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We propose computational techniques for model predictive control of large-scale systems with both continuous-valued control
inputs and discrete-valued control inputs, which are a class of hybrid systems. In the proposed method, we introduce the notion of
virtual control inputs, which are obtained by relaxing discrete-valued control inputs to continuous variables. In online computation,
first, we find continuous-valued control inputs and virtual control inputs minimizing a cost function. Next, using the obtained
virtual control inputs, only discrete-valued control inputs at the current time are computed in each subsystem. In addition, we also
discuss the effect of quantization errors. Finally, the effectiveness of the proposed method is shown by a numerical example. The
proposed method enables us to reduce and decentralize the computation load.

1. Introduction

Control of large-scale systems is one of the fundamental prob-
lems in control theory and has been extensively studied so far
(see, e.g., [1–7]). From the viewpoint of total optimization,
it is necessary to regard a set of individual systems as one
system. In recent years, it is important to consider energy
management systems such as smart grid [8] and HEMS
(Home EnergyManagement System) [9–11] as an application.
As the other example, we give air-conditioning systems [12,
13] and so on.Thus, it is also important at the current stage to
consider control of large-scale systems.

In large-scale systems, many kinds of actuators are
included. For example, in air-conditioning systems, the out-
put of air conditioners can be regarded as a continuous-
valued control input, and ON/OFF switches of ceiling fans
can be regarded as a discrete-valued control input. Thus,
it is appropriate to consider large-scale systems with both
continuous-valued control inputs and discrete-valued control
inputs. However, to our knowledge, such a large-scale system
has not been directly considered so far. Furthermore, such
a large-scale system is a class of hybrid systems, and the
finite-time optimal control problem is in general reduced to

a mixed integer quadratic programming (MIQP) problem.
For large-scale systems, the computation time for solving the
MIQP problem is too long, and it is difficult to realize the
model predictive control (MPC) method in which the MIQP
problem is solved at each time.

We, thus, propose computational techniques for model
predictive control of large-scale systems with both continu-
ous-valued control inputs and discrete-valued control inputs.
In the proposed method, we introduce the notion of virtual
control inputs, which are obtained by relaxing discrete-valued
control inputs to continuous variables. This term has been
used in, for example, [12], but we define a different notion.
By using the virtual control input, the MIQP problem is
approximately rewritten as a quadratic programming (QP)
problem, which can be relatively solved faster than theMIQP
problem.

In online computation, first, continuous-valued control
inputs and virtual control inputs minimizing a cost function
are found in a centralized controller. Next, using the obtained
virtual control inputs, only discrete-valued control inputs at
the current time are computed in each decentralized con-
troller. In other words, a sequence of discrete-valued control
inputs is not computed because in MPC only the control
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input at the current time is applied to the plant. In a
centralized controller, the QP problem is solved at each time.
In each decentralized controller, the problem of finding the
discrete-valued control input is solved at each time. This
problem is reduced to an integer programming problem, or
can be solved by the look-up table method in which a look-
up table is generated off-line. Thus, the computation load is
reduced and decentralized by the proposed method.

In addition, we also discuss the effect of quantization
errors based on our previous result [14]. The effectiveness
of the proposed method is shown by a numerical example.
The proposed method provides us an easy-to-use method in
control of large-scale systems.

This paper is organized as follows. In Section 2, large-
scale systems studied here are explained, and an example
of air-conditioning systems is shown. In Section 3, the opti-
mal control problem is formulated. In Section 4, after the
outline of the proposed method is explained, the details are
explained. In Section 5, we discuss quantization errors. In
Section 6, we show a numerical example. In Section 7, we
conclude this paper.

Notation. LetR denote the set of real numbers. LetZ denote
the set of integers. Let 𝐼

𝑛
and 0

𝑚×𝑛
denote the 𝑛 × 𝑛 identity

matrix and the𝑚×𝑛 zero matrix, respectively. For simplicity,
we sometimes use the symbol 0 instead of 0

𝑚×𝑛
, and the

symbol 𝐼 instead of 𝐼
𝑛
. For a matrix 𝑀, let the matrix |𝑀|

denote amatrix such that each element is given by an absolute
value of each element of𝑀.

2. Large-Scale Systems

Consider the discrete-time large-scale system consisting of 𝑠
subsystems given by

Σ
𝑖
: 𝑥
𝑖
(𝑘 + 1) =

𝑠

∑

𝑗=1

𝐴
𝑖𝑗
𝑥
𝑗
(𝑘) + 𝐵

𝑐

𝑖
𝑢
𝑐

𝑖
(𝑘) + 𝐵

𝑑

𝑖
𝑢
𝑑

𝑖
(𝑘) , (1)

where 𝑖 = 1, 2, . . . , 𝑠, 𝑘 = 0, 1, 2, . . . is the discrete-time, and
𝑥
𝑖
(𝑘) ∈R𝑛𝑖 is the state in the subsystem 𝑖. The control inputs

𝑢
𝑐

𝑖
(𝑘) ∈ U𝑐

𝑖
⊆ R𝑚

𝑐

𝑖 and 𝑢𝑑
𝑖
(𝑘) ∈ R𝑚

𝑑

𝑖 are the continuous-
valued control input and the discrete-valued control input in
the subsystem 𝑖, respectively. The set U𝑐

𝑖
is given as a closed

convex set. The discrete-valued control input 𝑢𝑑
𝑖
(𝑘) is given

by

𝑢
𝑑

𝑖
(𝑘) =

[
[
[
[
[
[
[

[

𝑢
𝑑

𝑖,1
(𝑘)

𝑢
𝑑

𝑖,2
(𝑘)

...

𝑢
𝑑

𝑖,𝑚
𝑑

𝑖

(𝑘)

]
]
]
]
]
]
]

]

,

𝑢
𝑑

𝑖,𝑙
(𝑘) ∈ {𝑢

𝑑

𝑖,𝑙,1
, 𝑢
𝑑

𝑖,𝑙,2
, . . . , 𝑢

𝑑

𝑖,𝑙,𝑝𝑖,𝑙

} =: U
𝑑

𝑖,𝑙
⊆R
1

,

(2)

whereU𝑑
𝑖,𝑙
is the finite set expressing the candidates of the 𝑙th

element of the discrete-valued control input in the subsystem
𝑖, and 𝑝

𝑖,𝑙
is the number of elements of U𝑑

𝑖,𝑙
. In system

(1), the pair (𝐴
𝑖𝑖
, [ 𝐵
𝑐

𝑖
𝐵
𝑑

𝑖
]) expresses the dynamics of the

subsystem 𝑖, and the matrices 𝐴
𝑖𝑗
, 𝑖 ̸= 𝑗 express the effect of

other subsystems 𝑗, 𝑖 ̸= 𝑗.
We show an example of air-conditioning systems.

Example 1. Suppose that the dynamics of temperature in
room 𝑖 are given by the following first-order plus time delay
model:

𝑃
𝑖
(𝑠) =

𝐾
𝑖

1 + 𝑇
𝑖
𝑠
𝑒
−𝐿𝑠

, (3)

where 𝐾
𝑖
, 𝑇
𝑖
, and 𝐿 are the static process gain, the time

constant, and the time delay, respectively. For simplicity of
discussion, the value of 𝐿 does not depend on room 𝑖. From
(3), we can obtain the following state equation:

�̇�
𝑖
(𝑡) = −

1

𝑇
𝑖

𝑞
𝑖
(𝑡) +

𝐾
𝑖

𝑇
𝑖

𝑢
𝑖
(𝑡 − 𝐿) ,

𝑦
𝑖
(𝑡) = 𝑞

𝑖
(𝑡) ,

(4)

where 𝑞
𝑖
is the state that implies the temperature in one room,

and 𝑢
𝑖
is the continuous-valued control input that implies,

for example, the output of a heat pump. Hereafter, the output
equation 𝑦

𝑖
(𝑡) = 𝑞

𝑖
(𝑡) is omitted.

Next, consider transforming (4) into a discrete-time sys-
tem. For simplicity of discussion, suppose that the sampling
period is given as 𝐿. Then, we can obtain the following
discrete-time linear system:

𝑞
𝑖
(𝑘 + 1) = 𝑒

−𝐿/𝑇𝑖𝑞
𝑖
(𝑘) + ∫

𝐿

0

𝑒
−𝜏/𝑇𝑖

𝐾
𝑖

𝑇
𝑖

𝑑𝜏𝑢
𝑖
(𝑘 − 1)

= 𝑒
−𝐿/𝑇𝑖𝑞

𝑖
(𝑘) + 𝐾

𝑖
(1 − 𝑒

−𝐿/𝑇𝑖) 𝑢
𝑖
(𝑘 − 1) .

(5)

By defining V
𝑖
(𝑘) := 𝑢

𝑖
(𝑘 − 1), we can obtain

[
𝑞
𝑖
(𝑘 + 1)

V
𝑖
(𝑘 + 1)

] = [
𝑒
−𝐿/𝑇𝑖 𝐾

𝑖
(1 − 𝑒

−𝐿/𝑇𝑖)

0 0

] [
𝑞
𝑖
(𝑘)

V
𝑖
(𝑘)
]

+ [
0

1
] 𝑢
𝑖
(𝑘) .

(6)

Furthermore, consider adding discrete-valued control inputs.
We consider three kinds of discrete-valued inputs as follows:
(i) 𝑢𝑤
𝑖
∈ {0, 1}: window (close/open), (ii) 𝑢ℎ

𝑖
∈ {0, 1, 2}: local

heater (off/low/high), and (iii) 𝑢V
𝑖
∈ {0, 1, 2}: ventilation fan

(off/low/high). Then, we can obtain the following tempera-
ture model in room 𝑖:

[
𝑞
𝑖
(𝑘 + 1)

V
𝑖
(𝑘 + 1)

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥𝑖(𝑘+1)

= [
𝑒
−𝐿/𝑇𝑖 𝐾

𝑖
(1 − 𝑒

−𝐿/𝑇𝑖)

0 0

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴𝑖

[
𝑞
𝑖
(𝑘)

V
𝑖
(𝑘)
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥𝑖(𝑘)

+ [
0

1
]

⏟⏟⏟⏟⏟⏟⏟

𝐵
𝑐

𝑖

𝑢
𝑖
(𝑘)⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑢
𝑐

𝑖
(𝑘)

+ [
𝑏
𝑤

𝑖
𝑏
ℎ

𝑖
𝑏
V
𝑖

0 0 0
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵
𝑑

𝑖

[
[

[

𝑢
𝑤

𝑖
(𝑘)

𝑢
ℎ

𝑖
(𝑘)

𝑢
V
𝑖
(𝑘)

]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑢
𝑑

𝑖
(𝑘)

,

(7)
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Figure 1: Illustration of multiple rooms.

1 2 3

4 5 6

7 8 9

Figure 2: Directed graph expressing airflow.

where 𝑏𝑤
𝑖
≤ 0, 𝑏ℎ
𝑖
≥ 0, and 𝑏V

𝑖
≤ 0 are constants and are given

in advance. We assume that outside temperature is equal to
or less than room temperature.

Finally, we consider the effect of other rooms. Assume
that airflow is expressed as a directed graph. In this example,
suppose that airflow is given as in Figure 1. That is, we can
obtain the directed graph in Figure 2. In addition, Figure 1
implies that room 5 has no window. That is, 𝑏𝑤

5
= 0 holds.

From Figure 2, the coupled term from room 𝑖 to room 𝑗 can
be obtained as

[
𝑎
𝑗𝑖
0

0 0
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴𝑗𝑖

(𝑥
𝑖
(𝑘) − 𝑥

𝑗
(𝑘)) , (8)

where 𝑎
𝑖𝑗
> 0 is a constant that expresses the effect level.

According to Figure 2, we consider the following pairs of
(𝑖, 𝑗):

(𝑖, 𝑗) ∈ {(4, 1) , (1, 2) , (2, 3) , (5, 4) , (7, 4) ,

(6, 5) , (3, 6) , (8, 7) , (9, 8) , (6, 9)} .

(9)

Other coupled terms 𝐴
𝑖𝑗
are given as 𝐴

𝑖𝑗
= 0. In addition,

matrices 𝐴
𝑖𝑖
, 𝑖=1, 2, . . . , 9, can be obtained as follows:

𝐴
11
= 𝐴
1
− 𝐴
14
,

𝐴
22
= 𝐴
2
− 𝐴
21
,

𝐴
33
= 𝐴
3
− 𝐴
32
,

𝐴
44
= 𝐴
4
− 𝐴
45
− 𝐴
47
,

𝐴
55
= 𝐴
5
− 𝐴
56
,

𝐴
66
= 𝐴
6
− 𝐴
63
,

𝐴
77
= 𝐴
7
− 𝐴
78
,

𝐴
88
= 𝐴
8
− 𝐴
89
,

𝐴
99
= 𝐴
9
− 𝐴
96
.

(10)

Thus, we can obtain the temperaturemodel inmultiple rooms
as the form of (1).

3. Optimal Control Problem

For the large-scale system consisting of Σ
𝑖
, 𝑖 = 1, 2, . . . , 𝑠,

consider the optimal control problem. Define

𝑥 (𝑘) := [𝑥
𝑇

1
(𝑘) 𝑥

𝑇

2
(𝑘) ⋅ ⋅ ⋅ 𝑥

𝑇

𝑠
(𝑘)]
𝑇

,

𝑢
𝑖
(𝑘) := [(𝑢

𝑐

𝑖
(𝑘))
𝑇

(𝑢
𝑑

𝑖
(𝑘))
𝑇

]

𝑇

,

𝑢 (𝑘) := [𝑢
𝑇

1
(𝑘) 𝑢

𝑇

2
(𝑘) ⋅ ⋅ ⋅ 𝑢

𝑇

𝑠
(𝑘)]
𝑇

.

(11)

Then, we consider the following problem.

Problem 1. Suppose that for the large-scale system consisting
of subsystems Σ

𝑖
, 𝑖 = 1, 2, . . . , 𝑠, the current state 𝑥(𝑡) =

𝑥
𝑡
is given, where 𝑡 is the current time. Then, find both

continuous-valued and discrete-valued control inputs 𝑢(𝑘),
𝑘 = 𝑡, 𝑡 + 1, . . . , 𝑡 + 𝑁 − 1 minimizing the following cost
function:

𝐽 =

𝑡+𝑁−1

∑

𝑘=𝑡

{(𝑥 (𝑘) − 𝑥
𝑑
)
𝑇

𝑄 (𝑥 (𝑘) − 𝑥
𝑑
) + 𝑢(𝑘)

𝑇

𝑅𝑢 (𝑘)}

+ (𝑥 (𝑡 + 𝑁) − 𝑥
𝑑
)
𝑇

𝑄
𝑓
(𝑥 (𝑡 + 𝑁) − 𝑥

𝑑
) ,

(12)

where 𝑄 ≥ 0, 𝑄
𝑓
≥ 0, and 𝑅 > 0 are weighting matrices, and

𝑥
𝑑
is the desired state.
By assigning a binary variable to each element ofU𝑑

𝑖,𝑙
, the

subsystem Σ
𝑖
can be rewritten as a mixed logical dynamical

(MLD) system [15], which is one of the standard models in
hybrid systems. Therefore, Problem 1 can be rewritten as a
mixed integer quadratic programming (MIQP) problem (see
the appendix for further details). In the obtainedMIQP prob-
lem, the dimension of continuous variables and that of binary
variables are ∑𝑠

𝑖=1
𝑚
𝑐

𝑖
𝑁 and ∑𝑠

𝑖=1
∑
𝑚
𝑑

𝑖

𝑙=1
𝑝
𝑖,𝑙
𝑁, respectively. On

the other hand, the finite-time optimal control problem is
frequently used in model predictive control (MPC). In MPC,
the control input is generated as follows.

Procedure of MPC

Step 1. Set 𝑡 = 0 and give the current state 𝑥(𝑡) = 𝑥
𝑡
.

Step 2. Solve Problem 1.
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Step 3. Apply only 𝑢(𝑡) to the plant.

Step 4. Set 𝑡 := 𝑡 + 1, measure 𝑥(𝑡), and return to Step 2.

In the above procedure, Problem 1, that is, the MIQP
problem must be solved at each time. However, in large-
scale systems, it is hard to solve Problem 1 within the
practical computation time. Thus, it is necessary to consider
a new method for solving Problem 1 under the situation that
Problem 1 is used in MPC.

4. Proposed Method

In this section, first, the outline of the proposed method
is explained. Next, the notion of virtual control inputs is
proposed. Finally, using virtual control inputs, a solution
method for Problem 1 is proposed.

4.1. Outline. For large-scale systems, it is in general difficult to
solve Problem 1 within the practical computation time. Here,
we focus on the fact that in MPC, only 𝑢(𝑡) is applied to the
plant. From this fact, if the state at 𝑘 = 𝑡+1, 𝑡+2, . . . , 𝑡+𝑁 can
be appropriately evaluated, then computation of the discrete-
valued control input at 𝑘 = 𝑡 + 1, 𝑡 + 2, . . . , 𝑡 + 𝑁 is not
required. In this paper, we consider relaxing the discrete-
valued control input at 𝑘 = 𝑡, 𝑡 + 1, 𝑡 + 2, . . . , 𝑡 + 𝑁 to a
continuous variable, which is called here a virtual control
input (see also Figure 3). In the proposed procedure of MPC,
first, we find a continuous-valued control input and a virtual
control input minimizing the cost function. Next, we derive
only the discrete-valued control input at 𝑘 = 𝑡 from the virtual
control input at 𝑘 = 𝑡.

Furthermore, on implementation of the proposed proce-
dure ofMPC, we consider both centralized and decentralized
controllers (see Figure 4). In the centralized controller, the
continuous-valued control input and the virtual control input
are computed. In each decentralized controller, the discrete-
valued control input at 𝑘 = 𝑡 is computed using the virtual
control input at 𝑘 = 𝑡. Thus, the computation load is
decentralized.

Hereafter in this section, first, the notion of the virtual
control input will be formally defined. Next, an approximate
solution method of Problem 1 will be proposed. Finally, the
proposed procedure of MPC will be shown.

4.2. Virtual Control Input. The matrix 𝐵𝑑
𝑖
in subsystem (1) is

rewritten as

𝐵
𝑑

𝑖
= 𝑆
𝑖
[
𝐼
𝑟𝑖
0

0 0
][
𝑇
1

𝑖

𝑇
2

𝑖

] , (13)

where 𝑟
𝑖
:= rank 𝐵𝑑

𝑖
≤ 𝑚
𝑑

𝑖
. Then, instead of subsystem (1), we

consider the following subsystem:

Σ


𝑖
: 𝑥
𝑖
(𝑘 + 1) =

𝑠

∑

𝑗=1

𝐴
𝑖𝑗
𝑥
𝑗
(𝑘) + 𝐵

𝑐

𝑖
𝑢
𝑐

𝑖
(𝑘) + 𝐵

V
𝑖
𝑢
V
𝑖
(𝑘) , (14)

𝑥

𝑡 𝑡 + 1 𝑡 + 2 𝑡 + 3 𝑡 + 4 𝑡 + 5
𝑘

Continuous-valued and
discrete-valued control
inputs must be found

The behavior is evaluated
by continuous-valued and

virtual control inputs

Figure 3: Illustration of state trajectory.

State
Centralized controller

· · ·

Plant

Decentralized
controllers

Continuous-valued input,
virtual control inputs

Continuous-valued input,
discrete-valued inputs

Figure 4: Control system considered in this paper.

where

𝐵
V
𝑖
= 𝑆
𝑖
[
𝐼
𝑟𝑖

0
] . (15)

The vector 𝑢V
𝑖
(𝑘)∈UV

𝑖
⊆R𝑟𝑖 is the 𝑟

𝑖
-dimensional continuous-

valued control input. The set UV
𝑖
is given as UV

𝑖
= [𝑢

V
𝑖
, 𝑢

V
𝑖
].

The vector 𝑢V
𝑖
(𝑢V
𝑖
) is given as the value of the vector 𝑇1

𝑖
𝑢
𝑑

𝑖
(𝑘)

such that a sum of each element of 𝑇1
𝑖
𝑢
𝑑

𝑖
(𝑘) is minimized

(maximized) and can be derived from the finite setU𝑑
𝑖,𝑙
.

Hereafter, 𝑢V
𝑖
(𝑘) is called a virtual control input. We

remark that the discrete-valued control input and the virtual
control input are not one-to-one correspondence.

We show one example.

Example 2. Suppose that𝐵𝑑
𝑖
𝑢
𝑑

𝑖
(𝑘) in the subsystem (1) is given

as

𝐵
𝑑

𝑖
𝑢
𝑑

𝑖
(𝑘) = [

−1 1 2

1 −1 1
]

[
[
[

[

𝑢
𝑑

𝑖,1
(𝑘)

𝑢
𝑑

𝑖,2
(𝑘)

𝑢
𝑑

𝑖,3
(𝑘)

]
]
]

]

, (16)
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where

𝑢
𝑑

𝑖,1
(𝑘) ∈ {0, 1, 2} =: U

𝑑

𝑖,1
,

𝑢
𝑑

𝑖,2
(𝑘) ∈ {0, 2, 4} =: U

𝑑

𝑖,2
,

𝑢
𝑑

𝑖,3
(𝑘) ∈ {0, ±3, ±5, ±7} =: U

𝑑

𝑖,3
.

(17)

Noting here that rank 𝐵𝑑
𝑖
= 2 holds, 𝐵𝑑

𝑖
𝑢
𝑑

𝑖
(𝑘) in (16) can be

rewritten as

𝐵
𝑑

𝑖
𝑢
𝑑

𝑖
(𝑘) = [

−1 2

1 1
][

𝑢
𝑑

𝑖,1
(𝑘) − 𝑢

𝑑

𝑖,2
(𝑘)

𝑢
𝑑

𝑖,3
(𝑘)

] . (18)

Thus, we can obtain

𝐵
V
𝑖
𝑢
V
𝑖
(𝑘) = [

−1 2

1 1
] [

𝑢
V
𝑖,1
(𝑘)

𝑢
V
𝑖,2
(𝑘)
] . (19)

In addition, the constraint for virtual control inputs 𝑢V
𝑖,1
(𝑘)

and 𝑢V
𝑖,2
(𝑘) is given as

[
−4

−7
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑢
V
𝑖

≤ [

𝑢
V
𝑖,1
(𝑘)

𝑢
V
𝑖,2
(𝑘)
] ≤ [

2

7
] ,

⏟⏟⏟⏟⏟⏟⏟

𝑢
V
𝑖

(20)

which can be computed from the finite sets U𝑑
𝑖,1
, U𝑑
𝑖,2
, and

U𝑑
𝑖,3
.

Remark 3. Many actuators are included in each subsystem.
In the example of air-conditioning systems, we can consider
ceiling fans, local heaters, and so on. In many cases, these
correspond to discrete-valued control inputs, and the number
of these may be greater than the dimension of the state. Thus
on the derivation of virtual control inputs, we reduce 𝑚𝑑

𝑖
to

𝑟
𝑖
. Another method is proposed in Section 5.

4.3. Solution Method for Optimal Control Problem. First, de-
fine

𝑢


𝑖
(𝑘) := [(𝑢

𝑐

𝑖
(𝑘))
𝑇

(𝑢
V
𝑖
(𝑘))
𝑇

]
𝑇

,

𝑢


(𝑘) := [(𝑢


1
(𝑘))
𝑇

(𝑢


2
(𝑘))
𝑇

⋅ ⋅ ⋅ (𝑢


𝑠
(𝑘))
𝑇

]

𝑇

.

(21)

Then, consider the following finite-time optimal control
problem, instead of Problem 1.

Problem 2. Suppose that for the large-scale system consisting
of subsystems Σ

𝑖
, 𝑖 = 1, 2, . . . , 𝑠, the current state 𝑥(𝑡) =

𝑥
𝑡
is given, where 𝑡 is the current time. Then, find both

continuous-valued and discrete-valued control inputs 𝑢(𝑘),
𝑘 = 𝑡, 𝑡 + 1, . . . , 𝑡 + 𝑁 − 1 minimizing the following cost
function:

𝐽


=

𝑡+𝑁−1

∑

𝑘=𝑡

{(𝑥 (𝑘) − 𝑥
𝑑
)
𝑇

𝑄 (𝑥 (𝑘) − 𝑥
𝑑
) + 𝑢


(𝑘)
𝑇

𝑅


𝑢


(𝑘)}

+ (𝑥 (𝑡 + 𝑁) − 𝑥
𝑑
)
𝑇

𝑄
𝑓
(𝑥 (𝑡 + 𝑁) − 𝑥

𝑑
) ,

(22)

where𝑅 is the weightingmatrix obtained from theweighting
matrix 𝑅 in Problem 1 and the matrix 𝑇1

𝑖
in (13).

Since the decision variable in Problem 2 is only a
continuous-valued variable, Problem 2 can be rewritten as a
quadratic programming (QP) problem, which can be solved
by a suitable solver such as IBM ILOG CPLEX Optimizer
[16]. The dimension of the decision variables is given by
∑
𝑠

𝑖=1
(𝑚
𝑐

𝑖
+𝑟
𝑖
)𝑁.Theprocedure for rewriting Problem2 as aQP

problem is the same as that in the case of Problem 1. See the
appendix for further details. In addition, from the definition
of the virtual control input, we see that theminimum value of
the cost function in Problem 2 gives the lower bound of the
minimum value of the cost function in Problem 1.

By solving Problem 2, we can obtain the virtual control
input. Next, we consider finding a discrete-valued control
input from the obtained virtual control input. By 𝑢V∗

𝑖
(𝑘),

denote the optimal value of the virtual control input obtained
by solving Problem 2. In addition, a binary variable 𝛿

𝑖,𝑙,𝑞
is

assigned to each candidate of each element in the discrete-
valued control input. Then, focusing on only 𝑢V∗

𝑖
(𝑡), consider

the following problem for each subsystem Σ
𝑖
.

Problem 3. Find binary variables 𝛿
𝑖,𝑙,𝑞
, 𝑙 = 1, 2, . . . , 𝑚

𝑑

𝑖
, 𝑞 =

1, 2, . . . , 𝑝
𝑖,𝑚
𝑑

𝑖

minimizing the following cost function:

𝐽
𝑑
=



𝑇
1

𝑖

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑝𝑖,1

∑

𝑞=1

𝑢
𝑑

𝑖,1,𝑞
𝛿
𝑖,1,𝑞

𝑝𝑖,2

∑

𝑞=1

𝑢
𝑑

𝑖,2,𝑞
𝛿
𝑖,2,𝑞

...
𝑝
𝑖,𝑚
𝑑

𝑖

∑

𝑞=1

𝑢
𝑑

𝑖,𝑚
𝑑

𝑖
,𝑞
𝛿
𝑖,𝑚
𝑑

𝑖
,𝑞

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

− 𝑢
V∗
𝑖
(𝑡)


1

, (23)

under the equality constraint∑𝑝𝑖 ,𝑙
𝑞=1
𝛿
𝑖,𝑙,𝑞
= 1,where ‖ ⋅ ‖

1
is the

1-norm of a vector.

By a simple calculation, Problem 3 can be rewritten as
an integer linear programming (ILP) problem, which can
be solved by a suitable solver such as IBM ILOG CPLEX
Optimizer. We remark that Problem 3 is independent of
each subsystem. That is, computing environment can be
independently prepared for each subsystem. Furthermore,
we remark that only the case of 𝑘 = 𝑡 is considered in
Problem 3. This is because in MPC only the control input
at 𝑘 = 𝑡 is applied to the plant. Thus, it is not necessary
to find the discrete-valued control input at 𝑘 = 𝑡 + 1, 𝑡 +

2, . . . , 𝑡 + 𝑁 − 1. Therefore, Problem 3 can be solved fast. In
addition, by deriving a look-up table off-line, solving the ILP
problem online is not necessary. See the numerical example
in Section 6 for further details.

The proposed solution method for Problem 1 can be
regarded as the method that the MIQP problem correspond-
ing to Problem 1 is divided into one QP problem (Problem 2)
and 𝑠 ILP problems (Problem 3 for each subsystem). Problem
2 can be in general solved faster than Problem 1, and in
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Problem 3, we find only the discrete-valued control input at
𝑘 = 𝑡. From these observations, we see that the computation
time for solving one QP problem and 𝑠 ILP problems is
smaller than that for solving one MIQP problem.

In addition, the fact that Problem 1 is directly solved (in
otherwords, Problem 1 is rewritten as anMIQPproblem) cor-
responds to centralized control of large-scale systems. In the
proposedmethod, solving Problem 2 (in other words, finding
both continuous-valued control inputs and virtual control
inputs) corresponds to centralized control. On the other
hand, solving Problem 3 (in other words, finding discrete-
valued control inputs based on optimal virtual control inputs)
corresponds to decentralized control. Thus, the proposed
method can be regarded as the method combining central-
ized control with decentralized control, and the computation
load is decentralized and reduced.

4.4. Model Predictive Control Law. Finally, we summarize
the procedure of MPC combining centralized control with
decentralized control.

The Proposed Procedure of MPC

Step 1. Set 𝑡 = 0 and give the current state 𝑥(𝑡) = 𝑥
𝑡
.

Step 2. In the centralized controller, find both a continuous-
valued control input and a virtual control input by solving
Problem 2.

Step 3. Send the optimal values of both a continuous-valued
control input and a virtual control input from the centralized
controller to each decentralized controller.

Step 4. In each decentralized controller, solve Problem 3 and
find a discrete-valued control input at 𝑡.

Step 5. Apply only the control input at 𝑡 to the plant.

Step 6. Set 𝑡 := 𝑡 + 1, measure 𝑥(𝑡), and return to Step 2.

5. Discussion on Quantization Errors

In the previous section, we do not consider quantization
errors and focus on the lower bound of the cost function. In
this section, we discuss a method for considering quantiza-
tion errors.

First, the virtual control input is introduced. In this
section, 𝐵𝑑

𝑖
𝑢
𝑑

𝑖
(𝑘) in (1) is transformed into the virtual control

input. By 𝑢𝑞
𝑖
(𝑘) ∈ R𝑛𝑖 , denote the virtual control input. By

𝑢
𝑞

𝑖
, denote the value of the vector 𝐵𝑑

𝑖
𝑢
𝑑

𝑖
(𝑘) such that a sum

of each element of 𝐵𝑑
𝑖
𝑢
𝑑

𝑖
(𝑘) is minimized. By 𝑢𝑞

𝑖
, denote the

value of the vector 𝐵𝑑
𝑖
𝑢
𝑑

𝑖
(𝑘) such that a sum of each element

of𝐵𝑑
𝑖
𝑢
𝑑

𝑖
(𝑘) ismaximized.Then, instead of (1), we consider the

following system:

Σ


𝑖
: 𝑥
𝑖
(𝑘 + 1) =

𝑠

∑

𝑗=1

𝐴
𝑖𝑗
𝑥
𝑗
(𝑘) + 𝐵

𝑐

𝑖
𝑢
𝑐

𝑖
(𝑘) + 𝑢

𝑞

𝑖
(𝑘) + 𝑎

𝑞

𝑖
,

(24)

where 𝑢𝑞
𝑖
(𝑘) ∈ [𝑢

𝑞

𝑖
, 𝑢
𝑞

𝑖
] ⊆ R𝑛𝑖 . The vector 𝑎𝑞

𝑖
∈ [𝑎
𝑞

𝑖
, 𝑎
𝑞

𝑖
] is

the uncertain affine term including quantization errors, and
𝑎
𝑞

𝑖
, 𝑎
𝑞

𝑖
are obtained from quantization errors in each element

of 𝐵𝑑
𝑖
𝑢
𝑑

𝑖
(𝑘).

We show one example.

Example 4. Suppose that 𝐵𝑑
𝑖
𝑢
𝑑

𝑖
(𝑘) in subsystem (1) is given as

𝐵
𝑑

𝑖
𝑢
𝑑

𝑖
(𝑘) = [

1 1 0

0 0 1
]

[
[
[

[

𝑢
𝑑

𝑖,1
(𝑘)

𝑢
𝑑

𝑖,2
(𝑘)

𝑢
𝑑

𝑖,3
(𝑘)

]
]
]

]

, (25)

where 𝑢𝑑
𝑖,1
(𝑘) ∈ {0, ±1, . . . , ±6}, 𝑢𝑑

𝑖,2
(𝑘) ∈ {0, ±6}, and 𝑢𝑑

𝑖,3
(𝑘) ∈

{0, ±1, . . . , ±10}. Then, we can obtain the following virtual
control inputs:

𝑢
𝑞

𝑖
(𝑘) = [

𝑢
𝑑

𝑖,1
(𝑘) + 𝑢

𝑑

𝑖,2
(𝑘)

𝑢
𝑑

𝑖,3
(𝑘)

] . (26)

The vectors 𝑢𝑞
𝑖
, 𝑢
𝑞

𝑖
can be obtained as

[
−12

−10
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑢
𝑞

𝑖

≤ 𝑢
𝑞

𝑖
(𝑘) ≤ [

12

10
]

⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑢
𝑞

𝑖

.
(27)

In addition, the following relations hold:

𝑢
𝑑

𝑖,1
(𝑘) + 𝑢

𝑑

𝑖,2
(𝑘) ∈ {−12, −11, . . . , 12} ⊂Z,

𝑢
𝑑

𝑖,3
(𝑘) ∈ {−10, −9, . . . , 10} ⊂Z.

(28)

From these relations, 𝑎𝑞
𝑖
, 𝑎
𝑞

𝑖
can be obtained as

𝑎
𝑞

𝑖
= [
−0.5

−0.5
] , 𝑎

𝑞

𝑖
= [
0.5

0.5
] . (29)

Thus, we can obtain virtual control inputs and the uncertain
affine term.

Next, consider transforming the system (24) including
uncertainty into a linear system including no uncertainty. For
simplicity of discussion, we assume that, for all 𝑘 ≥ 0, two
relations 𝑥

𝑖
(𝑘) ≥ 0 and 𝑢𝑞

𝑖
(𝑘) ≥ 0 hold. This assumption can

be satisfied by adding the affine term.Then, by using the result
in [14], an overapproximation of the state can be expressed as

𝑥
𝑖
(𝑘 + 1) ∈ [𝑥

𝑖
(𝑘 + 1) , 𝑥

𝑖
(𝑘 + 1)] ,

𝑥
𝑖
(𝑘 + 1) =

𝑠

∑

𝑗=1

𝐴
𝑖𝑗
𝑥
𝑐

𝑗
(𝑘) −


𝐴
𝑖𝑗


𝑥
𝑟

𝑗
(𝑘)

+ 𝐵
𝑐

𝑖
𝑢
𝑐

𝑖
(𝑘) + 𝑢

𝑞

𝑖
(𝑘) + 𝑎

𝑞

𝑖
+ 𝑏,

(30)

𝑥
𝑖
(𝑘 + 1) =

𝑠

∑

𝑗=1

𝐴
𝑖𝑗
𝑥
𝑐

𝑗
(𝑘) +


𝐴
𝑖𝑗


𝑥
𝑟

𝑗
(𝑘)

+ 𝐵
𝑐

𝑖
𝑢
𝑐

𝑖
(𝑘) + 𝑢

𝑞

𝑖
(𝑘) + 𝑎

𝑞

𝑖
+ 𝑏,

(31)
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Figure 5: Directed graph expressing couplings.

where 𝑏 is the affine term for satisfying the above assumption,
and

[
𝑥
𝑐

𝑖
(𝑘)

𝑥
𝑟

𝑖
(𝑘)
] =

1

2
[
𝐼
𝑛
𝐼
𝑛

−𝐼
𝑛
𝐼
𝑛

] [
𝑥
𝑖
(𝑘)

𝑥
𝑖
(𝑘)
] . (32)

Equations (30) and (31) are a discrete-time linear system,
and by using (31), the worst case of the cost function (12)
in Problem 1 can be minimized approximately. This problem
is reduced to a quadratic programming (QP) problem, not a
min-max optimization problem. On the other hand, by using
both (30) and (31), the middle point of the cost function
(12) can be evaluated. Also in this case, the optimal control
problem is reduced to a QP problem.

Remark 5. In this section, the dimension of the virtual
control input is 𝑛

𝑖
. On the other hand, in Section 4.2, the

dimension of the virtual control input is 𝑟
𝑖
= rank 𝐵𝑑

𝑖
≤ 𝑛
𝑖
.

Also in the discussion on quantization errors, the dimension
of the virtual control input can be reduced to 𝑟

𝑖
. However,

𝑢
𝑞

𝑖
, 𝑢
𝑞

𝑖
and 𝑎𝑞

𝑖
, 𝑎
𝑞

𝑖
must be determined depending on the

choice of 𝑇1
𝑖
, 𝑇
2

𝑖
in (13). In order to avoid this complexity, we

have considered in this section the virtual control input with
the dimension of 𝑛

𝑖
.

6. Numerical Example

As a numerical example, consider the large-scale system con-
sisting of 9 subsystems given by (1). Couplings of subsystems
are given by the directed graph in Figure 5. The matrices 𝐴

𝑖𝑖
,

𝑖 = 1, 2, . . . , 9, are given by

𝐴
𝑖𝑖
= [
𝑎
𝑖
0.6

0 1
] , (33)

where 𝑎
1
= 1.3, 𝑎

2
= 1.2, 𝑎

3
= 1.1, 𝑎

4
= 1.0, 𝑎

5
= 0.9, 𝑎

6
= 0.8,

𝑎
7
= 0.7, 𝑎

8
= 0.6, and 𝑎

9
= 0.5. The matrices 𝐴

𝑖𝑗
, 𝑖 ̸= 𝑗 are

given as follows. 𝐴
12
, 𝐴
21
, 𝐴
23
, 𝐴
32
, 𝐴
14
, 𝐴
41
, 𝐴
25
, 𝐴
52
, 𝐴
36
,

𝐴
63
, 𝐴
45
, 𝐴
54
, 𝐴
56
, 𝐴
65
, 𝐴
47
, 𝐴
74
, 𝐴
58
, 𝐴
85
, 𝐴
69
, 𝐴
96
, 𝐴
78
,

𝐴
87
, 𝐴
89
, 𝐴
98
are given as 0.4𝐼

2
, respectively. Other coupling

terms 𝐴
𝑖𝑗
, 𝑖 ̸= 𝑗 are given as a zero matrix. 𝐵𝑐

𝑖
is given by

𝐵
𝑐

𝑖
= [
0

1
] . (34)
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Figure 6: Trajectories of the first element of the state.
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Figure 7: Trajectories of the second element of the state.

In addition, we impose the following constraint:

−10 ≤ 𝑢
𝑐

𝑖
(𝑘) ≤ +10. (35)

Thematrix𝐵𝑑
𝑖
and the discrete-valued control input 𝑢𝑑

𝑖
(𝑘) are

given by those in Example 2.
For this system, we consider solving Problem 2, instead

of Problem 1.The prediction horizon, the weightingmatrices,
the desired state, the initial time, and the initial state are given
as𝑁 = 5,𝑄 = 10𝐼,𝑅 = 𝐼, 𝑥

𝑑
= 0, 𝑡 = 0, and 𝑥

𝑖
(0) = [10 8]

𝑇,
respectively.

We show the computation result. Figures 6 and 7 show
state trajectories of 9 subsystems. Note here that in these
figures, the virtual control input is used. From this fact, we see
that trajectories in these figures imply those corresponding to
the lower bound of the optimal value of a given cost function.
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Next, we discuss how to derive the discrete-valued control
input from the virtual control input. In this example, the
optimal virtual control input at 𝑘 = 0 can be obtained by

𝑢
V∗
𝑖
(0) = [

2

−7
] , 𝑖 = 1, 2, . . . , 9. (36)

Then focusing on (18), we can obtain the discrete-valued
control input as follows:

𝑢
𝑑

𝑖
(0) =

[
[
[

[

𝑢
𝑑

𝑖,1
(0)

𝑢
𝑑

𝑖,2
(0)

𝑢
𝑑

𝑖,3
(0)

]
]
]

]

∈

{

{

{

[

[

2

0

−7

]

]

,[

[

4

2

−7

]

]

}

}

}

. (37)

In this case, 𝑢𝑑
𝑖,3
(0) can be uniquely determined. 𝑢𝑑

𝑖,1
(0) and

𝑢
𝑑

𝑖,2
(0) are not uniquely determined. If it is desirable to set

a small value, then we can obtain 𝑢𝑑
𝑖,1
(0) = 2 and 𝑢𝑑

𝑖,2
(0) =

0. In practice, the look-up table can be generated off-line.
Then, the input of this table is the rounded virtual control
input, and the output is the discrete-valued control input. In
online computation, the discrete-valued control input can be
determined from the look-up table and the rounded virtual
control input. In this method, it is not necessary to solve
Problem 3.

Finally, we explain the computation time for solving
Problem 2. In this example, the computation time of the QP
problem was 0.05 [sec], where we used IBM ILOG CPLEX
Optimizer 11.0 as an MIQP solver on the computer with the
Intel Core 2 Duo 3.0GHz processor and the 4GB memory.
Thus, Problem 2 can be solved fast.

7. Conclusion

In this paper, we have proposed computational techniques
for model predictive control of large-scale systems with both
continuous-valued and discrete-valued control inputs. By
introducing the notion of virtual control inputs, the compu-
tation load is reduced and decentralized. The effectiveness
of the proposed method has been shown by a numerical
example. The proposed method is useful for solving the
control problem of large-scale system with both continuous-
valued and discrete-valued control inputs.

One of the futureworks is to apply our approach to several
practical systems such as air-conditioning systems. On the
other hand, a large-scale system studied in this paper is a class
of hybrid systems. It is also important to extend the proposed
method to general hybrid systems such as piecewise affine
systems and MLD systems.

Appendix

Reduction of Problem 1 to an MIQP Problem

First, by using a binary variable, the element 𝑢𝑑
𝑖,𝑙
(𝑘) of 𝑢𝑑

𝑖
(𝑘)

in subsystem (1) can be expressed as

𝑢
𝑑

𝑖,𝑙
(𝑘) = [𝑢

𝑑

𝑖,𝑙,1
⋅ ⋅ ⋅ 𝑢
𝑑

𝑖,𝑙,𝑝𝑖,𝑙
]
[
[

[

𝛿
𝑖,𝑙,1
(𝑘)

...
𝛿
𝑖,𝑙,𝑝𝑖,𝑙

(𝑘)

]
]

]

= 𝐶
𝑑

𝑖,𝑙
𝛿
𝑖,𝑙
(𝑘) ,

(A.1)

where we imposed the following equality constraint:

𝛿
𝑖,𝑙,1
(𝑘) + ⋅ ⋅ ⋅ + 𝛿

𝑖,𝑙,𝑝𝑖,𝑙
(𝑘) = 1. (A.2)

By using 𝐶𝑑
𝑖,𝑙
and 𝛿
𝑖,𝑙
(𝑘), 𝑢𝑑
𝑖
(𝑘) can be expressed as

𝑢
𝑑

𝑖
(𝑘) =

[
[
[

[

𝐶
𝑑

𝑖,1
0

. . .
0 𝐶

𝑑

𝑖,𝑚
𝑑

𝑖

]
]
]

]

[
[

[

𝛿
𝑖,1
(𝑘)

...
𝛿
𝑖,𝑚
𝑑

𝑖

(𝑘)

]
]

]

= 𝐶
𝑑

𝑖
𝛿
𝑖
(𝑘) . (A.3)

Next, by combing all subsystems, we can obtain

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) , (A.4)

where

𝐴 =
[
[

[

𝐴
11
⋅ ⋅ ⋅ 𝐴

1𝑠

...
. . .

...
𝐴
𝑠1
⋅ ⋅ ⋅ 𝐴

𝑠𝑠

]
]

]

,

𝐵 =

[
[
[

[

[𝐵
𝑐

1
𝐵
𝑑

1
𝐶
𝑑

1
] 0

. . .
0 [𝐵

𝑐

𝑠
𝐵
𝑑

𝑠
𝐶
𝑑

𝑠
]

]
]
]

]

.

(A.5)

See Section 3 for the definitions of𝑥(𝑘) and 𝑢(𝑘). In addition,
the constraint for the continuous-valued control input and
the equality constraint of (A.2) can be expressed as

𝐶𝑥 (𝑘) + 𝐷𝑢 (𝑘) ≤ 𝐸. (A.6)

Since 𝑢(𝑘) consist of both continuous variables and binary
variables, the pair of (A.4) and (A.6) is a class ofmixed logical
dynamical systems [15]. From (A.4) and (A.6), we have

𝑥 = 𝐴𝑥
0
+ 𝐵𝑢, (A.7)

𝐶𝑥 + 𝐷𝑢 ≤ 𝐸, (A.8)
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where

𝑥 := [𝑥
𝑇

(𝑡) 𝑥
𝑇

(𝑡 + 1) ⋅ ⋅ ⋅ 𝑥
𝑇

(𝑡 + 𝑁)]
𝑇

,

𝑢 := [𝑢
𝑇

(𝑡) 𝑢
𝑇

(𝑡 + 1) ⋅ ⋅ ⋅ 𝑢
𝑇

(𝑡 + 𝑁 − 1)]
𝑇

,

𝐴 =

[
[
[
[
[
[

[

𝐼

𝐴

𝐴
2

...
𝐴
𝑁

]
]
]
]
]
]

]

, 𝐵 =

[
[
[
[
[
[
[

[

0 0 ⋅ ⋅ ⋅ 0

𝐵 0 ⋅ ⋅ ⋅ 0

𝐴𝐵
. . . . . .

...
...

. . . . . . 0

𝐴
𝑁−1

𝐵 ⋅ ⋅ ⋅ 𝐴𝐵 𝐵

]
]
]
]
]
]
]

]

,

𝐶 =
[
[

[

𝐶 0 0

. . .
...

0 𝐶 0

]
]

]

, 𝐷 =
[
[

[

𝐷 0

. . .
0 𝐷

]
]

]

,

𝐸 =
[
[

[

𝐸

...
𝐸

]
]

]

.

(A.9)

By substituting (A.7) into (A.8), we have

(𝐷 − 𝐶𝐵) 𝑢 ≤ 𝐸 − 𝐶𝐴𝑥
0
. (A.10)

Finally, consider the cost function (12). For simplicity of
discussion, we consider the case of 𝑥

𝑑
= 0. Then the cost

function (12) can be rewritten as

𝐽 = 𝑥
𝑇

𝑄𝑥 + 𝑢
𝑇

𝑅𝑢, (A.11)

where

𝑄 =

[
[
[
[

[

𝑄 0

. . .
𝑄

0 𝑄
𝑓

]
]
]
]

]

, 𝑅 =
[
[

[

𝑅 0

. . .
0 𝑅

]
]

]

. (A.12)

Furthermore, by substituting (A.7) into this cost function, we
can obtain

𝐽 = 𝑢
𝑇

(𝑅 + 𝐵
𝑇

𝑄𝐵)𝑢 + 2𝑥
𝑇

0
𝐴
𝑇

𝑄𝐵𝑢 + 𝑥
𝑇

0
𝐴
𝑇

𝑄𝐴𝑥
0
.

(A.13)

From the above, Problem 1 can be rewritten as the following
MIQP problem: find a control input sequence 𝑢 minimizing
the cost function (A.13) subject to the constraint (A.10). The
obtained MIQP problem can be solved by a suitable solver
such as IBM ILOG CPLEX Optimizer. However, for large-
scale systems, it is difficult to solve the MIQP problem with
practical computation time.
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