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Let𝐾 be a nonempty, closed, and convex subset of a real uniformly convex Banach space 𝐸. Let {𝑇𝜆}𝜆∈Λ and {𝑆𝜆}𝜆∈Λ be two infinite
families of asymptotically nonexpansive mappings from 𝐾 to itself with 𝐹 := {𝑥 ∈ 𝐾 : 𝑇𝜆𝑥 = 𝑥 = 𝑆𝜆𝑥, 𝜆 ∈ Λ} ̸= 0. For an arbitrary
initial point𝑥0 ∈ 𝐾, {𝑥𝑛} is defined as follows:𝑥𝑛 = 𝛼𝑛𝑥𝑛−1+𝛽𝑛(𝑇
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theorem for common fixed points of the mappings {𝑇𝜆}𝜆∈Λ and {𝑆𝜆}𝜆∈Λ is obtained. The results extend those of the authors whose
related researches are restricted to the situation of finite families of asymptotically nonexpansive mappings.

1. Introduction

Let 𝐾 be a nonempty, closed, and convex subset of a real
uniformly convex Banach space 𝐸. A mapping 𝑇 : 𝐾 → 𝐾 is
said to be nonexpansive if ‖𝑇𝑥−𝑇𝑦‖ ≤ ‖𝑥−𝑦‖ for all 𝑥,𝑦 ∈ 𝐾.
𝑇 is said to be asymptotically nonexpansive if there exists a
sequence {𝑘𝑛} ⊂ [1,∞) with 𝑘𝑛 → 1 (𝑛 → ∞) such that

𝑇
𝑛
𝑥 − 𝑇
𝑛
𝑦
 ≤ 𝑘𝑛

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐾, 𝑛 = 1, 2, 3, . . . .

(1)

It is obvious that a nonexpansive mapping is an asymptoti-
cally nonexpansive one, but the converse is not true. Denote
by 𝐹(𝑇) the set of fixed points of 𝑇, that is, 𝐹(𝑇) = {𝑥 ∈
𝐾 : 𝑇𝑥 = 𝑥}. Throughout this paper, we always assume that
𝐹(𝑇) ̸= 0. As an important generalization of nonexpansive
mappings, the class of asymptotically nonexpansive map-
pings was introduced by Goebel and Kirk [1] in 1972, who
proved that if 𝐾 is a nonempty, closed, and convex subset of
a real uniformly convex Banach space and 𝑇 : 𝐾 → 𝐾 is
an asymptotically nonexpansive mapping, then 𝑇 has a fixed
point.

Since then, iterative techniques for approximating fixed
points of asymptotically nonexpansive mappings have been
studied by various authors (see, e.g., [2–9]). However, these
researches are all restricted to the situation of at most finite
families of asymptotically nonexpansive mappings. For the
extension of finite families to infinite ones, we develop an
original method, namely, a specific way of choosing the
indexes, for the iterative approximation of common fixed
points of the involved mappings.

We now cite an announced result as the object of our
extension. In 2010, Wang et al. [10] constructed the following
iteration process for two asymptotically nonexpansive map-
pings and obtained some strong convergence theorems for
commonfixedpoints of the givenmappings inBanach spaces.
For an arbitrary initial point 𝑥0 ∈ 𝐾, {𝑥𝑛}, {𝑦𝑛} are defined as
follows:
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where 𝑇, 𝑆 : 𝐾 → 𝐾 are two asymptotically nonexpansive
mappings; {𝛼𝑛}, {𝛽𝑛}, {𝛾𝑛}, {𝛼
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In this paper, amodified iteration schemeof (2) is used for

approximating common fixed points of two infinite families
of asymptotically nonexpansive mappings; a strong conver-
gence theorem is established in the framework of uniformly
convex Banach spaces. The results show the feasibility of the
newly developed technique and extend those of the authors
whose related researches are restricted to the situation of
finite families of such mappings.

2. Preliminaries

Throughout this paper, we use 𝐹 to denote the set of common
fixed points of two infinite families of asymptotically nonex-
pansive mappings {𝑇𝜆}𝜆∈Λ and {𝑆𝜆}𝜆∈Λ, that is, 𝐹 := {𝑥 ∈ 𝐾 :
𝑇𝜆𝑥 = 𝑥 = 𝑆𝜆, 𝜆 ∈ Λ}.

Let 𝐾 be a nonempty, closed, and convex subset of a real
Banach space 𝐸. Let {𝑇𝜆
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subsets of {𝑇𝜆}𝜆∈Λ and {𝑆𝜆}𝜆∈Λ, respectively. In order to
approximate somemember of 𝐹, we define, from an arbitrary
𝑥0 ∈ 𝐾, the following implicit iteration scheme:
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with 𝑖𝑛 and
𝑚𝑛 being the solutions to the positive integer equation: 𝑛 =
𝑖 + (𝑚 − 1)𝑚/2 (𝑚 ≥ 𝑖, 𝑛 = 1, 2, 3, . . .), that is, for each 𝑛 ≥ 1,
there exist unique 𝑖𝑛 and𝑚𝑛 such that

𝑖1 = 1, 𝑖2 = 1, 𝑖3 = 2,
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(4)

For convenience, we restate the following concepts and
results.

A Banach space 𝐸 is said to satisfy Opial’s condition if, for
any sequence {𝑥𝑛} in 𝐸, 𝑥𝑛 ⇀ 𝑥 implies that

lim sup
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𝑥𝑛 − 𝑥
 < lim sup
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𝑥𝑛 − 𝑦
 , (5)

for all 𝑦 ∈ 𝐸 with 𝑦 ̸= 𝑥, where 𝑥𝑛 ⇀ 𝑥 denotes that {𝑥𝑛}
converges weakly to 𝑥.

A mapping 𝑇 with domain 𝐷(𝑇) and range 𝑅(𝑇) in 𝐸 is
said to be demiclosed at 𝑝 if whenever {𝑥𝑛} is a sequence in

𝐷(𝑇) such that {𝑥𝑛} converges weakly to𝑥
∗
∈ 𝐷(𝑇) and {𝑇𝑥𝑛}

converges strongly to 𝑝, then 𝑇𝑥∗ = 𝑝.
We now need the following lemmas for our main results.

Lemma 1 (see [11]). Let {𝑎𝑛}, {𝛿𝑛}, and {𝑏𝑛} be sequences of
nonnegative real numbers satisfying

𝑎𝑛+1 ≤ (1 + 𝛿𝑛) 𝑎𝑛 + 𝑏𝑛, 𝑛 = 1, 2, 3, . . . . (6)
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𝛿𝑛 < ∞ and ∑∞

𝑛=1
𝑏𝑛 < ∞, then lim𝑛→∞𝑎𝑛 exists.

Lemma 2 (see [6]). Let 𝐸 be a real uniformly convex Banach
space, and let 𝑎, and 𝑏 be two constants with 0 < 𝑎 < 𝑏 < 1.
Suppose that {𝑡𝑛} ⊂ [𝑎, 𝑏] is a real sequence and {𝑥𝑛} and {𝑦𝑛}
are two sequences in 𝐸. Then, the conditions

lim
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(7)

imply that lim𝑛→∞‖𝑥𝑛 − 𝑦𝑛‖ = 0, where 𝑑 ≥ 0 is a constant.

Lemma 3 (see [2]). Let 𝐸 be a real uniformly convex Banach
space, 𝐾 a nonempty, closed, convex subset of 𝐸, and let 𝑇 :
𝐾 → 𝐸 be an asymptotically nonexpansive mapping with a
sequence {𝑘𝑛} ⊂ [1,∞) and 𝑘𝑛 → 1 as 𝑛 → ∞. Then, 𝐼 − 𝑇
is demiclosed at zero.

Lemma 4. The unique solutions to the positive integer equa-
tion
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where [𝑥] denotes the maximal integer that is not larger than
x.
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Thus,
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while the difference of the two sides of the inequality above is
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Then, it follows from (15) that (9) holds obviously.

3. Main Results

Lemma 5. Let 𝐾 be a nonempty, closed, and convex subset
of a real uniformly convex Banach space 𝐸, and let {𝑇𝜆
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(𝑖)

𝑛
− 1) ≤ ∑

∞

𝑖=1
∑
∞

𝑛=1
(𝑘
(𝑖)

𝑛
−

1) < ∞ and∑∞
𝑛=1
𝑣
(𝑖
𝑛
)

𝑚
𝑛

= ∑
∞

𝑖=1
∑
∞

𝑛=𝑖
(𝑟
(𝑖)

𝑛
− 1) ≤ ∑

∞

𝑖=1
∑
∞

𝑛=1
(𝑟
(𝑖)

𝑛
−

1) < ∞, which implies that lim𝑛→∞𝑢
(𝑖
𝑛
)

𝑚
𝑛

= lim𝑛→∞𝑣
(𝑖
𝑛
)

𝑚
𝑛

= 0.
Then, for a given 𝜖0 ∈ (0, 𝛿), there exists a positive 𝑛0 such
that

𝛾𝑛 (1 − 𝛽


𝑛
) + 𝛾𝑛𝛾



𝑛
𝑣
(𝑖
𝑛
)

𝑚
𝑛

+ 𝛾𝑛𝑢
(𝑖
𝑛
)

𝑚
𝑛

(1 − 𝛽


𝑛
)

+ 𝛾𝑛𝛾


𝑛
𝑢
(𝑖
𝑛
)

𝑚
𝑛

𝑣
(𝑖
𝑛
)

𝑚
𝑛

< 1 − 𝜖0,

(22)

as 𝑛 ≥ 𝑛0. Then, it follows from (20) and (22) that
𝑥𝑛 − 𝑞

 ≤ (1 + 𝑐𝑛)
𝑥𝑛−1 − 𝑞

 , (23)

where 𝑐𝑛 = (1/𝜖0)[𝑣
(𝑖
𝑛
)

𝑚
𝑛

+ 𝑢
(𝑖
𝑛
)

𝑚
𝑛

+ 𝑢
(𝑖
𝑛
)

𝑚
𝑛

𝑣
(𝑖
𝑛
)

𝑚
𝑛

+ 𝑢
(𝑖
𝑛−1
)

𝑚
𝑛−1

+ 𝑣
(𝑖
𝑛−1
)

𝑚
𝑛−1

+

𝑢
(𝑖
𝑛
)

𝑚
𝑛

𝑣
(𝑖
𝑛−1
)

𝑚
𝑛−1

], and so ∑∞
𝑛=1
𝑐𝑛 < ∞. Hence, it follows from (23)

and Lemma 1 that lim𝑛→∞‖𝑥𝑛 − 𝑞‖ exists for each 𝑞 ∈ 𝐹. The
proof is completed.

Remark 6. Because of the importance of the condition that 𝐹
is nonempty, we now give an example satisfying the lemma
with the set of common fixed points of {𝑇𝜆}𝜆∈Λ and {𝑆𝜆}𝜆∈Λ
being a non single point set. Let 𝐸 := R1, and let𝐾 := [−1, 1].
Define an infinite family of mappings {𝑇𝜆}𝜆≥1 : 𝐾 → 𝐾 by

𝑇𝜆 (𝑥) =

{

{

{

1

𝜆
𝑥
𝜆
, 𝑥 ∈ [0, 1] ,

𝑥, 𝑥 ∈ [−1, 0) ,

(24)

and an infinite family of mappings {𝑆𝜆}𝜆≥1 : 𝐾 → 𝐾 by

𝑆𝜆 (𝑥) =

{

{

{

1

𝜆
sin𝑥𝜆, 𝑥 ∈ [0, 1] ,

𝑥, 𝑥 ∈ [−1, 0) .

(25)

Then, clearly, {𝑇𝜆}𝜆≥1 and {𝑆𝜆}𝜆≥1 are two infinite families of
asymptotically nonexpansive mappings with 𝐹 = [−1, 0].

Lemma 7. Let𝐾, 𝐸, {𝑇𝜆
𝑖

}
∞

𝑖=1
, {𝑆𝜆

𝑖

}
∞

𝑖=1
, and {𝑥𝑛} be the same as

those in Lemma 5. If 𝐹 ̸= 0, then for each 𝑖 ≥ 1, there exists a
subsequence {𝑥(𝑖)

𝑛
} of {𝑥𝑛} such that lim𝑛→∞‖𝑥(𝑖)𝑛 − 𝑇𝜆𝑖𝑥

(𝑖)

𝑛
‖ =

lim𝑛→∞‖𝑥
(𝑖)

𝑛
− 𝑆𝜆

𝑖

𝑥
(𝑖)

𝑛
‖ = 0.



4 Journal of Applied Mathematics

Proof. By Lemma 5, wemay assume that lim𝑛→∞‖𝑥𝑛−𝑞‖ = 𝑑
for a given 𝑞 ∈ 𝐹, that is,

lim
𝑛→∞

𝑑𝑛 = 𝑑, (26)

where 𝑑𝑛 = ‖(1−𝛾𝑛)[𝛼𝑛(𝑥𝑛−1−𝑞)/(1−𝛾𝑛)+𝛽𝑛((𝑇
∗

𝑛−1
)
𝑚
𝑛−1𝑥𝑛−1−

𝑞)/(1 − 𝛾𝑛)] + 𝛾𝑛((𝑇
∗

𝑛
)
𝑚
𝑛

𝑦𝑛 − 𝑞)‖. It follows from (17) that


(𝑇
∗

𝑛
)
𝑚
𝑛

𝑦𝑛 − 𝑞


≤ 𝑘
(𝑖
𝑛
)

𝑚
𝑛

𝑦𝑛 − 𝑞


≤ 𝑘
(𝑖
𝑛
)

𝑚
𝑛

[(𝛼


𝑛
+ 𝛾


𝑛
𝑟
(𝑖
𝑛
)

𝑚
𝑛

)
𝑥𝑛 − 𝑞

 + 𝛽


𝑛
𝑟
(𝑖
𝑛−1
)

𝑚
𝑛−1

𝑥𝑛−1 − 𝑞
]

= 𝑘
(𝑖
𝑛
)

𝑚
𝑛

[
𝑥𝑛 − 𝑞

 + 𝛽


𝑛
(
𝑥𝑛 − 𝑞

 −
𝑥𝑛−1 − 𝑞

)

+ 𝛾


𝑛
𝑣
(𝑖
𝑛
)

𝑚
𝑛

𝑥𝑛 − 𝑞
 + 𝛽


𝑛
𝑣
(𝑖
𝑛−1
)

𝑚
𝑛−1

𝑥𝑛−1 − 𝑞
] .

(27)

Taking lim sup on both sides in (27) yields that

lim sup
𝑛→∞


(𝑇
∗

𝑛
)
𝑚
𝑛

𝑦𝑛 − 𝑞

≤ lim sup
𝑛→∞

𝑦𝑛 − 𝑞
 ≤ 𝑑. (28)

Next, it follows from (26) that

lim sup
𝑛→∞

𝑒𝑛 ≤ lim sup
𝑛→∞

(
𝛼𝑛

1 − 𝛾𝑛

𝑥𝑛−1 − 𝑞


+
𝛽𝑛

1 − 𝛾𝑛

𝑘
(𝑖
𝑛−1
)

𝑚
𝑛−1

𝑥𝑛−1 − 𝑞
)

= lim sup
𝑛→∞

(1 +
𝛽𝑛

1 − 𝛾𝑛

𝑢
(𝑖
𝑛−1
)

𝑚
𝑛−1

)
𝑥𝑛−1 − 𝑞

 = 𝑑,

(29)

where 𝑒𝑛 = ‖𝛼𝑛(𝑥𝑛−1 − 𝑞) + 𝛽𝑛((𝑇
∗

𝑛−1
)
𝑚
𝑛−1

𝑥𝑛−1 − 𝑞)‖/(1 − 𝛾𝑛).
It then follows from (26), (28), (29), and Lemma 2 that

lim
𝑛→∞



𝛼𝑛

1 − 𝛾𝑛

𝑥𝑛−1 +
𝛽𝑛

1 − 𝛾𝑛

(𝑇
∗

𝑛−1
)
𝑚
𝑛−1

𝑥𝑛−1 − (𝑇
∗

𝑛
)
𝑚
𝑛

𝑦𝑛



= 0,

(30)

which, in addition to (3), implies that

lim
𝑛→∞


𝑥𝑛 − (𝑇

∗

𝑛
)
𝑚
𝑛

𝑦𝑛


= 0. (31)

Now, we show that ‖𝑦𝑛 − 𝑞‖ → 𝑑 as 𝑛 → ∞. It follows from
(18) that

𝛼𝑛 + 𝛽𝑛

𝛾𝑛

(
𝑥𝑛 − 𝑞

 −
𝑥𝑛−1 − 𝑞

) +
𝑥𝑛 − 𝑞



−
𝛽𝑛

𝛾𝑛

𝑢
(𝑖
𝑛−1
)

𝑚
𝑛−1

𝑥𝑛−1 − 𝑞
 ≤ 𝑘
(𝑖
𝑛
)

𝑚
𝑛

𝑦𝑛 − 𝑞
 .

(32)

Taking lim inf on both sides in the inequality above yields that

𝑑 = lim inf
𝑛→∞

𝑥𝑛 − 𝑞
 ≤ lim inf
𝑛→∞

𝑦𝑛 − 𝑞
 . (33)

Combining (28) with (33), we have lim𝑛→∞‖𝑦𝑛 − 𝑞‖ = 𝑑.
Then, by ways similar to the preceding ones, it is easily shown
that

lim
𝑛→∞



𝛽


𝑛

1 − 𝛼
𝑛

(𝑆
∗

𝑛−1
)
𝑚
𝑛−1

𝑥𝑛−1 +
𝛾


𝑛

1 − 𝛼
𝑛

(𝑆
∗

𝑛
)
𝑚
𝑛

𝑥𝑛 − 𝑥𝑛



= 0,

(34)

which means that

lim
𝑛→∞

𝑦𝑛 − 𝑥𝑛
 = 0. (35)

Set 𝑑
𝑛
= ‖(1−𝛽𝑛)[𝛼𝑛(𝑥𝑛−1−𝑞)/(1−𝛽𝑛)+𝛾𝑛((𝑇

∗

𝑛
)
𝑚
𝑛

𝑦𝑛−𝑞)/(1−

𝛽𝑛)] + 𝛽𝑛((𝑇
∗

𝑛−1
)
𝑚
𝑛−1

𝑥𝑛−1 − 𝑞)‖. Since

lim
𝑛→∞

𝑥𝑛 − 𝑞
 = lim
𝑛→∞

𝑑


𝑛
= 𝑑, (36)

then

lim sup
𝑛→∞


(𝑇
∗

𝑛−1
)
𝑚
𝑛−1

𝑥𝑛−1 − 𝑞


≤ lim sup
𝑛→∞

𝑘
(𝑖
𝑛−1
)

𝑚
𝑛−1

𝑥𝑛−1 − 𝑞
 ≤ 𝑑,

(37)

lim sup
𝑛→∞

𝑒


𝑛
≤ lim sup
𝑛→∞

(
𝛼𝑛

1 − 𝛽𝑛

𝑥𝑛−1 − 𝑞


+
𝛾𝑛

1 − 𝛽𝑛

𝑘
(𝑖
𝑛
)

𝑚
𝑛

𝑦𝑛 − 𝑞
) = 𝑑,

(38)

where 𝑒
𝑛
= ‖𝛼𝑛(𝑥𝑛−1 −𝑞)+𝛾𝑛((𝑇

∗

𝑛
)
𝑚
𝑛

𝑦𝑛 −𝑞)‖/(1−𝛽𝑛). It then
follows from (36)–(38) and Lemma 2 that

lim
𝑛→∞



𝛼𝑛

1 − 𝛽𝑛

𝑥𝑛−1 +
𝛾𝑛

1 − 𝛽𝑛

(𝑇
∗

𝑛
)
𝑚
𝑛

𝑦𝑛 − (𝑇
∗

𝑛−1
)
𝑚
𝑛−1

𝑥𝑛−1



= 0,

(39)

which implies that

lim
𝑛→∞


𝑥𝑛 − (𝑇

∗

𝑛−1
)
𝑚
𝑛−1

𝑥𝑛−1


= 0. (40)

Then, it follows from (31), (35), and (40) that

lim
𝑛→∞

𝑥𝑛 − 𝑥𝑛−1
 = 0. (41)

Similarly, we have

lim
𝑛→∞


𝑦𝑛 − (𝑆

∗

𝑛
)
𝑚
𝑛

𝑥𝑛


= 0,

lim
𝑛→∞


𝑦𝑛 − (𝑆

∗

𝑛−1
)
𝑚
𝑛−1

𝑥𝑛−1


= 0.

(42)

Next, for any 𝑖 ≥ 1, we consider the corresponding
subsequence {𝑥(𝑖)

𝑙
}
𝑙∈Γ
𝑖

of {𝑥𝑛}, where 𝑙 ∈ Γ𝑖 := {𝑙 : 𝑙 =
𝑖 + (𝑗 − 1)𝑗/2, 𝑗 ≥ 𝑖, 𝑗 ∈ N}. For example, by the definition
of Γ1, we have Γ1 = {1, 2, 4, 7, 11, 16, . . .} and 𝑖1 = 𝑖2 = 𝑖4 =
𝑖7 = 𝑖11 = 𝑖16 = ⋅ ⋅ ⋅ = 1. For simplicity, {𝑥(𝑖)

𝑙
}𝑙∈Γ
𝑖

, {𝑦
(𝑖)

𝑙
}𝑙∈Γ
𝑖

,
{𝑇
∗(𝑖)

𝑙
}𝑙∈Γ
𝑖

, and {𝑗(𝑖)
𝑙
}𝑙∈Γ
𝑖

are written as {𝑥
𝑛
}, {𝑦


𝑛
}, {𝑇
𝑛
} and {𝑚𝑛},

respectively. Note that {𝑚𝑛}𝑛∈Γ
𝑖

= {𝑖, 𝑖 + 1, 𝑖 + 2, . . .}, that is,
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𝑘
(𝑖
𝑙
)

1
= 𝑘
(𝑖)

1
, 𝑚𝑛 − 1 = 𝑚𝑛−1, and 𝑇



𝑛
= 𝑇𝜆

𝑖

= 𝑇


𝑛−1
whenever

𝑙 ∈ Γ𝑖. Then, we have

𝑥


𝑛
− 𝑇


𝑛
𝑥𝑛



≤

𝑥


𝑛
− (𝑇


𝑛
)
𝑚
𝑛

𝑦


𝑛



+

(𝑇


𝑛
)
𝑚
𝑛

𝑦


𝑛
− (𝑇


𝑛
)
𝑚
𝑛

𝑥


𝑛


+

(𝑇


𝑛
)
𝑚
𝑛

𝑥


𝑛
− 𝑇


𝑛
𝑥


𝑛



≤

𝑥


𝑛
− (𝑇


𝑛
)
𝑚
𝑛

𝑦


𝑛


+ 𝑘
(𝑖)

𝑚
𝑛


𝑦


𝑛
− 𝑥


𝑛



+ 𝑘
(𝑖)

1


(𝑇


𝑛
)
𝑚
𝑛
−1

𝑥


𝑛
− 𝑥


𝑛


≤

𝑥


𝑛
− (𝑇


𝑛
)
𝑚
𝑛

𝑦


𝑛



+ 𝑘
(𝑖)

𝑚
𝑛


𝑦


𝑛
− 𝑥


𝑛


+ 𝑘
(𝑖)

1

× [

(𝑇


𝑛
)
𝑚
𝑛
−1

𝑥


𝑛
− (𝑇


𝑛−1
)
𝑚
𝑛−1

𝑥


𝑛−1



+

(𝑇


𝑛−1
)
𝑚
𝑛−1

𝑥


𝑛−1
− 𝑥


𝑛


]

≤

𝑥


𝑛
− (𝑇


𝑛
)
𝑚
𝑛

𝑦


𝑛


+ 𝑘
(𝑖)

𝑚
𝑛


𝑦


𝑛
− 𝑥


𝑛



+ 𝑘
(𝑖)

1
[𝑘
(𝑖)

𝑚
𝑛−1


𝑥


𝑛
− 𝑥


𝑛−1


+

(𝑇


𝑛−1
)
𝑚
𝑛−1

𝑥


𝑛−1
− 𝑥


𝑛


] .

(43)

It hence follows from (31), (35), (40), and (41) that
lim𝑛→∞‖𝑥



𝑛
− 𝑇


𝑛
𝑥


𝑛
‖ = 0.That is, for each 𝑖 ≥ 1, there exists a

subsequence {𝑥(𝑖)
𝑛
} of {𝑥𝑛} such that lim𝑛→∞‖𝑥

(𝑖)

𝑛
−𝑇
∗(𝑖)

𝑛
𝑥
(𝑖)

𝑛
‖ =

0. Since 𝑇∗(𝑖)
𝑛
= 𝑇𝜆

𝑖

, we have, for each 𝑖 ≥ 1,

lim
𝑛→∞


𝑥
(𝑖)

𝑛
− 𝑇𝜆

𝑖

𝑥
(𝑖)

𝑛


= 0. (44)

Similarly, it can be shown that, for each 𝑖 ≥ 1,

lim
𝑛→∞


𝑦
(𝑖)

𝑛
− 𝑆𝜆

𝑖

𝑦
(𝑖)

𝑛


= 0. (45)

This completes the proof.

Remark 8. The key point of the proof of Lemma 7 lies in the
use of a specific way of choosing the indexes of the involved
mappings, which makes the generalization of finite families
of nonlinear mappings to infinite ones possible.

Theorem 9. Let 𝐾, 𝐸, {𝑇𝜆
𝑖

}
∞

𝑖=1
, {𝑆𝜆

𝑖

}
∞

𝑖=1
, and {𝑥𝑛} be the same

as those in Lemma 5. If𝐹 ̸= 0 and there exist a𝑇𝜆
𝑖
0

∈ {𝑇𝜆
𝑖

}
∞

𝑖=1
or

an 𝑆𝜆
𝑖
0

∈ {𝑆𝜆
𝑖

}
∞

𝑖=1
and a nondecreasing function 𝑓 : [0,∞) →

[0,∞) with 𝑓(0) = 0 and 𝑓(𝑟) > 0 for all 𝑟 ∈ (0,∞) such that
𝑓(𝑑(𝑥𝑛, 𝐹)) ≤ ‖𝑥𝑛 −𝑇𝜆

𝑖
0

𝑥𝑛‖ or 𝑓(𝑑(𝑥𝑛, 𝐹)) ≤ ‖𝑥𝑛 −𝑆𝜆
𝑖
0

𝑥𝑛‖ for
all 𝑛 ≥ 1, then {𝑥𝑛} converges strongly to some point of 𝐹.

Proof. By Lemma 7, there exists a subsequence {𝑥(𝑖0)
𝑛
} of

{𝑥𝑛} such that lim𝑛→∞‖𝑥
(𝑖
0
)

𝑛
− 𝑇𝜆

𝑖
0

𝑥
(𝑖
0
)

𝑛
‖ = lim𝑛→∞‖𝑥

(𝑖
0
)

𝑛
−

𝑆𝜆
𝑖
0

𝑥
(𝑖
0
)

𝑛
‖ = 0. Since

𝑓 (𝑑 (𝑥
(𝑖
0
)

𝑛
, 𝐹)) ≤


𝑥
(𝑖
0
)

𝑛
− 𝑇𝜆

𝑖
0

𝑥
(𝑖
0
)

𝑛


, (46)

or

𝑓 (𝑑 (𝑥
(𝑖
0
)

𝑛
, 𝐹)) ≤


𝑥
(𝑖
0
)

𝑛
− 𝑆𝜆

𝑖
0

𝑥
(𝑖
0
)

𝑛


, (47)

by taking lim sup as 𝑛 → ∞ on both sides in the inequality
above, we have

lim
𝑛→∞

𝑓 (𝑑 (𝑥
(𝑖
0
)

𝑛
, 𝐹)) = 0, (48)

which implies lim𝑛→∞𝑑(𝑥
(𝑖
0
)

𝑛
, 𝐹) = 0 by the definition of the

function 𝑓.
Now, we will show that {𝑥(𝑖0)

𝑛
} is a Cauchy sequence. By

Lemma 5, there exists a constant𝑀 > 0 such that ‖𝑥𝑛 − 𝑞‖ ≤
𝑀‖𝑥𝑚−𝑞‖ as 𝑛 > 𝑚. And for any 𝜖 > 0, there exists a positive
integer 𝑁 such that 𝑑(𝑥(𝑖0)

𝑛
, 𝐹) < 𝜖/2𝑀 for all 𝑛 ≥ 𝑁. Then,

for any 𝑞 ∈ 𝐹 and 𝑛, 𝑚 ≥ 𝑁, we have

𝑥
(𝑖
0
)

𝑛
− 𝑥
(𝑖
0
)

𝑚


≤

𝑥
(𝑖
0
)

𝑛
− 𝑞

+

𝑥
(𝑖
0
)

𝑚
− 𝑞

≤ 2𝑀


𝑥
(𝑖
0
)

𝑁
− 𝑞

.

(49)

Taking the infimum in the above inequalities for all 𝑞 ∈ 𝐹
yields that


𝑥
(𝑖
0
)

𝑛
− 𝑥
(𝑖
0
)

𝑚


≤ 2𝑀𝑑 (𝑥

(𝑖
0
)

𝑁
, 𝐹) < 𝜖, (50)

which implies that {𝑥(𝑖0)
𝑛
} is a Cauchy sequence. Therefore,

there exists a 𝑝 ∈ 𝐾 such that 𝑥(𝑖0)
𝑛
→ 𝑝 as 𝑛 → ∞ since 𝐸

is complete. Furthermore, lim𝑛→∞𝑑(𝑥
(𝑖
0
)

𝑛
, 𝐹) = 0 shows that

𝑑(𝑝, 𝐹) = 0, which implies that 𝑝 ∈ 𝐹 since 𝐹 is closed. It
follows from the existence of lim𝑛→∞‖𝑥𝑛 − 𝑝‖ that 𝑥𝑛 → 𝑝

as 𝑛 → ∞. This completes the proof.

Remark 10. The result of Theorem 9 extends that of Wang
et al. [10] whose related research is restricted to the situation
of two asymptotically nonexpansive mappings.
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