = 𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦) . (4)

The following lemma will be required in the sequel.

Lemma 6 (see [1, 2]). Let (𝑋, 𝑑) be a metric space and 𝐴, 𝐵 ∈

𝐶𝐵(𝑋). If 𝑥 ∈ 𝐴, then, for each positive number 𝛼, there exists
𝑦 ∈ 𝐵 such that

𝑑 (𝑥, 𝑦) ≤ 𝐻 (𝐴, 𝐵) + 𝛼. (5)

The definition of an almost contraction given by Berinde
[12] is as follows.

Definition 7. Let (𝑋, 𝑑) be a metric space. A map 𝑇 : 𝑋 → 𝑋

is called almost contraction if there exist a constant 𝛿 ∈ (0, 1)

and some 𝐿 ≥ 0 such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛿 ⋅ 𝑑 (𝑥, 𝑦) + 𝐿𝑑 (𝑦, 𝑇𝑥) , ∀𝑥, 𝑦 ∈ 𝑋. (6)

Theorem 8 (see [12]). Let (𝑋, 𝑑) be a complete metric space
and 𝑇 : 𝑋 → 𝑋 an almost contraction. Then

(1) Fix(𝑇) = {𝑥 ∈ 𝑋 : 𝑇𝑥 = 𝑥} ̸= 0;
(2) for any 𝑥

0
∈ 𝑋, the Picard iteration {𝑥

𝑛
}
∞

𝑛=0
converges

to some 𝑥∗ ∈ Fix(𝑇);

(3) the following estimate holds

𝑑 (𝑥
𝑛+𝑖−1

, 𝑥
∗

) ≤
𝛿𝑖

1 − 𝛿
𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) ,

𝑛 = 1, 2, . . . ; 𝑖 = 1, 2, . . . .

(7)

Let us recall (see [30]) that a mapping 𝑇 possessing
properties (1) and (2) is called a weakly Picard operator.

In fact, Theorem 8 generalizes some important fixed
point theorems in the literature such as Banach contraction
principle, Kannan fixed point theorem [40], Chatterjea fixed
point theorem [41], and Zamfirescu fixed point theorem [42].

3. Main Results

Theorem 9. Let (𝑋, 𝑑) be a complete convex metric space and
𝐾 a nonempty closed subset of 𝑋. Suppose that 𝑇 : 𝐾 →

𝐶𝐵(𝑋) is a multivalued almost contraction, that is,

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝛿 ⋅ 𝑑 (𝑥, 𝑦) + 𝐿𝐷 (𝑦, 𝑇𝑥) , ∀𝑥, 𝑦 ∈ 𝐾, (8)

with 𝛿 ∈ (0, 1) and some 𝐿 ≥ 0 such that 𝛿(1 + 𝐿) < 1. If 𝑇
satisfies Rothe’s type condition, that is, 𝑥 ∈ 𝜕𝐾 ⇒ 𝑇𝑥 ⊂ 𝐾,
then there exists 𝑧 ∈ 𝐾 such that 𝑧 ∈ 𝑇𝑧; that is, 𝑇 has a fixed
point in 𝐾.

Proof. We construct two sequences {𝑥
𝑛
} and {𝑦

𝑛
} in the

followingway. Let𝑥
0
∈ 𝐾 and𝑦

1
∈ 𝑇𝑥
0
. If𝑦
1
∈ 𝐾, let𝑥

1
= 𝑦
1
.

If 𝑦
1
∉ 𝐾, then there exists 𝑥

1
∈ 𝜕𝐾 such that

𝑑 (𝑥
0
, 𝑥
1
) + 𝑑 (𝑥

1
, 𝑦
1
) = 𝑑 (𝑥

0
, 𝑦
1
) . (9)

Thus 𝑥
1
∈ 𝐾, and, by Lemma 6 and 𝛼 = 𝛿, we can choose

𝑦
2
∈ 𝑇𝑥
1
such that

𝑑 (𝑦
1
, 𝑦
2
) ≤ 𝐻 (𝑇𝑥

0
, 𝑇𝑥
1
) + 𝛿. (10)

If 𝑦
2
∈ 𝐾, let 𝑥

2
= 𝑦
2
. If 𝑦
2
∉ 𝐾, then there exists 𝑥

2
∈ 𝜕𝐾

such that

𝑑 (𝑥
1
, 𝑥
2
) + 𝑑 (𝑥

2
, 𝑦
2
) = 𝑑 (𝑥

1
, 𝑦
2
) . (11)

Thus 𝑥
2
∈ 𝐾, and, by Lemma 6 and 𝛼 = 𝛿2, we can choose

𝑦
3
∈ 𝑇𝑥
2
such that

𝑑 (𝑦
2
, 𝑦
3
) ≤ 𝐻 (𝑇𝑥

1
, 𝑇𝑥
2
) + 𝛿
2

. (12)

Continuing the arguments we construct two sequences {𝑥
𝑛
}

and {𝑦
𝑛
} such that

(i) 𝑦
𝑛+1

∈ 𝑇𝑥
𝑛
;

(ii) 𝑑(𝑦
𝑛
, 𝑦
𝑛+1

) ≤ 𝐻(𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
) + 𝛿𝑛,

where
(iii) 𝑦

𝑛
∈ 𝐾 ⇒ 𝑦

𝑛
= 𝑥
𝑛
;

(iv) 𝑦
𝑛

̸= 𝑥
𝑛
whenever 𝑦

𝑛
∉ 𝐾, and then 𝑥

𝑛
∈ 𝜕𝐾 is such

that

𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑦
𝑛
) = 𝑑 (𝑥

𝑛−1
, 𝑦
𝑛
) . (13)
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Now we claim that {𝑥
𝑛
} is a Cauchy sequence. Suppose that

𝑃 = {𝑥
𝑖
∈ {𝑥
𝑛
} : 𝑥
𝑖
= 𝑦
𝑖
} ,

𝑄 = {𝑥
𝑖
∈ {𝑥
𝑛
} : 𝑥
𝑖

̸= 𝑦
𝑖
} .

(14)

Obviously, if 𝑥
𝑛
∈ 𝑄, then 𝑥

𝑛−1
and 𝑥

𝑛+1
belong to 𝑃. Now,

we conclude that there are three possibilities.

Case 1. If 𝑥
𝑛
, 𝑥
𝑛+1

∈ 𝑃, then 𝑦
𝑛
= 𝑥
𝑛
, 𝑦
𝑛+1

= 𝑥
𝑛+1

. Thus

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑑 (𝑦
𝑛
, 𝑦
𝑛+1

)

≤ 𝐻 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
) + 𝛿
𝑛

≤ 𝛿 ⋅ 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝐿𝐷 (𝑥

𝑛
, 𝑇𝑥
𝑛−1

) + 𝛿
𝑛

= 𝛿 ⋅ 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝛿
𝑛

(15)

since 𝑦
𝑛
∈ 𝑇𝑥
𝑛−1

.

Case 2. If 𝑥
𝑛
∈ 𝑃, 𝑥

𝑛+1
∈ 𝑄, then 𝑦

𝑛
= 𝑥
𝑛
, 𝑦
𝑛+1

̸= 𝑥
𝑛+1

. We
have

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝑑 (𝑥
𝑛+1

, 𝑦
𝑛+1

)

= 𝑑 (𝑥
𝑛
, 𝑦
𝑛+1

)

= 𝑑 (𝑦
𝑛
, 𝑦
𝑛+1

)

≤ 𝐻 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
) + 𝛿
𝑛

≤ 𝛿 ⋅ 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝐿𝐷 (𝑥

𝑛
, 𝑇𝑥
𝑛−1

) + 𝛿
𝑛

= 𝛿 ⋅ 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝛿
𝑛

.

(16)

Case 3. If 𝑥
𝑛
∈ 𝑄, 𝑥

𝑛+1
∈ 𝑃, then 𝑥

𝑛−1
∈ 𝑃, 𝑦

𝑛
̸= 𝑥
𝑛
, 𝑦
𝑛+1

=

𝑥
𝑛+1

, 𝑦
𝑛−1

= 𝑥
𝑛−1

, and 𝑦
𝑛
∈ 𝑇𝑥
𝑛−1

. We have

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑑 (𝑥
𝑛
, 𝑦
𝑛+1

)

≤ 𝑑 (𝑥
𝑛
, 𝑦
𝑛
) + 𝑑 (𝑦

𝑛
, 𝑦
𝑛+1

)

≤ 𝑑 (𝑥
𝑛
, 𝑦
𝑛
) + 𝐻 (𝑇𝑥

𝑛−1
, 𝑇𝑥
𝑛
) + 𝛿
𝑛

≤ 𝑑 (𝑥
𝑛
, 𝑦
𝑛
) + 𝛿 ⋅ 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
)

+ 𝐿𝐷 (𝑥
𝑛
, 𝑇𝑥
𝑛−1

) + 𝛿
𝑛

.

(17)

Since 𝛿 < 1, then

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ 𝑑 (𝑥
𝑛
, 𝑦
𝑛
) + 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
)

+ 𝐿𝐷 (𝑥
𝑛
, 𝑇𝑥
𝑛−1

) + 𝛿
𝑛

= 𝑑 (𝑥
𝑛−1

, 𝑦
𝑛
) + 𝐿𝐷 (𝑥

𝑛
, 𝑇𝑥
𝑛−1

) + 𝛿
𝑛

≤ 𝑑 (𝑥
𝑛−1

, 𝑦
𝑛
) + 𝐿𝑑 (𝑥

𝑛
, 𝑦
𝑛
) + 𝛿
𝑛

= 𝑑 (𝑥
𝑛−1

, 𝑦
𝑛
) + 𝐿𝑑 (𝑥

𝑛−1
, 𝑦
𝑛
)

− 𝐿𝑑 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝛿
𝑛

≤ (1 + 𝐿) 𝑑 (𝑦
𝑛−1

, 𝑦
𝑛
) + 𝛿
𝑛

≤ (1 + 𝐿)𝐻 (𝑇𝑥
𝑛−2

, 𝑇𝑥
𝑛−1

)

+ (1 + 𝐿) 𝛿
𝑛−1

+ 𝛿
𝑛

≤ (1 + 𝐿) 𝛿 ⋅ 𝑑 (𝑥
𝑛−2

, 𝑥
𝑛−1

)

+ (1 + 𝐿) 𝐿𝐷 (𝑥
𝑛−1

, 𝑇𝑥
𝑛−2

)

+ (1 + 𝐿) 𝛿
𝑛−1

+ 𝛿
𝑛

= (1 + 𝐿) 𝛿 ⋅ 𝑑 (𝑥
𝑛−2

, 𝑥
𝑛−1

) + (1 + 𝐿) 𝛿
𝑛−1

+ 𝛿
𝑛

.

(18)

Since

ℎ = (1 + 𝐿) 𝛿 < 1, (19)

then

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) < ℎ𝑑 (𝑥
𝑛−2

, 𝑥
𝑛−1

) + ℎ𝛿
𝑛−2

+ 𝛿
𝑛

. (20)

Thus, combining Cases 1, 2, and 3, it follows that

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ {
𝛼 ⋅ 𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
) + 𝛼𝑛

𝛼𝑑 (𝑥
𝑛−2

, 𝑥
𝑛−1

) + 𝛼𝑛−1 + 𝛼𝑛,
(21)

where

𝛼 = max{𝛿, ℎ} = ℎ. (22)

Following [2], by induction it follows that for 𝑛 > 1

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1

) ≤ ℎ
(𝑛−1)/2

𝜔 + ℎ
𝑛/2

𝑛, (23)

where

𝜔 = max{𝑑 (𝑥
0
, 𝑥
1
) , 𝑑 (𝑥

1
, 𝑥
2
)} . (24)

Now, for 𝑛 > 𝑚, we have

𝑑 (𝑥
𝑛
, 𝑥
𝑚
) ≤ 𝑑 (𝑥

𝑛
, 𝑥
𝑛−1

) + 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛−2

)

+ ⋅ ⋅ ⋅ + 𝑑 (𝑥
𝑚−1

, 𝑥
𝑚
)

≤ (ℎ
(𝑛−1)/2

+ ℎ
(𝑛−2)/2

+ ⋅ ⋅ ⋅ + ℎ
(𝑚−1)/2

) 𝜔

+ 𝛼
𝑛/2

𝑛 + 𝛼
(𝑛−1)/2

(𝑛 − 1) + ⋅ ⋅ ⋅ + 𝛼
𝑚/2

𝑚.

(25)

This implies that the sequence {𝑥
𝑛
} is a Cauchy sequence.

Since𝑋 is complete and𝐾 is closed, it follows that there exists
𝑧 ∈ 𝐾 such that

𝑧 = lim
𝑛→∞

𝑥
𝑛
. (26)

By construction of {𝑥
𝑛
}, there is a subsequence {𝑥

𝑞
} such that

𝑦
𝑞
= 𝑥
𝑞
∈ 𝑇𝑥
𝑞−1

. (27)

We will prove that 𝑧 ∈ 𝑇𝑧. In fact, by (i), 𝑥
𝑞
∈ 𝑇𝑥
𝑞−1

. Since
𝑥
𝑞
→ 𝑧 as 𝑞 → ∞, we have

𝐷(𝑧, 𝑇𝑥
𝑞−1

) → 0, (28)
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as 𝑞 → ∞. Note that

𝐷(𝑧, 𝑇𝑧) ≤ 𝑑 (𝑧, 𝑥
𝑞
) + 𝑑 (𝑥

𝑞
, 𝑇𝑧) (29)

≤ 𝑑 (𝑧, 𝑥
𝑞
) + 𝐻(𝑇𝑥

𝑞−1
, 𝑇𝑧) (30)

≤ 𝑑 (𝑧, 𝑥
𝑞
) + 𝛿𝑑 (𝑥

𝑞−1
, 𝑧) + 𝐿𝐷 (𝑧, 𝑇𝑥

𝑞−1
) ,

(31)

which on letting 𝑞 → ∞ implies that 𝐷(𝑧, 𝑇𝑧) = 0; it, then,
follows that 𝑧 ∈ 𝑇𝑧.

ByTheorem 9 we obtain as a particular case, a fixed point
theorem for multivalued nonself-contractions due to Assad
and Kirk [2] that appears to be the first fixed point result for
nonself-mappings in the literature.

Corollary 10 (see [2]). Let (𝑋, 𝑑) be a complete convex metric
space and 𝐾 a nonempty closed subset of 𝑋. Suppose that 𝑇 :

𝐾 → 𝐶𝐵(𝑋) is a multivalued contraction; that is,

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝛿𝑑 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝐾, (32)

with 𝛿 ∈ (0, 1). If 𝑇 satisfies Rothe’s type condition, that is,
𝑥 ∈ 𝜕𝐾 ⇒ 𝑇𝑥 ⊂ 𝐾, then there exists 𝑧 ∈ 𝐾 such that 𝑧 ∈ 𝑇𝑧;
that is, 𝑇 has a fixed point in 𝐾.

Example 11. Let 𝑋 be the set of real numbers with the usual
norm, 𝐾 = [0, 1] the unit interval, and 𝑇 : 𝐾 → 𝐶𝐵(𝑋) be
given by 𝑇𝑥 = {(1/9)𝑥}, for 𝑥 ∈ [0, 1/2), 𝑇(1/2) = {−1}, and
𝑇𝑥 = [17/18, (1/9)𝑥 + 8/9], for 𝑥 ∈ (1/2, 1].

In order to show that 𝑇 is a multivalued almost contrac-
tion, we have to discuss 8 possible cases.

Case 1. Consider (𝑥, 𝑦) ∈ Ω
1

= [0, 1/2) × (1/2, 1]. Then
condition (8) reduces to



1

9
𝑥 −

1

9
𝑦 −

8

9


≤ 𝛿

𝑥 − 𝑦
 + 𝐿


𝑦 −

1

9
𝑥

, (𝑥, 𝑦) ∈ Ω

1
.

(33)

Since, for (𝑥, 𝑦) ∈ Ω
1
, one has |(1/9)𝑥 −(1/9)𝑦−8/9| ≤ 1 and

|𝑦 − (1/9)𝑥| > 4/9, in order to have the previous inequality
satisfied, it suffices to take 𝐿 ≥ 9/4 and 0 < 𝛿 < 4/13

arbitrarily.

Case 2. Consider (𝑥, 𝑦) ∈ Ω
2

= (1/2, 1] × [0, 1/2). Then
condition (8) reduces to


1

9
𝑥 +

8

9
−
1

9
𝑦

≤𝛿

𝑥 − 𝑦
+𝐿


𝑦−

1

9
𝑥 −

8

9


, (𝑥, 𝑦) ∈ Ω

2
.

(34)

Since, for (𝑥, 𝑦) ∈ Ω
2
, one has |(1/9)𝑥 + 8/9 − (1/9)𝑦| ≤ 1

and |𝑦 − (1/9)𝑥 − 8/9| > 4/9, in order to have the previous
inequality satisfied, it suffices to take 𝐿 ≥ 9/4 and 0 < 𝛿 <

4/13 arbitrarily.

Case 3. Take (𝑥, 𝑦) ∈ Ω
3
= [0, 1/2)

2. In this case we have

𝐻(𝑇𝑥, 𝑇𝑦) = 𝑑 (
1

9
𝑥,

1

9
𝑦) =



1

9
𝑥 −

1

9
𝑦

, (35)

and so condition (8) is satisfied with 𝛿 = 1/9 and 𝐿 ≥ 0

arbitrarily.

Case 4. Consider (𝑥, 𝑦) ∈ Ω
4
= (1/2, 1]

2. In this case we have

𝐻(𝑇𝑥, 𝑇𝑦) = 𝐻([
1

9
𝑥 +

8

9
, 1] , [

1

9
𝑦 +

8

9
, 1])

=


1

9
𝑥 −

1

9
𝑦

,

(36)

and so condition (8) is satisfied with 𝛿 = 1/9 and 𝐿 ≥ 0

arbitrarily.

Case 5. Take (𝑥, 𝑦) ∈ Ω
5
= {1/2} × [0, 1/2). Then condition

(8) reduces to

1 +

1

9
𝑦

≤ 𝛿



1

2
− 𝑦


+ 𝐿

𝑦 + 1
 , (𝑥, 𝑦) ∈ Ω

5
. (37)

Since for (𝑥, 𝑦) ∈ Ω
5
, one has |1+(1/9)𝑦| < 19/18 and |1+𝑦| ≥

1, in order to have the previous inequality satisfied, it suffices
to take 𝐿 ≥ 19/18 and 0 < 𝛿 < 18/37 arbitrarily.

Case 6. Consider (𝑥, 𝑦) ∈ Ω
6

= [0, 1/2) × {1/2}. Then
condition (8) reduces to


1 +

1

9
𝑥

≤ 𝛿


𝑥 −

1

2


+ 𝐿



1

2
−
1

9
𝑥

, (𝑥, 𝑦) ∈ Ω

6
. (38)

Since, for (𝑥, 𝑦) ∈ Ω
6
, one has |1 + (1/9)𝑥| ≤ 19/18 and

|1/2 − (1/9)𝑥| ≥ 4/9, in order to have the previous inequality
satisfied, it suffices to take 𝐿 ≥ 19/8 and 0 < 𝛿 < 8/27

arbitrarily.

Case 7. Take (𝑥, 𝑦) ∈ Ω
7
= {1/2} × (1/2, 1]. Then condition

(8) reduces to

1 +

1

9
𝑦 +

8

9


≤ 𝛿



1

2
− 𝑦


+ 𝐿

𝑦 + 1
 , (𝑥, 𝑦) ∈ Ω

7
.

(39)

Since, for (𝑥, 𝑦) ∈ Ω
7
, one has |1 + (1/9)𝑦 + 8/9| ≤ 2 and

|𝑦+1| ≥ 3/2, in order to have the previous inequality satisfied,
it suffices to take 𝐿 ≥ 4/3 and 0 < 𝛿 < 3/7.

Case 8. Consider (𝑥, 𝑦) ∈ Ω
8

= (1/2, 1] × {1/2}. Then
condition (8) reduces to

1 +

1

9
𝑥 +

8

9


≤ 𝛿


𝑥 −

1

2


+ 𝐿



1

2
−
1

9
𝑥 −

8

9


, (𝑥, 𝑦) ∈ Ω

8
.

(40)

Since, for (𝑥, 𝑦) ∈ Ω
8
, one has |1 + (1/9)𝑥 + 8/9| ≤ 2 and

|1/2 − (1/9)𝑥 − 8/9| > 4/9, in order to have the previous
inequality satisfied, it suffices to take 𝐿 ≥ 9/2 and 0 < 𝛿 <

2/11 arbitrarily.
Now, by summarizing all cases, we conclude that condi-

tion (8) is satisfied with 𝛿 = 1/9 and 𝐿 = 9/2. Note that the
additional condition 𝛿(1 + 𝐿) < 1 is also satisfied.

Hence,𝑇 is amultivalued almost contraction that satisfies
all assumptions inTheorem9, and𝑇 has two fixed points; that
is, Fix(𝑇) = {0, 1}.
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Note that Corollary 10 cannot be applied to 𝑇 in Exam-
ple 11. Indeed, if we take 𝑥 = 1 and 𝑦 = 1/2 in (32), then one
obtains

𝐻(𝑇1, 𝑇
1

2
) ≤ 𝛿


1 −

1

2


. (41)

That is, |1 + 1| ≤ 𝛿|1/2|, which leads to the contradiction 4 ≤

𝛿 < 1.
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