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Combining multivariate spectral gradient method with projection scheme, this paper presents an adaptive prediction-correction
method for solving large-scale nonlinear systems of monotone equations. The proposed method possesses some favorable
properties: (1) it is progressive step by step, that is, the distance between iterates and the solution set is decreasing monotonically;
(2) global convergence result is independent of the merit function and its Lipschitz continuity; (3) it is a derivative-free method and
could be applied for solving large-scale nonsmooth equations due to its lower storage requirement. Preliminary numerical results
show that the proposed method is very effective. Some practical applications of the proposed method are demonstrated and tested
on sparse signal reconstruction, compressed sensing, and image deconvolution problems.

1. Introduction

Considering the problem to find solutions of the following
nonlinear monotone equations:

𝑔 (𝑥) = 0, (1)

where 𝑔 : R𝑛 → R𝑛 is a continuous and monotone, that is,
⟨𝑔(𝑥) − 𝑔(𝑦), 𝑥 − 𝑦⟩ ≥ 0 for all 𝑥, 𝑦 ∈ R𝑛.

Nonlinear monotone equations arise in many practical
applications such as ballistic trajectory computation [1] and
vibration systems [2], the first-order necessary condition of
the unconstrained convex optimization problem, and the
subproblems in the generalized proximal algorithms with
Bregman distances [3]. Moreover, we can convert some
monotone variational inequality into systems of nonlinear
monotone equations by means of fixed point maps or
normal maps [4] if the underlying function satisfies some
coercive conditions. Solodov and Svaiter [5] proposed a
projection method for solving (1). A nice property of the
projection method is that the whole sequence of iterates
is always globally convergent to a solution of the system

without any additional regularity assumptions. Moreover,
Zhang and Zhou [6] presented a spectral gradient projection
(SG) method for solving systems of monotone equations
which combines a modified spectral gradient method and
projection method. This method is shown to be globally
convergent if the nonlinear monotone equations is Lipschitz
continuous. Xiao et al. [7] proposed a spectral gradient
method to minimize a nonsmooth minimization problem,
arising from spare solution recovery in compressed sensing,
consisting of a least-squares data-fitting term and a ℓ

1
-

norm regularization term. This problem is firstly formulated
as a convex quadratic program (QP) problem and then
reformulated to an equivalent nonlinear monotone equation.
Furthermore, Yin et al. [8] developed a nonlinear conjugate
gradient method for ℓ

1
-norm regularization problems in

compressed sensing. Yu [9, 10] extended the spectral gradient
method and conjugate gradient-type method to solve large-
scale nonlinear system of equations, respectively. Recently,
the authors in [11] proposed a multivariate spectral gradient
projection method for solving nonlinear monotone equa-
tions with convex constraints. Numerical results show that
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multivariate spectral gradient method (MSG) could improve
its performance very well.

Following this line, based on multivariate spectral gra-
dient method (MSG), we present an adaptive prediction-
correction method for solving nonlinear monotone equa-
tions (1) in the next section. Its global convergence result
is established, which is independent of the merit function
and Lipschitz continuity. Section 3 presents some numerical
experiments to demonstrate and test its practical perfor-
mance on compressed sensing and image deconvolution
problems. Finally, we have a conclusion section.

2. Adaptive Prediction-Correction Method

Considering the projection method [5] for solving nonlinear
monotone equations (1), suppose that we have obtained
a direction 𝑑

𝑘
. By performing some kind of line search

procedure along the direction 𝑑
𝑘
, a point 𝑧

𝑘
= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
can

be computed such that

⟨𝑔 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩ > 0. (2)

By the monotonicity of 𝑔, for any 𝑥 such that 𝑔(𝑥) = 0, we
have

⟨𝑔 (𝑧
𝑘
) , 𝑥 − 𝑧

𝑘
⟩ ≤ 0. (3)

Thus, the hyperplane

𝐻
𝑘
= {𝑥 ∈ R

𝑛

| ⟨𝑔 (𝑧
𝑘
) , 𝑥 − 𝑧

𝑘
⟩ = 0} (4)

strictly separates the current iterate 𝑥
𝑘
from solutions of the

systems of monotone equations. Once we get the separating
hyperplane, the next iterate 𝑥

𝑘+1
is computed by projecting 𝑥

𝑘

on it.
Recalling the multivariate spectral gradient (MSG)

method [12] for minimization problem min{𝑓(𝑥) | 𝑥 ∈

R𝑛}, its iterative formula is defined by 𝑥
𝑘+1

= 𝑥
𝑘
−

diag{1/𝜆1
𝑘
, 1/𝜆
2

𝑘
, . . . , 1/𝜆

𝑛

𝑘
}𝑔
𝑘
, where 𝑔

𝑘
is the gradient of 𝑓 at

𝑥
𝑘
and diag{𝜆1

𝑘
, 𝜆
2

𝑘
, . . . , 𝜆

𝑛

𝑘
} is obtained by minimizing


diag{𝜆1, 𝜆2, . . . , 𝜆𝑛}𝑠

𝑘−1
− 𝑦
𝑘−1

2
(5)

with respect to {𝜆
𝑖

}
𝑛

𝑖=1
, where 𝑠

𝑘−1
= 𝑥
𝑘
− 𝑥
𝑘−1

, 𝑦
𝑘
= 𝑔
𝑘
−

𝑔
𝑘−1

. In particular, when 𝑓(𝑥) has positive definite diagonal
Hessianmatrix, multivariate spectral gradientmethodwill be
convergent quadratically [12].

Let the 𝑖th column of 𝑦
𝑘
and 𝑠

𝑘
denoted by 𝑠

𝑖

𝑘
and

𝑦
𝑖

𝑘
, respectively. Combining multivariate spectral gradient

method with projection scheme, we can present an adaptive
prediction-correction method for solving monotone equa-
tions (1) as follows.

Algorithm 1 (multivariate spectral gradient (MSG) method).
Given 𝑥

0
∈ R𝑛, 𝛽 ∈ (0, 1), 𝜎 ∈ (0, 1), 0 < 𝜀 < 1, 𝑟 ≥ 0,

𝛿 > 0. Set 𝑘 = 0.

Step 1. If ‖𝑔
𝑘
‖ = 0, stop.

Step 2. (a) If 𝑘 = 0, set 𝑑
𝑘
= −𝑔(𝑥

𝑘
).

(b) else if 𝑦𝑖
𝑘−1

/𝑠
𝑖

𝑘−1
> 0, then set 𝜆

𝑖

𝑘
= 𝑦
𝑖

𝑘−1
/𝑠
𝑖

𝑘−1
;

otherwise set 𝜆𝑖
𝑘
= (𝑠
𝑇

𝑘−1
𝑦
𝑘−1

)/(𝑠
𝑇

𝑘−1
𝑠
𝑘−1

) for 𝑖 = 1, 2, . . . , 𝑛,
where 𝑠

𝑘−1
= 𝑥
𝑘
− 𝑥
𝑘−1

, 𝑦
𝑘−1

= 𝑔(𝑥
𝑘
) − 𝑔(𝑥

𝑘−1
) + 𝑟𝑠
𝑘−1

.
(c) else if 𝜆𝑖

𝑘
≤ 𝜀 or 𝜆𝑖

𝑘
≥ 1/𝜀, set 𝜆𝑖

𝑘
= 𝛿 for 𝑖 = 1, 2, . . . , 𝑛.

Set 𝑑
𝑘
= − diag{1/𝜆1

𝑘
, 1/𝜆
2

𝑘
, . . . , 1/𝜆

𝑛

𝑘
}𝑔
𝑘
.

Step 3 (prediction step). Compute step length 𝛼
𝑘
, set 𝑧

𝑘
=

𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
, where 𝛼

𝑘
= 𝛽
𝑚𝑘 with 𝑚

𝑘
being the smallest

nonnegative integer𝑚 such that

− ⟨𝑔 (𝑥
𝑘
+ 𝛽
𝑚

𝑑
𝑘
) , 𝑑
𝑘
⟩ ≥ 𝜎𝛽

𝑚𝑑𝑘

2

. (6)

Step 4 (correction step). Compute

𝑥
𝑘+1

= 𝑥
𝑘
−
⟨𝑔 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩

𝑔 (𝑧𝑘)

2

𝑔 (𝑧
𝑘
) . (7)

Step 5. Set 𝑘 = 𝑘 + 1 and go to Step 1.

By using multivariate spectral gradient method, we
obtain prediction sequence {𝑧

𝑘
}, and then we get correction

sequence {𝑥
𝑘
} via projection. It follows from (17) that𝑥

𝑘+1
will

be more close to the solution 𝑥∗ than 𝑥
𝑘
, that is, the sequence

{x
𝑘
}makes progress iterate by iterate. From Step 2(c), we have

min {𝜖, 1
𝛿
}
𝑔𝑘

 ≤
𝑑𝑘

 ≤ max {1
𝜖
,
1

𝛿
}
𝑔𝑘

 . (8)

In what follows, we assume that 𝑔(𝑥
𝑘
) ̸= 0 for all 𝑘 ≥ 0;

otherwise we have got the solution of the problem (1). The
following lemma states that Algorithm 1 is well defined.

Lemma 2. There exists a nonnegative number 𝑚
𝑘
satisfying

(6) for all 𝑘 ≥ 0.

Proof. Suppose that there exists a 𝑘
0
≥ 0 such that (6) is not

satisfied for any nonnegative integer𝑚, that is,

−⟨𝑔 (𝑥
𝑘0
+ 𝛽
𝑚

𝑑
𝑘
) , 𝑑
𝑘0
⟩ < 𝜎𝛽

𝑚

𝑑
𝑘0



2

, ∀𝑚 ≥ 1. (9)

Let𝑚 → ∞ and using the continuity of 𝑔 yields

−⟨𝑔 (𝑥
𝑘0
) , 𝑑
𝑘0
⟩ ≤ 0. (10)

From Steps 1, 2, and 5, we have

𝑔 (𝑥
𝑘
) ̸= 0, 𝑑

𝑘
̸= 0, ∀𝑘 ≥ 0. (11)

Thus,

− ⟨𝑔 (𝑥
0
) , 𝑑
0
⟩ = ⟨𝑔 (𝑥

0
) , 𝑔 (𝑥

0
)⟩ > 0,

− ⟨𝑔 (𝑥
𝑘
) , 𝑑
𝑘
⟩ = ⟨𝑔 (𝑥

𝑘
) , diag{ 1

𝜆1
𝑘

,
1

𝜆2
𝑘

, . . . ,
1

𝜆
𝑛

𝑘

}𝑔 (𝑥
𝑘
)⟩

≥ min {𝜖, 1
𝛿
}
𝑔𝑘


2

> 0, ∀𝑘 ≥ 1.

(12)

The last inequality contradicts (10). Hence the statement is
proved.
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Lemma 3. Let {𝑥
𝑘
} and {𝑧

𝑘
} be any sequence generated by

Algorithm 1. Suppose that 𝑔 is monotone and that the solution
set of (1) is not empty, then {𝑥

𝑘
} and {𝑧

𝑘
} are both bounded.

Furthermore, it holds that

lim
𝑘→∞

𝑥𝑘 − 𝑧
𝑘

 = 0, (13)

lim
𝑘→∞

𝑥𝑘+1 − 𝑥
𝑘

 = 0. (14)

Proof. From (6), we have

⟨𝑔 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩ = −𝛼

𝑘
⟨𝑔 (𝑧
𝑘
) , 𝑑
𝑘
⟩

≥ 𝜎𝛼
2

𝑘

𝑑𝑘

2

= 𝜎
𝑥𝑘 − 𝑧

𝑘


2

.

(15)

Let 𝑥∗ be an arbitrary point such that 𝑔(𝑥∗) = 0. Taking
account of the monotonicity of 𝑔, we have

⟨𝑔 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑥
∗

⟩ = ⟨𝑔 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩ + ⟨𝑔 (𝑧

𝑘
) , 𝑧
𝑘
− 𝑥
∗

⟩

≥ ⟨𝑔 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩ + ⟨𝑔 (𝑥

∗

) , 𝑧
𝑘
− 𝑥
∗

⟩

= ⟨𝑔 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩ .

(16)

From (7), (14), and (16), it follows that

𝑥𝑘+1 − 𝑥
∗
2

=



𝑥
𝑘
−
⟨𝑔 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩

𝑔 (𝑧𝑘)

2

𝑔 (𝑧
𝑘
) − 𝑥
∗



2

=
𝑥𝑘 − 𝑥

∗
2

−
⟨𝑔 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩
2

𝑔 (𝑧𝑘)

2

≤
𝑥𝑘 − 𝑥

∗
2

−
𝜎
2𝑥𝑘 − 𝑧

𝑘


4

𝑔 (𝑧𝑘)

2

.

(17)

Hence the sequence {‖𝑥
𝑘
−𝑥
∗

‖} is decreasing and convergent;
moreover, the sequence {‖𝑥

𝑘
‖} is bounded. Since the 𝑔 is

continuous, there exists a constant 𝐶 > 0 such that
𝑔 (𝑧𝑘)

 ≤ 𝐶. (18)

By the Cauchy-Schwarz inequality, themonotonicity of 𝑔 and
(15), we have

𝑔 (𝑥𝑘)
 ≥

⟨𝑔 (𝑥
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩

𝑥𝑘 − 𝑧
𝑘



≥
⟨𝑔 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩

𝑥𝑘 − 𝑧
𝑘



≥ 𝜎
𝑥𝑘 − 𝑧

𝑘

 .

(19)

From (18) and (19), we obtain that {𝑧
𝑘
} is also bounded. It

follows from (17) and (18) that

𝜎
2

𝐶2

∞

∑

𝑘=1

𝑥𝑘 − 𝑧
𝑘


4

≤

∞

∑

𝑘=1

(
𝑥𝑘 − 𝑥

∗
2

−
𝑥𝑘+1 − 𝑥

∗
2

) < ∞,

(20)

which implies

lim
𝑘→∞

𝑥𝑘 − 𝑧
𝑘

 = 0. (21)

From (7), using the Cauchy-Schwarz inequality, we obtain
that

𝑥𝑘+1 − 𝑥
𝑘

 =
⟨𝑔 (𝑧
𝑘
) , 𝑥
𝑘
− 𝑧
𝑘
⟩

𝑔 (𝑧𝑘)


≤
𝑥𝑘 − 𝑧

𝑘

 . (22)

Thus lim
𝑘→∞

‖𝑥
𝑘+1

− 𝑥
𝑘
‖ = 0.

The proof is complete.

Now we can establish the global convergence of
Algorithm 1.

Theorem 4. Let 𝑥
𝑘
be generated by Algorithm 1; then {𝑥

𝑘
}

converges to an 𝑥 such that 𝑔(𝑥) = 0.

Proof. Since 𝑧
𝑘
= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
, it follows from Lemma 3 that

lim
𝑘→∞

𝛼
𝑘

𝑑𝑘
 = lim
𝑘→∞

𝑥𝑘 − 𝑧
𝑘

 = 0. (23)

From (8) and (18), it holds that {𝑑
𝑘
} is bounded.

Now we consider the following two possible cases:

(i) lim inf
𝑘→∞

‖𝑑(𝑥
𝑘
)‖ = 0.

(ii) lim inf
𝑘→∞

‖𝑑(𝑥
𝑘
)‖ > 0.

If (i) holds, from (8), we have lim inf
𝑘→∞

‖𝑔(𝑥
𝑘
)‖ = 0. By

the continuity of𝑔 and the boundedness of {𝑥
𝑘
}, it is clear that

the sequence {𝑥
𝑘
} has some accumulation point 𝑥 such that

𝑔(𝑥) = 0. From (17), we also have that the sequence {‖𝑥
𝑘
− 𝑥‖}

converges. Therefore, {𝑥
𝑘
} converges to 𝑥.

If (ii) holds, from (8), we have lim inf
𝑘→∞

‖𝑔(𝑥
𝑘
)‖ > 0.

By (23), it holds that

lim
𝑘→∞

𝛼
𝑘
= 0. (24)

By the line search rule, we have for all 𝑘 sufficiently large,𝑚
𝑘
−

1 will not satisfy (6). This means

−⟨𝑔 (𝑥
𝑘
+ 𝛽
𝑚𝑘−1𝑑
𝑘
) , 𝑑
𝑘
⟩ < 𝜎𝛽

𝑚𝑘−1
𝑑𝑘


2

. (25)

Since the sequences {𝑥
𝑘
}, {𝑑
𝑘
} are bounded, we choose a

subsequence, let 𝑘 → ∞ in (25), we obtain that

−⟨𝑔 (𝑥) , 𝑑⟩ ≤ 0, (26)

where 𝑥, 𝑑 are limits of corresponding subsequences. On the
other hand, by (8), it holds that

−⟨𝑔 (𝑥) , 𝑑⟩ > 0, (27)

which contradicts (26). Hence, lim inf
𝑘→∞

‖𝑑(𝑥
𝑘
)‖ > 0 is

impossible.
The proof is complete.
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3. Numerical Experiments

In this section, we report some preliminary numerical
experiments to test our algorithms with comparison to
spectral gradient projectionmethod [6]. Firstly, in Section 3.1
we test these algorithms on solving nonlinear systems of
monotone equations. Secondly, in Section 3.2, we applyHSG-
V algorithm to solve ℓ

1
-norm regularization problem arising

from compressed sensing. All of numerical experiments were
performed underWindows XP andMATLAB 7.0 running on
a personal computerwith an Intel Core 2DuoCPUat 2.2GHz
and 2GB of memory.

3.1. Test onNonlinear Systems ofMonotone Equations. We test
the performance of our algorithms for solving some mono-
tone equations (see details in the appendix). The termination
condition is ‖𝑔(𝑥

𝑘
)‖ ≤ 10

−6. The parameters are specified as
follows. For MSG method, we set 𝛽 = 0.5, 𝜎 = 0.01, 𝜖 =

10
−10

, 𝑟 = 0.01. In Step 2, the parameter 𝛿 is chosen in the
following way:

𝛿 =

{{

{{

{

1 if 𝑔 (𝑥𝑘)
 > 1,

𝑔(𝑥𝑘)

−1 if 10−5 ≤ 𝑔 (𝑥𝑘)

 ≤ 1,

10
5 if 𝑔 (𝑥𝑘)

 < 10
−5

.

(28)

Firstly, we test the performance of the MSG method
on the Problem 1 with 𝑛 = 1000, the initial point 𝑥

0
=

(1, 1, . . . , 1)
𝑇. Figure 1 displays the performance of MSG

method for Problem 1 which indicates that prediction
sequences {𝑧

𝑘
} are better than correction sequences {𝑥

𝑘
}

at most time. Taking this into account, we relax the MSG
method such that Step 4 in Algorithm 1 is replaced by the
following:

if mod

𝑥
𝑘+1

= 𝑥
𝑘
−
⟨𝑔(𝑧
𝑘
), 𝑥
𝑘
− 𝑧
𝑘
⟩

‖𝑔(𝑧
𝑘
)‖
2

𝑔(𝑧
𝑘
),

eslse
𝑥
𝑘+1

= 𝑧
𝑘
,

end.

In this case, we refer to this modification as “MSG-V”
method. When 𝑀 ≡ 1, the above algorithm will reduce
to Algorithm 1. The performance of those methods on the
Problem (1) is shown in Figure 1, from which we can see
that the MSG-V method is preferable quite frequently to
the SG method while it also outperforms the MSG method.
Furthermore, motivated to accelerate the performance of
MSG-Vmethod, we present a hybrid spectral gradient (HSG-
V) algorithm. The main idea of the HSG-V algorithm is
to run MSG-V algorithm when 𝑦

𝑖

𝑘−1
/𝑠
𝑖

𝑘−1
> 0 for 𝑖 =

1, 2, . . . , 𝑛; otherwise switch to spectral gradient projection
(SG) method.

And then we compare the performance of MSG method,
MSG-V method, and HSG-V method with the spectral
gradient projection (SG)method in [6] on test problems with
different initial points. We set 𝛽 = 0.5, 𝜎 = 0.01, 𝑟 = 0.01

300

250

200

150

100

50

0 0 10 20 30 40 50 60 70
𝑘 (iteration)

‖
𝑔
𝑘
‖

𝑥𝑘

𝑧𝑘

(a)

300

250

200

150

100

50

0
0 20 40 60 80 100

‖
𝑔
𝑘
‖

MSG
MSG-V

SG

𝑘 (iteration)

(b)

Figure 1: (a) Norm of sequence versus iteration forMSG algorithm.
(b) MSG-V algorithm versus MSG and SG algorithm, where the
iteration has been cut to 100 for the SG algorithm.

in the spectral gradient projection (SG) method in [6], and
𝑀 = 10 for MSG-V method and HSG-V method.

Numerical results are shown in Tables 1, 2, 3, 4, 5, and 6
with the form NI/NF/T/BK, where we report the dimension
of the problem (𝑛), the initial points (Init), the number of
iteration (NI), the number of function evaluations (NF),
and the CPU time (Time) in seconds and the number of
backtracking (BK). The symbol “F” denotes that the method
fails for this test problem, or the number of the iterations is
greater than 10000.

As we can see from Tables 1–6 that the HSG-V algorithm
is preferable quite frequently to the SG method and also
outperforms theMSGalgorithmandMSG-Valgorithm, since
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Figure 2: (a) Performance profiles for the number of function
evaluations. (b) Performance profiles for the CPU time.

it can solve about 80% and 70% of the problems with the
best time and the smallest number of function evaluations,
respectively. We also find that the SG algorithm seems more
sensitive to the initial points.

Figure 2 shows the performance of these algorithms
relative to the number of function evaluations and CPU time,
respectively, which were evaluated using the profiles of Dolan
andMoré [13].That is, for each algorithm,we plot the fraction
𝑃 of problems for which the method is within a factor 𝑡 of the
smallest number of function evaluations/CPU time. Clearly,
the left side of the figure gives the percentage of the test
problems for which a method is the best one according to the
number of function evaluations or CPU time, respectively. As
we can see from Figure 2, “HSG-V” algorithm has the best
performance.

Table 1: Numerical results for SG/MSG methods on Problem 1.

Init (𝑛) SG MSG

NI/NF/Time/BK NI/NF/Time/BK

𝑥
1
(100) 7935/56267/7.375/6 1480/9774/1.609/1

𝑥
2
(100) 4365/25627/3.125/2 981/6223/0.906/1

𝑥
3
(100) 3131/18028/2.11/7 1139/8240/1.266/1

𝑥
4
(100) 2287/13025/1.453/4 294/1091/0.172/1

𝑥
5
(100) 1685/9535/1.188/3 212/640/0.093/1

𝑥
6
(100) 1788/10238/1.156/3 243/745/0.11/1

𝑥
7
(100) 1608/9236/1.047/2 220/664/0.109/1

𝑥
8
(100) 1629/9283/1.172/4 185/558/0.078/1

𝑥
9
(100) 1478/8407/0.953/4 8/20/0.016/0

𝑥
10
(100) 1611/9131/1.031/3 184/555/0.078/1

𝑥
11
(100) 1475/8404/0.938/4 39/99/0.016/0

𝑥
12
(100) 1226/6938/0.797/5 19/46/0.016/0

𝑥
1
(200) F 2846/20922/6.328/1

𝑥
2
(200) 8506/50896/11.985/4 1535/11707/3.5/1

𝑥
3
(200) 6193/37063/8.687/7 1826/15256/4.5/0

𝑥
4
(200) 4563/27333/6.5/7 266/1055/0.312/1

𝑥
5
(200) 3343/19760/5.078/4 376/1133/0.422/1

𝑥
6
(200) 3620/21536/6.11/7 200/617/0.172/1

𝑥
7
(200) 3249/19340/4.531/6 148/444/0.125/0

𝑥
8
(200) 3253/19383/4.5/5 323/973/0.344/1

𝑥
9
(200) 2974/17649/4.109/4 8/21/0.015/0

𝑥
10
(200) 3256/19214/5.062/4 308/928/0.391/1

𝑥
11
(200) 2995/17784/5.266/4 42/110/0.047/0

𝑥
12
(200) 2483/14698/3.453/3 27/63/0.047/0

𝑥
1
(300) F F

𝑥
2
(300) F 3374/29158/12.782/1

𝑥
3
(300) 9334/57185/20.985/2 1293/10136/4.656/1

𝑥
4
(300) 6734/41348/14.735/4 406/1601/0.687/1

𝑥
5
(300) 5011/30857/11.265/7 235/706/0.282/1

𝑥
6
(300) 5380/33167/11.875/6 300/919/0.546/1

𝑥
7
(300) 4812/29977/10.657/6 187/559/0.235/0

𝑥
8
(300) 4825/29770/10.656/4 158/466/0.187/0

𝑥
9
(300) 4396/27551/10.062/3 8/21/0.016/0

𝑥
10
(300) 4774/29731/10.969/3 203/610/0.266/1

𝑥
11
(300) 4411/27366/9.859/8 52/144/0.062/0

𝑥
12
(300) 3656/23021/8.36/6 32/75/0.031/0

𝑥
1
(500) F F

𝑥
2
(500) F 4915/46911/37.906/1

𝑥
3
(500) F 1754/15152/12.375/1

𝑥
4
(500) F 489/1905/1.547/1
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Table 1: Continued.

Init (𝑛) SG MSG

NI/NF/Time/BK NI/NF/Time/BK

𝑥
5
(500) 8360/51414/37.485/6 269/803/0.797/1

𝑥
6
(500) 8996/56185/39.75/6 295/900/0.734/1

𝑥
7
(500) 8128/50525/35.703/2 256/766/0.672/1

𝑥
8
(500) 8089/50688/36.484/4 387/1163/1.156/0

𝑥
9
(500) 7453/46083/33.75/2 8/22/0.016/0

𝑥
10
(500) 8118/50185/35.985/4 403/1211/1.187/1

𝑥
11
(500) 7525/46275/33.14/4 55/149/0.11/0

𝑥
12
(500) 6235/38408/28.047/9 38/95/0.11/0

𝑥
1
(1000) F F

𝑥
2
(1000) F 8998/93619/200.78/0

𝑥
3
(1000) F 2939/26376/55.86/0

𝑥
4
(1000) F 783/3016/6.438/0

𝑥
5
(1000) F 364/1085/2.75/0

𝑥
6
(1000) F 429/1309/3.266/0

𝑥
7
(1000) F 499/1500/3.687/1

𝑥
8
(1000) F 481/1444/3.969/0

𝑥
9
(1000) F 8/23/0.047/0

𝑥
10
(1000) F 346/1032/2.515/0

𝑥
11
(1000) F 74/201/0.391/0

𝑥
12
(1000) F 50/124/0.234/0

3.2. Test on ℓ
1
-Norm Regularization Problem in Compressed

Sensing. There has been considerable interest in solving the
ℓ
1
-norm regularized least-square problem

min
𝑥∈R𝑛

𝑓 (𝑥) ≡
1

2

𝐴𝑥 − 𝑦

2

2
+ 𝜇‖𝑥‖

1
, (29)

where 𝐴 ∈ R𝑚×𝑛(𝑚 ≪ 𝑛) is a linear operator, 𝑦 ∈

R𝑚 is an observation, and 𝜇 is a nonnegative parameter.
Equation (29) mainly appears in compressed sensing: an
emerging methodology in digital signal processing and has
attracted intensive research activities over the past few years.
Compressed sensing is based on the fact that if original signal
is sparse or approximately sparse in some orthogonal basis,
then an exact restoration can be produced by solving (29).

Recently, Figueiredo et al. [14] proposed gradient pro-
jection method for sparse reconstruction (GPSR). The first
key step of GPSR method is to express (29) as a quadratic
program. For any 𝑥 ∈ R𝑛 it can be formulated as 𝑥 = 𝑢 − V,
𝑢 ≥ 0, V ≥ 0, where 𝑢 ∈ R𝑛, V ∈ R𝑛, and 𝑢

𝑖
= (𝑥
𝑖
)
+
, V
𝑖
=

(−𝑥
𝑖
)
+
for 𝑖 = 1, 2, . . . , 𝑛 with (⋅)

+
= max{0, ⋅}. We thus

have ‖𝑥‖
1

= 𝑒
𝑇

𝑛
𝑢 + 𝑒

𝑇

𝑛
V, where 𝑒

𝑛
= (1, 1, . . . , 1)

𝑇 is the

Table 2:Numerical results forMSG-V/HSG-Vmethods on Problem
1.

Init (𝑛) MSG-V HSG-V

NI/NF/Time/BK NI/NF/Time/BK

𝑥
1
(100) 48/162/0.031/0 139/471/0.14/0

𝑥
2
(100) 37/120/0.016/0 165/572/0.079/7

𝑥
3
(100) 29/93/0.015/0 158/522/0.062/2

𝑥
4
(100) 22/61/0.016/0 134/461/0.063/0

𝑥
5
(100) 8/22/0.016/0 8/22/0.015/0

𝑥
6
(100) 9/26/0.015/0 9/26/0.015/0

𝑥
7
(100) 8/22/0.016/0 8/22/0.016/0

𝑥
8
(100) 8/21/0.015/0 8/21/0.016/0

𝑥
9
(100) 8/20/0.015/0 8/20/0.016/0

𝑥
10
(100) 24/75/0.031/1 24/75/0.031/1

𝑥
11
(100) 8/21/0.015/0 8/21/0.016/0

𝑥
12
(100) 6/16/0.016/0 6/16/0.016/0

𝑥
1
(200) 43/134/0.047/0 174/587/0.172/0

𝑥
2
(200) 39/142/0.047/0 184/640/0.172/0

𝑥
3
(200) 35/118/0.031/1 205/693/0.188/0

𝑥
4
(200) 19/59/0.031/0 148/519/0.125/0

𝑥
5
(200) 8/23/0.296/0 8/23/0.015/0

𝑥
6
(200) 9/27/0.016/0 9/27/0.016/0

𝑥
7
(200) 8/23/0.016/0 8/23/0.016/0

𝑥
8
(200) 8/22/0.015/0 8/22/0.016/0

𝑥
9
(200) 8/21/0.016/0 8/21/0.015/0

𝑥
10
(200) 25/79/0.046/1 25/79/0.031/1

𝑥
11
(200) 8/22/0.016/0 8/22/0.016/0

𝑥
12
(200) 6/17/0.015/0 6/17/0.016/0

𝑥
1
(300) 50/200/0.094/0 246/865/0.375/4

𝑥
2
(300) 56/196/0.093/1 265/977/0.375/8

𝑥
3
(300) 33/119/0.047/0 345/1253/0.515/7

𝑥
4
(300) 28/90/0.031/0 244/825/0.329/0

𝑥
5
(300) 8/23/0.016/0 8/23/0.015/0

𝑥
6
(300) 9/27/0.015/0 9/27/0.016/0

𝑥
7
(300) 8/23/0.016/0 8/23/0.015/0

𝑥
8
(300) 8/22/0.016/0 8/22/0.016/0

𝑥
9
(300) 8/21/0.016/0 8/21/0.016/0

𝑥
10
(300) 26/82/0.031/1 26/82/0.031/1

𝑥
11
(300) 8/23/0.016/0 8/23/0.016/0

𝑥
12
(300) 6/18/0.015/0 6/18/0.015/0

𝑥
1
(500) 51/218/0.188/0 290/1054/0.765/8

𝑥
2
(500) 41/132/0.125/0 330/1159/0.953/0

𝑥
3
(500) 47/164/0.14/1 383/1394/0.969/0
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Table 2: Continued.

Init (𝑛) MSG-V HSG-V

NI/NF/Time/BK NI/NF/Time/BK

𝑥
4
(500) 28/91/0.125/0 246/864/0.609/0

𝑥
5
(500) 9/26/0.047/0 9/26/0.032/0

𝑥
6
(500) 9/28/0.031/0 9/28/0.015/0

𝑥
7
(500) 9/26/0.047/0 9/26/0.032/0

𝑥
8
(500) 8/23/0.032/0 8/23/0.015/0

𝑥
9
(500) 8/22/0.031/0 8/22/0.016/0

𝑥
10
(500) 27/86/0.062/1 27/86/0.062/1

𝑥
11
(500) 8/23/0.016/0 8/23/0.032/0

𝑥
12
(500) 6/19/0.016/0 6/19/0.015/0

𝑥
1
(1000) 49/205/0.547/0 437/1656/3.094/2

𝑥
2
(1000) 41/138/0.344/0 506/1824/3.406/0

𝑥
3
(1000) 49/181/0.437/1 607/2137/4.094/2

𝑥
4
(1000) 37/121/0.282/1 426/1582/3/0

𝑥
5
(1000) 9/27/0.062/0 9/27/0.062/0

𝑥
6
(1000) 9/29/0.063/0 86/308/0.579/6

𝑥
7
(1000) 9/27/0.046/0 9/27/0.046/0

𝑥
8
(1000) 8/24/0.063/0 8/24/0.047/0

𝑥
9
(1000) 8/23/0.047/0 12/44/0.078/2

𝑥
10
(1000) 29/93/0.172/1 29/93/0.188/1

𝑥
11
(1000) 8/24/0.047/0 8/24/0.078/0

𝑥
12
(1000) 6/20/0.031/0 6/20/0.078/0

Table 3: Numerical results for SG/MSG methods on Problem 2.

Init (𝑛) SG MSG

NI/NF/Time/BK NI/NF/Time/BK

𝑥
1
(100) F 349/712/0.094/0

𝑥
2
(100) F 352/711/0.094/0

𝑥
3
(100) F 351/711/0.094/0

𝑥
4
(100) F 353/717/0.109/0

𝑥
5
(100) F 346/696/0.094/0

𝑥
6
(100) F 347/698/0.078/0

𝑥
7
(100) F 345/694/0.109/0

𝑥
8
(100) F 320/644/0.078/0

𝑥
9
(100) 359/719/0.031/0 359/719/0.047/0

𝑥
10
(100) 22/67/0.015/1 22/67/0.015/1

𝑥
11
(100) 434/869/0.047/0 434/869/0.063/0

𝑥
12
(100) 424/849/0.031/0 424/849/0.047/0

𝑥
1
(200) F 437/888/0.218/0

𝑥
2
(200) F 439/885/0.219/0

Table 3: Continued.

Init (𝑛) SG MSG
NI/NF/Time/BK NI/NF/Time/BK

𝑥
3
(200) F 438/885/0.219/0

𝑥
4
(200) F 440/891/0.219/0

𝑥
5
(200) F 433/870/0.343/0

𝑥
6
(200) F 434/872/0.203/0

𝑥
7
(200) F 432/868/0.219/0

𝑥
8
(200) F 358/720/0.172/0

𝑥
9
(200) 372/745/0.047/0 371/743/0.063/0

𝑥
10
(200) 22/66/0.015/0 23/70/0.015/1

𝑥
11
(200) 544/1089/0.063/0 544/1089/0.094/0

𝑥
12
(200) 534/1069/0.047/0 534/1069/0.109/0

𝑥
1
(300) F 498/1010/0.375/0

𝑥
2
(300) F 500/1007/0.375/0

𝑥
3
(300) F 500/1009/0.375/0

𝑥
4
(300) F 501/1013/0.36/0

𝑥
5
(300) F 494/992/0.375/0

𝑥
6
(300) F 495/994/0.375/0

𝑥
7
(300) F 494/992/0.359/0

𝑥
8
(300) F 368/740/0.266/0

𝑥
9
(300) 373/747/0.047/0 373/747/0.093/0

𝑥
10
(300) 22/66/0.015/0 23/70/0.016/1

𝑥
11
(300) 621/1243/0.078/0 621/1243/0.157/0

𝑥
12
(300) 611/1223/0.078/0 611/1223/0.25/0

𝑥
1
(500) F 588/1190/0.781/0

𝑥
2
(500) F 590/1187/0.781/0

𝑥
3
(500) F 589/1187/0.781/0

𝑥
4
(500) F 591/1193/0.797/0

𝑥
5
(500) F 584/1172/0.782/0

𝑥
6
(500) F 585/1174/0.906/0

𝑥
7
(500) F 583/1170/0.797/0

𝑥
8
(500) F 372/748/0.468/0

𝑥
9
(500) 373/747/0.078/0 373/747/0.125/0

𝑥
10
(500) 22/66/0.015/0 23/70/0.016/1

𝑥
11
(500) 734/1469/0.141/0 734/1469/0.234/0

𝑥
12
(500) 724/1449/0.14/0 724/1449/0.25/0

𝑥
1
(1000) F 736/1486/2.563/0

𝑥
2
(1000) F 739/1485/2.406/0

𝑥
3
(1000) F 738/1485/2.578/0

𝑥
4
(1000) F 740/1491/2.407/0

𝑥
5
(1000) F 733/1470/2.562/0

𝑥
6
(1000) F 734/1472/2.531/0

𝑥
7
(1000) F 732/1468/2.407/0

𝑥
8
(1000) F 372/748/1.125/0

𝑥
9
(1000) 373/747/0.125/0 373/747/0.343/0

𝑥
10
(1000) 24/73/0.016/1 24/73/0.032/1

𝑥
11
(1000) 921/1843/0.281/0 921/1843/0.562/0

𝑥
12
(1000) 912/1825/0.266/0 912/1825/0.547/0
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Table 4:Numerical results forMSG-V/HSG-Vmethods onProblem
2.

Init (𝑛) MSG-V HSG-V

NI/NF/Time/BK NI/NF/Time/BK

𝑥
1
(100) 27/82/0.015/1 27/82/0.016/1

𝑥
2
(100) 435/872/0.047/0 435/872/0.094/0

𝑥
3
(100) 416/838/0.047/0 416/838/0.062/0

𝑥
4
(100) 434/872/0.047/0 434/872/0.047/0

𝑥
5
(100) 424/850/0.047/0 424/850/0.047/0

𝑥
6
(100) 347/697/0.047/0 347/697/0.047/0

𝑥
7
(100) 346/695/0.047/0 346/695/0.032/0

𝑥
8
(100) 318/640/0.078/0 318/640/0.062/0

𝑥
9
(100) 355/711/0.031/0 355/711/0.031/0

𝑥
10
(100) 22/67/0.016/1 22/67/0.016/1

𝑥
11
(100) 434/869/0.063/0 434/869/0.062/0

𝑥
12
(100) 424/849/0.046/0 424/849/0.047/0

𝑥
1
(200) 27/82/0.015/1 27/82/0.016/1

𝑥
2
(200) 545/1092/0.094/0 545/1092/0.078/0

𝑥
3
(200) 525/1056/0.094/0 525/1056/0.078/0

𝑥
4
(200) 544/1092/0.094/0 544/1092/0.078/0

𝑥
5
(200) 533/1068/0.093/0 533/1068/0.078/0

𝑥
6
(200) 435/873/0.063/0 435/873/0.078/0

𝑥
7
(200) 433/869/0.078/0 433/869/0.063/0

𝑥
8
(200) 355/714/0.172/0 356/716/0.078/0

𝑥
9
(200) 367/735/0.062/0 367/735/0.047/0

𝑥
10
(200) 23/70/0.015/1 23/70/0.016/1

𝑥
11
(200) 544/1089/0.094/0 544/1089/0.078/0

𝑥
12
(200) 534/1069/0.094/0 534/1069/0.078/0

𝑥
1
(300) 28/85/0.016/1 28/85/0.016/1

𝑥
2
(300) 622/1246/0.14/0 622/1246/0.11/0

𝑥
3
(300) 602/1210/0.156/0 602/1210/0.125/0

𝑥
4
(300) 621/1246/0.25/0 621/1246/0.109/0

𝑥
5
(300) 610/1222/0.125/0 610/1222/0.125/0

𝑥
6
(300) 496/995/0.11/0 496/995/0.094/0

𝑥
7
(300) 494/991/0.125/0 494/991/0.094/0

𝑥
8
(300) 365/734/0.25/0 365/734/0.109/0

𝑥
9
(300) 368/737/0.094/0 368/737/0.063/0

𝑥
10
(300) 23/70/0.031/1 23/70/0.015/1

𝑥
11
(300) 621/1243/0.141/0 621/1243/0.11/0

𝑥
12
(300) 611/1223/0.125/0 611/1223/0.125/0

𝑥
1
(500) 28/85/0.015/1 28/85/0.015/1

𝑥
2
(500) 735/1472/0.25/0 735/1472/0.203/0

𝑥
3
(500) 715/1436/0.219/0 715/1436/0.203/0

Table 4: Continued.

Init (𝑛) MSG-V HSG-V

NI/NF/Time/BK NI/NF/Time/BK

𝑥
4
(500) 734/1472/0.25/0 734/1472/0.188/0

𝑥
5
(500) 723/1448/0.219/0 723/1448/0.187/0

𝑥
6
(500) 586/1175/0.187/0 586/1175/0.156/0

𝑥
7
(500) 584/1171/0.204/0 584/1171/0.141/0

𝑥
8
(500) 369/742/0.453/0 369/742/0.156/0

𝑥
9
(500) 368/737/0.125/0 368/737/0.094/0

𝑥
10
(500) 23/70/0.015/1 23/70/0.015/1

𝑥
11
(500) 734/1469/0.219/0 734/1469/0.203/0

𝑥
12
(500) 724/1449/0.234/0 724/1449/0.235/0

𝑥
1
(1000) 28/85/0.016/1 28/85/0.047/1

𝑥
2
(1000) 923/1848/0.531/0 923/1848/0.485/0

𝑥
3
(1000) 902/1810/0.641/0 902/1810/0.437/0

𝑥
4
(1000) 922/1848/0.516/0 922/1848/0.453/0

𝑥
5
(1000) 911/1824/0.531/0 911/1824/0.453/0

𝑥
6
(1000) 737/1477/0.406/0 737/1477/0.344/0

𝑥
7
(1000) 733/1469/0.422/0 733/1469/0.344/0

𝑥
8
(1000) 369/742/1.125/0 369/742/0.297/0

𝑥
9
(1000) 368/737/0.219/0 368/737/0.172/0

𝑥
10
(1000) 24/73/0.015/1 24/73/0.015/1

𝑥
11
(1000) 921/1843/0.625/0 921/1843/0.438/0

𝑥
12
(1000) 912/1825/0.563/0 912/1825/0.453/0

Table 5: Numerical results for SG/MSG methods on Problem 3.

Init (𝑛) SG MSG
NI/NF/Time/BK NI/NF/Time/BK

𝑥
1
(100) 161/753/0.094/2 246/1062/0.296/3

𝑥
2
(100) 103/424/0.062/3 185/794/0.219/2

𝑥
3
(100) 118/517/0.063/2 204/935/0.266/5

𝑥
4
(100) 63/224/0.031/1 194/894/0.25/2

𝑥
5
(100) 63/234/0.031/2 149/662/0.187/3

𝑥
6
(100) 81/307/0.047/2 191/831/0.235/1

𝑥
7
(100) 64/237/0.031/2 168/738/0.203/1

𝑥
8
(100) 53/194/0.032/2 94/378/0.109/1

𝑥
9
(100) 53/192/0.015/2 178/808/0.219/3

𝑥
10
(100) 76/288/0.047/2 229/1008/0.281/1

𝑥
11
(100) 73/273/0.031/2 203/924/0.25/4

𝑥
12
(100) 60/225/0.016/3 195/888/0.266/1

𝑥
1
(200) 216/1203/0.468/2 251/1129/0.515/2

𝑥
2
(200) 147/728/0.282/2 168/702/0.407/3

𝑥
3
(200) 157/759/0.312/2 180/821/0.422/1

𝑥
4
(200) 58/206/0.094/3 214/956/0.453/1
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Table 5: Continued.

Init (𝑛) SG MSG
NI/NF/Time/BK NI/NF/Time/BK

𝑥
5
(200) 64/238/0.094/1 174/793/0.359/2

𝑥
6
(200) 78/294/0.125/2 194/882/0.422/2

𝑥
7
(200) 44/156/0.062/2 170/757/0.359/1

𝑥
8
(200) 48/173/0.078/1 93/368/0.172/1

𝑥
9
(200) 54/192/0.078/2 191/890/0.391/2

𝑥
10
(200) 84/314/0.125/3 152/627/0.282/1

𝑥
11
(200) 61/222/0.094/2 193/903/0.422/2

𝑥
12
(200) 63/236/0.093/3 121/531/0.25/2

𝑥
1
(300) 541/5455/20.282/3 247/1066/4.187/5

𝑥
2
(300) 142/724/2.734/2 135/512/2.063/1

𝑥
3
(300) 195/1084/4.031/2 197/892/3.5/1

𝑥
4
(300) 55/196/0.734/2 193/868/3.328/2

𝑥
5
(300) 68/254/0.953/2 154/693/2.703/4

𝑥
6
(300) 77/295/1.11/2 241/1168/4.484/2

𝑥
7
(300) 76/281/1.094/2 186/851/3.313/5

𝑥
8
(300) 57/207/0.765/2 127/528/2/1

𝑥
9
(300) 59/210/0.797/1 190/939/3.578/1

𝑥
10
(300) 91/342/1.266/3 142/664/2.563/1

𝑥
11
(300) 79/288/1.109/3 168/767/2.906/1

𝑥
12
(300) 72/266/0.984/1 114/448/1.75/1

𝑥
1
(500) 488/4021/42.907/1 212/927/9.985/1

𝑥
2
(500) 240/1440/15.343/3 166/712/7.64/4

𝑥
3
(500) 254/1544/16.485/1 228/1050/11.313/2

𝑥
4
(500) 59/210/2.266/3 273/1564/16.843/3

𝑥
5
(500) 70/261/2.75/2 189/905/9.781/2

𝑥
6
(500) 82/313/3.328/2 190/866/9.266/1

𝑥
7
(500) 76/284/3.078/3 149/642/6.984/1

𝑥
8
(500) 59/215/2.282/2 97/381/4.141/1

𝑥
9
(500) 51/185/1.985/2 439/2832/30.391/3

𝑥
10
(500) 84/319/3.421/2 66/238/2.562/1

𝑥
11
(500) 77/280/2.969/2 74/266/2.891/1

𝑥
12
(500) 67/250/2.719/3 57/189/2.078/1

𝑥
1
(1000) 2780/36160/1510.7/2 199/853/35.969/3

𝑥
2
(1000) 331/2242/94.734/2 160/656/27.656/1

𝑥
3
(1000) 352/2532/106.25/1 197/891/37.359/2

𝑥
4
(1000) 71/260/10.891/1 182/794/33.985/2

𝑥
5
(1000) 71/268/11.234/2 190/891/37.546/3

𝑥
6
(1000) 84/319/13.422/3 160/698/29.188/4

𝑥
7
(1000) 73/271/11.391/2 157/663/27.547/1

𝑥
8
(1000) 50/182/7.578/2 112/446/18.641/4

𝑥
9
(1000) 49/173/7.328/2 232/1162/48.656/1

𝑥
10
(1000) 85/318/13.375/2 56/172/7.391/1

𝑥
11
(1000) 81/297/12.485/3 61/185/7.781/1

𝑥
12
(1000) 69/255/10.781/1 49/154/6.578/1

Table 6:Numerical results forMSG-V/HSG-Vmethods onProblem
3.

Init (𝑛) MSG-V HSG-V
NI/NF/Time/BK NI/NF/Time/BK

𝑥
1
(100) 92/377/0.078/1 55/172/0.047/6

𝑥
2
(100) 93/374/0.079/1 59/177/0.031/0

𝑥
3
(100) 86/360/0.078/1 40/120/0.031/0

𝑥
4
(100) 83/363/0.062/1 40/111/0.032/1

𝑥
5
(100) 45/173/0.047/1 20/56/0.015/0

𝑥
6
(100) 57/204/0.047/2 42/121/0.016/2

𝑥
7
(100) 53/202/0.031/1 30/87/0.031/0

𝑥
8
(100) 47/181/0.047/2 22/61/0.016/0

𝑥
9
(100) 49/194/0.047/1 33/100/0.015/1

𝑥
10
(100) 48/165/0.031/1 30/97/0.032/3

𝑥
11
(100) 49/181/0.031/1 26/75/0.015/0

𝑥
12
(100) 37/125/0.032/0 29/93/0.016/0

𝑥
1
(200) 88/335/0.172/1 53/173/0.078/1

𝑥
2
(200) 83/330/0.14/1 50/142/0.078/0

𝑥
3
(200) 76/290/0.141/1 42/126/0.047/2

𝑥
4
(200) 69/266/0.125/1 35/101/0.063/3

𝑥
5
(200) 48/190/0.094/1 25/72/0.031/3

𝑥
6
(200) 69/294/0.156/2 34/99/0.047/0

𝑥
7
(200) 55/215/0.109/5 30/81/0.047/0

𝑥
8
(200) 51/217/0.11/1 22/61/0.031/0

𝑥
9
(200) 46/153/0.078/1 24/64/0.031/0

𝑥
10
(200) 42/129/0.078/1 33/91/0.031/0

𝑥
11
(200) 49/180/0.094/0 30/92/0.047/1

𝑥
12
(200) 37/125/0.062/2 30/85/0.047/0

𝑥
1
(300) 89/322/1.266/1 53/168/0.625/0

𝑥
2
(300) 91/348/1.282/1 55/162/0.609/1

𝑥
3
(300) 72/278/1.046/1 37/109/0.422/0

𝑥
4
(300) 78/339/1.297/1 28/81/0.297/1

𝑥
5
(300) 45/178/0.735/2 20/55/0.281/0

𝑥
6
(300) 63/248/0.937/3 38/113/0.453/2

𝑥
7
(300) 53/208/0.797/1 33/91/0.344/0

𝑥
8
(300) 63/295/1.109/1 22/61/0.234/0

𝑥
9
(300) 45/177/0.672/1 27/71/0.266/0

𝑥
10
(300) 45/148/0.641/1 40/108/0.406/0

𝑥
11
(300) 43/144/0.531/2 32/89/0.344/1

𝑥
12
(300) 36/129/0.5/0 28/83/0.312/2

𝑥
1
(500) 85/289/3.125/1 50/158/1.672/0

𝑥
2
(500) 78/245/2.625/0 56/157/1.75/2

𝑥
3
(500) 74/289/3.156/2 40/118/1.235/1

𝑥
4
(500) 62/223/2.375/1 47/131/1.437/1

𝑥
5
(500) 49/194/2.11/1 25/74/0.813/3
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Table 6: Continued.

Init (𝑛) MSG-V HSG-V
NI/NF/Time/BK NI/NF/Time/BK

𝑥
6
(500) 55/181/1.922/2 40/116/1.218/0

𝑥
7
(500) 49/163/1.797/1 26/74/0.781/0

𝑥
8
(500) 53/219/2.328/1 22/61/0.657/0

𝑥
9
(500) 49/184/2/0 25/69/0.781/2

𝑥
10
(500) 41/158/1.656/2 35/99/1.062/6

𝑥
11
(500) 48/173/1.922/1 31/83/0.891/0

𝑥
12
(500) 35/126/1.359/2 27/76/0.812/0

𝑥
1
(1000) 97/376/15.688/3 50/165/6.922/3

𝑥
2
(1000) 78/263/11.015/1 52/151/6.235/2

𝑥
3
(1000) 80/303/12.766/1 44/128/5.343/1

𝑥
4
(1000) 73/291/12.219/0 36/101/4.235/0

𝑥
5
(1000) 43/165/6.968/1 22/66/2.75/2

𝑥
6
(1000) 59/213/9.094/4 44/120/5.016/0

𝑥
7
(1000) 55/201/8.438/1 27/78/3.281/3

𝑥
8
(1000) 57/250/10.5/1 22/60/2.547/0

𝑥
9
(1000) 46/166/7/0 29/80/3.266/4

𝑥
10
(1000) 39/126/5.234/0 31/87/3.64/0

𝑥
11
(1000) 47/165/6.969/1 35/96/4.032/3

𝑥
12
(1000) 36/114/4.797/2 34/91/3.812/0

vector consisting of 𝑛 ones. Hence (29) can be rewritten as
the following quadratic program:

min
𝑢,V

1

2

𝑦 − 𝐴 (𝑢 − V)

2

2
+ 𝜇𝑒
𝑇

𝑛
𝑢 + 𝜇𝑒

𝑇

𝑛
V,

s.t. 𝑢 ≥ 0,

V ≥ 0.

(30)

Furthermore, from [14], (30) can be written in following form

min
𝑢,V

1

2
𝑧
𝑇

𝐵𝑧 + 𝑐
𝑇

𝑧,

s.t. 𝑧 ≥ 0,

(31)

where

𝑧 = (
𝑢

V
) , 𝑏 = 𝐴

𝑇

𝑦, 𝑐 = 𝜇𝑒
2𝑛
+ (

−𝑏

𝑏
) ,

𝐵 = (
𝐴
𝑇

𝐴 −𝐴
𝑇

𝐴

−𝐴
𝑇

𝐴 𝐴
𝑇

𝐴
) .

(32)

It is obvious that 𝐵 is a positive semidefinite matrix, hence,
(30) is a convex QP problem. Figueiredo et al. [14] proposed
a gradient projection method with BB step length for solving
this problem.

Xiao et al. [7] indicated that the QP problem (30) is
equivalent to the linear complementary problem: find 𝑧 ∈

R2𝑛 such that
𝑧 ≥ 0, 𝐵𝑧 + 𝑐 ≥ 0, ⟨𝐵z + 𝑐, 𝑧⟩ = 0. (33)

It is obvious that 𝑧 is a solution of (33) if and only if it is a
solution of the following nonlinear systems of equation

𝑔 (𝑧) = min {𝑧, 𝐵𝑧 + 𝑐} = 0. (34)
The function 𝑔 is vector valued, and the “min” is interpreted
as componentwise minimum. Xiao et al. [7] proved that 𝑔 is
monotone. Hence, (34) can be solved effectively by the HSG-
V algorithm.

Firstly, we consider a typical CS scenario that goal is to
reconstruct a length-𝑛 sparse signal from𝑚 observations.We
measure the quality of restoration by means of squared error
(MSE) to the original signal 𝑥, that is,

MSE =
1

𝑛

𝑥 − 𝑥
∗
2

, (35)

where 𝑥
∗ is the restored signal. We test a small size signal

with 𝑛 = 2
12, 𝑚 = 2

10, and the original contains 2
7

randomly nonzero elements. 𝐴 is the Gaussian matrix which
is generated by command 𝑟𝑎𝑛𝑑𝑛(𝑚, 𝑛) in MATLAB. In this
test, themeasurement𝑦 is usually contaminated by noise, that
is,

𝑦 = 𝐴𝑥 + 𝜔, (36)
where𝜔 is theGaussian noise distributed as𝑁(0, 0.0001).The
parameters are taken as 𝛽 = 0.1, 𝜎 = 0.01, 𝜖 = 10

−10, 𝑟 = 1.2,
𝑀 = 2, 𝜇 is forced in decrease as the measure of [14]. To
get better quality estimated signals, the process is terminated
when the relative change of the objective function is below
10
−5, that is,

𝑓𝑘 − 𝑓
𝑘−1


𝑓𝑘−1



< 10
−5

, (37)

where 𝑓
𝑘
denotes the function value at 𝑥

𝑘
.

Figures 3 and 4 report the results of HSG-V for a
signal sparse reconstruction from its limited measurement.
Comparing the first and last plot in Figure 3, we can find
that the original sparse signal is restored almost exactly from
the limited measurement. From the right plot in Figure 4, we
observe that all the blue dots are circled by the red circles,
which shows that the original signal has been found almost
exactly. All together, this simple experiment shows that HSG-
V algorithms perform well, and it is an efficient method to
denoise sparse signals.

In the next experiment, we compare the performance of
our algorithm with the SGCS algorithm for image deconvo-
lution, in which 𝐴 is a partial DWT matrix whose 𝑚 rows
are chosen randomly from 𝑛 × 𝑛 DWT matrix. To measure
the quality of restoration, we use the SNR (signal to noise
ratio) defined as SNR = 20 log

10
(‖𝑥 ̄‖/‖𝑥−𝑥 ̄‖). Figure 5 shows

the original test images, and Figure 6 shows the restoration
results by the SGCS andHSG-Valgorithm, respectively.These
results show that the HSG-V algorithm can restore blurred
image quite well and obtain better quality reconstructed
images in an efficient manner.
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Figure 3: (a) Original signal with length 4096 and 128 nonzero elements. (b) The noisy measurement with length 1024. (c) Recovery signal
by HSG-V with 232 iterations, 15.16 s CPU time in seconds, and 3.14e-06 error.

Original (𝑛 = 4096,
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Figure 4: (a) Original signal with 128 nonzero elements, (b) noisy measurement, (c) restored signal (red circles) versus original signal (blue
dots) with MSE = 6.72e − 06, 12.66CPU time in seconds, and 188 iterations.

Figure 5: The original images: cameraman/barbara/bridge.

4. Conclusion

In this paper, we develop an adaptive prediction-correction
method for solving nonlinear monotone equations. Under
some assumptions, we establish its global convergence. Base

on the prediction-correction method, an efficient hybrid
spectral gradient (HSG-V) algorithm is proposed, which is
composite of MSG-V, algorithm and SG algorithm. Numer-
ical results show that the HSG-V algorithm is preferable and
outperforms the MSG, MSG-V and SG algorithm. Moreover,
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Figure 6: The blurred image (first column), the restored image by SGCS algorithm (second column), and HSG-V algorithm.

HSG-V algorithm is applied to solve ℓ
1
-norm regularized

problems arising from sparse signal reconstruction. Numeri-
cal experiments show that HSG-V algorithm works well, and
it provides an efficient approach for compressed sensing and
image deconvolution.

Appendix

The Test Problems

In this appendix, we list the test functions and the associated
initial guess as follows.

Problem 1. 𝑔 : R𝑛 → R𝑛,

𝑔
𝑖
(𝑥) =

𝑖

10
(𝑒
𝑥𝑖 − 1) , 𝑖 = 1, 2, . . . , 𝑛, (A.1)

𝑔(𝑥) = (𝑔
1
(𝑥), 𝑔
2
(𝑥), . . . , 𝑔

𝑛
(𝑥))
𝑇

, 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇.

Problem 2. 𝑔 : R𝑛 → R𝑛,

𝑔
𝑖
(𝑥) = 𝑥

𝑖
− sin 𝑥𝑖

 , 𝑖 = 1, 2, . . . , 𝑛, (A.2)

𝑔(𝑥) = (𝑔
1
(𝑥), 𝑔
2
(𝑥), . . . , 𝑔

𝑛
(𝑥))
𝑇

, 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇.
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Table 7: The initial points used in our test.

𝑥
1

(−20, 20, −20, 20, . . . , −20, 20, −20, 20)
𝑇

𝑥
2

(−15, 15, −15, 15, . . . , −15, 15, −15, 15)
𝑇

𝑥
3

(−10, 10, −10, 10, . . . , −10, 10, −10, 10)
𝑇

𝑥
4

(−5, 5, −5, 5, . . . , −5, 5, −5, 5)
𝑇

𝑥
5

(−1.2, 1, −1.2, 1, . . . , −1.2, 1, −1.2, 1)
𝑇

𝑥
6

(−2, 1, −2, 1, . . . , −2, 1, −2, 1)
𝑇

𝑥
7

(−1, 1, −1, 1, . . . , −1, 1, −1, 1)
𝑇

𝑥
8

(−1/1, 1/2, . . . , −1/(𝑛 − 1)), 1/𝑛)
𝑇

𝑥
9

(1/1, 1/2, . . . , 1/(𝑛 − 1)), 1/𝑛)
𝑇

𝑥
10

(−1, −1, . . . , −1, −1)
𝑇

𝑥
11

(1, 1, . . . , 1, 1)
𝑇

𝑥
12

(0.1, 0.1 . . . , 0.1, 0.1)

Problem 3. 𝑔 : R𝑛 → R𝑛 is given by

𝑔 (𝑥) = 𝐴𝑥 + 𝑓 (𝑥) , (A.3)

𝑓(𝑥) = (𝑒
𝑥1 − 1, 𝑒

𝑥2 − 1, . . . , 𝑒
𝑥𝑛 − 1)

𝑇 and

𝐴 = (

2 −1

−1 2 −1

d d d
d d −1

−1 2

). (A.4)

It is noticed that Problems 1 and 3 are smooth at 𝑥 = 0,
while Problem 2 is nonsmooth (Table 7).
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