
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 593739, 12 pages
http://dx.doi.org/10.1155/2013/593739

Research Article
Correlation Measures of Dual Hesitant Fuzzy Sets

Lei Wang, Mingfang Ni, and Lei Zhu

Institute of Communication Engineering, PLA University of Science and Technology, Nanjing, Jiangsu 210007, China

Correspondence should be addressed to Lei Wang; iponly@126.com

Received 23 June 2013; Revised 9 September 2013; Accepted 9 September 2013

Academic Editor: Toly Chen

Copyright © 2013 Lei Wang et al.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The dual hesitant fuzzy sets (DHFSs) were proposed by Zhu et al. (2012), which encompass fuzzy sets, intuitionistic fuzzy sets,
hesitant fuzzy sets, and fuzzy multisets as special cases. Correlation measures analysis is an important research topic. In this paper,
we define the correlation measures for dual hesitant fuzzy information and then discuss their properties in detail. One numerical
example is provided to illustrate these correlationmeasures.Thenwe present a direct transfer algorithmwith respect to the problem
of complex operation ofmatrix synthesis when reconstructing an equivalent correlationmatrix for clustering DHFSs. Furthermore,
we prove that the direct transfer algorithm is equivalent to transfer closure algorithm, but its asymptotic time complexity and space
complexity are superior to the latter. Another real world example, that is, diamond evaluation and classification, is employed to
show the effectiveness of the association coefficient and the algorithm for clustering DHFSs.

1. Introduction

Correlation indicates how well two variables move together
in a linear fashion. In other words, correlation reflects a
linear relationship between two variables. It is an important
measure in data analysis, in particular in decision making,
medical diagnosis, pattern recognition, and other real world
problems [1–7]. Zadeh [8] introduced the concept of fuzzy
sets (FSs) whose basic component is only a membership
function with the nonmembership function being one minus
the membership function. In fuzzy environments, Hung
and Wu [9] used the concept of “expected value” to define
the correlation coefficient of fuzzy numbers, which lies
in [−1, 1]. Hong [10] considered the computational aspect
of the 𝑇

𝜔
-based extension principle when the principle is

applied to a correlation coefficient of 𝐿-𝑅 fuzzy numbers
and gave the exact solution of a fuzzy correlation coefficient
without programming or the aid of computer resources.
Atanassov [11, 12] gave a generalized form of fuzzy set, called
intuitionistic fuzzy set (IFS), which is characterized by a
membership function and a non-membership function. In
intuitionistic fuzzy environments, Gerstenkorn and Mańko
[13] defined a function measuring the correlation of IFSs
and introduced a coefficient of such a correlation. Bustince
and Burillo [14] introduced the concepts of correlation and
correlation coefficient of interval-valued intuitionistic fuzzy

sets (IVIFSs) [12]. Hung [15] and Mitchell [16] derived the
correlation coefficient of intuitionistic fuzzy sets from a
statistical viewpoint by interpreting an intuitionistic fuzzy set
as an ensemble of ordinary fuzzy sets. Hung and Wu [17]
proposed a method to calculate the correlation coefficient
of intuitionistic fuzzy sets by means of “centroid.” Xu [18]
gave a detailed survey on association analysis of intuitionistic
fuzzy sets and pointed out that most existing methods
deriving association coefficients cannot guarantee that the
association coefficient of any two intuitionistic fuzzy sets
equals one if and only if these two intuitionistic fuzzy sets
are the same. Szmidt and Kacprzyk [5] discussed a concept
of correlation for data represented as intuitionistic fuzzy set
adopting the concepts from statistics and proposed a formula
for measuring the correlation coefficient (lying in [−1, 1])
of intuitionistic fuzzy sets. Robinson and Amirtharaj [19]
defined the correlation coefficient of interval vague sets lying
in the interval [0, 1] and proposed a new method for com-
puting the correlation coefficient of interval vague sets lying
in the interval [−1, 1] using a-cuts over the vague degrees
through statistical confidence intervals which is presented
by an example. Instead of using point-based membership as
in fuzzy sets, interval-based membership is used in a vague
set. In [20], Robinson and Amirtharaj presented a detailed
comparison between vague sets and intuitionistic fuzzy sets
and defined the correlation coefficient of vague sets through
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simple examples. Hesitant fuzzy sets (HFSs) were originally
introduced by Torra [21, 22]. In hesitant fuzzy environments,
Chen et al. [23] derived some correlation coefficient formulas
for HFSs and applied them to two real world examples by
using clustering analysis under hesitant fuzzy environments.
Xu and Xia [24] defined the correlationmeasures for hesitant
fuzzy information and then discussed their properties in
detail.

Recently, Dubois and Prade introduced the definition of
dual hesitant fuzzy set. Dual hesitant fuzzy set can reflect
human’s hesitance more objectively than the other classical
extensions of fuzzy set (intuitionistic fuzzy set, type-2 fuzzy
set (T-2FS) [25], hesitant fuzzy set, etc.). The motivation to
propose the DHFSs is that when people make a decision,
they are usually hesitant and irresolute for one thing or
another which makes it difficult to reach a final agreement.
They further indicated that DHFSs can better deal with
the situations that permit both the membership and the
nonmembership of an element to a given set having a few
different values, which can arise in a group decision making
problem. For example, in the organization, some decision
makers discuss the membership degree 0.6 and the non-
membership 0.3 of an alternative 𝐴 that satisfies a criterion
𝑥. Some possibly assign (0.8, 0.2), while the others assign
(0.7, 0.2). No consistency is reached among these decision
makers. Accordingly, the difficulty of establishing a common
membership degree and a non-membership degree is not
because we have a margin of error (intuitionistic fuzzy set)
or some possibility distribution values (type-2 fuzzy set), but
because we have a set of possible values (hesitant fuzzy set).
For such a case, the satisfactory degrees can be represented
by a dual hesitant fuzzy element {(0.6, 0.8, 0.7), (0.3, 0.2)},
which is obviously different from intuitionistic fuzzy number
(0.8, 0.2)or (0.7, 0.2) andhesitant fuzzy number {0.6, 0.8, 0.7}.
The aforementioned measures, however, cannot be used to
deal with the correlation measures of dual hesitant fuzzy
information. Thus, it is very necessary to develop some
theories for dual hesitant fuzzy sets. However, little has
been done about this issue. In this paper, we mainly discuss
the correlation measures of dual hesitant fuzzy information.
To do this, the remainder of the paper is organized as
follows. Section 2 presents some basic concepts related to
DHFSs, HFSs, and IFSs. In Section 3, we propose some
correlation measures of dual hesitant fuzzy elements, obtain
several important conclusions, and given an example to
illustrate the correlation measures. In Section 4, we propose
a direct transfer clustering algorithm based on DHFSs and
then use a numerical example to illustrate our algorithm.
Finally, Section 5 concludes the paper with some remarks and
presents future challenges.

2. Preliminaries

2.1. DHFSs, HFSs, and IFSs

Definition 1 (see [26]). Let𝑋 be a fixed set then a dual hesitant
fuzzy set (DHFS)𝐷 on𝑋 is described as;

𝐷 = {⟨𝑥, ℎ (𝑥) , 𝑔 (𝑥)⟩ | 𝑥 ∈ 𝑋} (1)

in which ℎ(𝑥) and 𝑔(𝑥) are two sets of some values in
[0, 1], denoting the possible membership degrees and non-
membership degrees of the element 𝑥 ∈ 𝑋 to the set 𝐷,
respectively, with the conditions

0 ≤ 𝛾, 𝜂 ≤ 1, 0 ≤ 𝛾
+

+ 𝜂
+

≤ 1, (2)

where 𝛾 ∈ ℎ(𝑥), 𝜂 ∈ 𝑔(𝑥), 𝛾+ ∈ ℎ
+

(𝑥) = ∪
𝛾∈ℎ(𝑥)

max{𝛾}, and
𝜂
+

∈ 𝑔
+

(𝑥) = ∪
𝜂∈𝑔(𝑥)

max{𝜂} for all 𝑥 ∈ 𝑋. For convenience,
the pair 𝑑

𝐸
(𝑥) = (ℎ

𝐸
(𝑥), 𝑔
𝐸
(𝑥)) is called a dual hesitant fuzzy

element (DHFE), denoted by 𝑑 = (ℎ, 𝑔), with the conditions
𝛾 ∈ ℎ(𝑥), 𝜂 ∈ 𝑔(𝑥), 𝛾+ ∈ ℎ

+

(𝑥) = ∪
𝛾∈ℎ(𝑥)

max{𝛾}, and 𝜂
+

∈

𝑔
+

(𝑥) = ∪
𝜂∈𝑔(𝑥)

max{𝜂}, 0 ≤ 𝛾, 𝜂 ≤ 1 and 0 ≤ 𝛾
+

+ 𝜂
+

≤ 1.

Definition 2 (see [21, 22]). Let𝑋 be a fixed set; a hesitant fuzzy
set (HFS) 𝐴 on𝑋 is in terms of a function that when applied
to𝑋 returns a subset of [0, 1], which can be represented as the
following mathematical symbol:

𝐴 = {⟨𝑥, ℎ
𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑋} , (3)

where ℎ
𝐴
(𝑥) is a set of values in [0, 1], denoting the possible

membership degrees of the element 𝑥 ∈ 𝑋 to the set 𝐴. For
convenience, we call ℎ

𝐴
(𝑥) a hesitant fuzzy element (HFE).

We use ⟨𝑥, ℎ
𝐴
⟩ for all 𝑥 ∈ 𝑋 to represent HFSs.

Definition 3 (see [11, 12]). Let𝑋 be a fixed set, an intuitionistic
fuzzy set (IFS) 𝐴 on𝑋 is an object having the form

𝐴 = {⟨𝑥, 𝜇
𝐴
(𝑥) , ]

𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑋} (4)

which is characterized by a membership function 𝜇
𝐴
and a

non-membership function ]
𝐴
, where 𝜇

𝐴
: 𝑋 → [0, 1] and

]
𝐴
: 𝑋 → [0, 1], with the condition 0 ≤ 𝜇

𝐴
(𝑥) + ]

𝐴
(𝑥) ≤ 1,

for all 𝑥 ∈ 𝑋. We use ⟨𝑥, 𝜇
𝐴
, ]
𝐴
⟩ for all 𝑥 ∈ 𝑋 to represent

IFSs considered in the rest of the paper without explicitly
mentioning it. Furthermore, 𝜋

𝐴
(𝑥) = 1 − 𝜇

𝐴
(𝑥) − ]

𝐴
(𝑥) is

called a hesitancy degree or an intuitionistic index of 𝑥 in 𝐴.
In the special case 𝜋(𝑥) = 0, that is, 𝜇

𝐴
(𝑥) + ]

𝐴
(𝑥) = 1, the

IFS 𝐴 reduces to an FS.

2.2. Correlation Coefficients of HFSs and IFSs. Many
approaches [4, 13, 17, 20, 21] have been introduced to compute
the correlation coefficients of IFSs. Let 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
}

be a discrete universe of discourse, for any two 𝐴 and 𝐵 on
𝑋.

The correlation of the IFSs 𝐴 and 𝐵 is defined as [13]

𝐶IFS
1
(𝐴, 𝐵) =

𝑛

∑
𝑖=1

(𝑢
𝐴
(𝑥
𝑖
) 𝑢
𝐵
(𝑥
𝑖
) + V
𝐴
(𝑥
𝑖
) 𝑢
𝐵
(𝑥
𝑖
)) , (5)
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Then, the correlation coefficient of the IFSs𝐴 and𝐵 is defined
as

𝜌IFS
1
(𝐴, 𝐵) =

𝐶IFS
1
(𝐴, 𝐵)

(𝐶IFS
1
(𝐴, 𝐴) ⋅ 𝐶IFS

1
(𝐵, 𝐵))

1/2

= (

𝑛

∑
𝑖=1

(𝑢
𝐴
(𝑥
𝑖
) 𝑢
𝐵
(𝑥
𝑖
) + V
𝐴
(𝑥
𝑖
) 𝑢
𝐵
(𝑥
𝑖
)))

× (((

𝑛

∑
𝑖=1

(𝑢
2

𝐴
(𝑥
𝑖
) + V2
𝐴
(𝑥
𝑖
)))

⋅(

𝑛

∑
𝑖=1

(𝑢
2

𝐵
(𝑥
𝑖
) + V2
𝐵
(𝑥
𝑖
))))

1/2

)

−1

.

(6)

In [23], Chen et al. defined the correlation and correlation
coefficient for HFSs as follows, respectively:

𝐶HFS
1
(𝐴, 𝐵) =

𝑛

∑
𝑖=1

(
1

𝑙
𝑖

𝑙
𝑖

∑
𝑗=1

ℎ
𝐴
𝜎(𝑗)

(𝑥
𝑖
) ℎ
𝐵
𝜎(𝑗)

(𝑥
𝑖
)) ,

𝜌IFS
1
(𝐴, 𝐵) =

𝐶HFS
1
(𝐴, 𝐵)

(𝐶HFS
1
(𝐴, 𝐴) ⋅ 𝐶HFS

1
(𝐵, 𝐵))

1/2

= (

𝑛

∑
𝑖=1

(
1

𝑙
𝑖

𝑙
𝑖

∑
𝑗=1

ℎ
𝐴
𝜎(𝑗)

(𝑥
𝑖
) ℎ
𝐵
𝜎(𝑗)

(𝑥
𝑖
)))

×(((

𝑛

∑
𝑖=1

(
1

𝑙
𝑖

𝑙
𝑖

∑
𝑗=1

ℎ
2

𝐴
𝜎(𝑗)

(𝑥
𝑖
)))

⋅(

𝑛

∑
𝑖=1

(
1

𝑙
𝑖

𝑙
𝑖

∑
𝑗=1

ℎ
2

𝐵
𝜎(𝑗)

(𝑥
𝑖
))))

1/2

)

−1

,

(7)

where 𝑙
𝑖
= max{𝑙(ℎ

𝐴
(𝑥
𝑖
)), 𝑙(ℎ
𝐵
(𝑥
𝑖
))} for each 𝑥

𝑖
in 𝑋, and

𝑙(ℎ
𝐴
(𝑥
𝑖
)) and 𝑙(ℎ

𝐵
(𝑥
𝑖
)) represent the number of values in

ℎ
𝐴
(𝑥
𝑖
) and ℎ

𝐵
(𝑥
𝑖
), respectively. We will talk about 𝑙

𝑖
in detail

in the next section.

3. Correlation Measures of DHFEs

In this section, we first introduce the concept of correlation
and correlation coefficient for DHFSs and then propose
several correlation coefficient formulas and discuss their
properties.

We arrange the elements in 𝑑
𝐸
(𝑥) = (ℎ

𝐸
(𝑥), 𝑔
𝐸
(𝑥)) in

decreasing order and let 𝛾𝜎(𝑖)
𝐸

(𝑥) be the 𝑖th largest value
in ℎ
𝐸
(𝑥) and 𝜂

𝜎(𝑗)

𝐸
(𝑥) the 𝑗th largest value in 𝑔

𝐸
(𝑥). Let

𝑙
ℎ
(𝑑
𝐸
(𝑥
𝑖
)) the number of values in ℎ

𝐸
(𝑥
𝑖
) and 𝑙

𝑔
(𝑑
𝐸
(𝑥
𝑖
)) be

the number of values in 𝑔
𝐸
(𝑥
𝑖
). For convenience, 𝑙(𝑑(𝑥

𝑖
)) =

(𝑙
ℎ
(𝑑(𝑥
𝑖
)), 𝑙
𝑔
(𝑑(𝑥
𝑖
))). In most cases, for two DHFSs 𝐴

and 𝐵, 𝑙(𝑑
𝐴
(𝑥
𝑖
)) ̸= 𝑙(𝑑

𝐵
(𝑥
𝑖
)); that is, 𝑙

ℎ
(𝑑
𝐴
(𝑥
𝑖
)) ̸= 𝑙
ℎ
(𝑑
𝐵
(𝑥
𝑖
)),

𝑙
𝑔
(𝑑
𝐴
(𝑥
𝑖
)) ̸= 𝑙
𝑔
(𝑑
𝐵
(𝑥
𝑖
)). To operate correctly, we should

extend the shorter one until both of them have the same
length when we compare them. In [24, 27], Xu and Xia
extended the shorter one by adding different values in
hesitant fuzzy environments. Similarly, Torra [21] also applied
this ideal to derive some correlation coefficient formulas for
HFSs. In fact, we can extend the shorter one by adding any
value in it. The selection of this value mainly depends on
the decision makers’ risk preferences. Optimists anticipate
desirable outcomes and may add the maximum value, while
pessimists expect unfavorable outcomes and may add the
minimum value. The same situation can also be found in
many existing references [13, 14].

We define several correlation coefficients for DHFEs.

Definition 4. For two DHFSs 𝐴 and 𝐵 on 𝑋, the correlation
of 𝐴 and 𝐵, denoted as 𝐶DHFS

1

(𝐴, 𝐵), is defined by

𝐶DHFS
1
(𝐴, 𝐵) =

𝑛

∑
𝑖=1

(
1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑
𝑗=1

𝛾
𝐴𝜎
(𝑗)

(𝑥
𝑖
) 𝛾
𝐵𝜎
(𝑗)

(𝑥
𝑖
)

+
1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑
𝑘=1

𝜂
𝐴𝜎
(𝑘)

(𝑥
𝑖
) 𝜂
𝐵𝜎
(𝑘)

(𝑥
𝑖
)) .

(8)

Definition 5. For two DHFSs 𝐴 and 𝐵 on 𝑋, the correlation
coefficient of𝐴 and 𝐵, denoted as 𝜌DHFS

1

(𝐴, 𝐵), is defined by:

𝜌DHFS
1
(𝐴, 𝐵)

=
𝐶DHFS

1
(𝐴, 𝐵)

(𝐶DHFS
1
(𝐴, 𝐴) ⋅ 𝐶DHFS

1
(𝐵, 𝐵))

1/2

= (

𝑛

∑
𝑖=1

(
1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑
𝑗=1

𝛾
𝐴𝜎
(𝑗)

(𝑥
𝑖
) 𝛾
𝐵𝜎
(𝑗)

(𝑥
𝑖
)

+
1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑
𝑘=1

𝜂
𝐴𝜎
(𝑘)

(𝑥
𝑖
) 𝜂
𝐵𝜎
(𝑘)

(𝑥
𝑖
)))

×((

𝑛

∑
𝑖=1

(
1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑
𝑗=1

𝛾
2

𝐴𝜎
(𝑗)

(𝑥
𝑖
) +

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑
𝑘=1

𝜂
2

𝐴𝜎
(𝑘)

(𝑥
𝑖
))

⋅

𝑛

∑
𝑖=1

(
1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑
𝑗=1

𝛾
2

𝐵𝜎
(𝑗)

(𝑥
𝑖
)

+
1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑
𝑘=1

𝜂
2

𝐵𝜎
(𝑘)

(𝑥
𝑖
)))

1/2

)

−1

.

(9)
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Definition 6. For two DHFSs 𝐴 and 𝐵 on 𝑋, the correlation
coefficient of 𝐴 and 𝐵, denoted as 𝜌DHFS

2

(𝐴, 𝐵), is defined by

𝜌DHFS
2
(𝐴, 𝐵)

=
𝐶DHFS

1
(𝐴, 𝐵)

max {𝐶DHFS
1
(𝐴, 𝐴) , 𝐶DHFS

1
(𝐵, 𝐵)}

= (

𝑛

∑
𝑖=1

(
1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑
𝑗=1

𝛾
𝐴𝜎
(𝑗)

(𝑥
𝑖
) 𝛾
𝐵𝜎
(𝑗)

(𝑥
𝑖
)

+
1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑
𝑘=1

𝜂
𝐴𝜎
(𝑘)

(𝑥
𝑖
) 𝜂
𝐵𝜎
(𝑘)

(𝑥
𝑖
)))

× (max
{

{

{

𝑛

∑
𝑖=1

(
1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑
𝑗=1

𝛾
2

𝐴𝜎
(𝑗)

(𝑥
𝑖
) +

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑
𝑘=1

𝜂
2

𝐴𝜎
(𝑘)

(𝑥
𝑖
)) ,

𝑛

∑
𝑖=1

(
1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑
𝑗=1

𝛾
2

𝐵𝜎
(𝑗)

(𝑥
𝑖
)

+
1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑
𝑘=1

𝜂
2

𝐵𝜎
(𝑘)

(𝑥
𝑖
))

}

}

}

)

−1

.

(10)

Theorem 7. For two DHFSs 𝐴 and 𝐵, the correlation coeffi-
cient of 𝐴 and 𝐵, denoted as 𝜌

𝐷𝐻𝐹𝑆
𝑖

(𝐴, 𝐵) (𝑖 = 1, 2), should
satisfy the following properties:

(1) 0 ≤ 𝜌
𝐷𝐻𝐹𝑆

𝑖

(𝐴, 𝐵) ≤ 1;

(2) 𝐴 = 𝐵 ⇒ 𝜌
𝐷𝐻𝐹𝑆

𝑖

(𝐴, 𝐵) = 1;

(3) 𝜌
𝐷𝐻𝐹𝑆

𝑖

(𝐴, 𝐵) = 𝜌
𝐷𝐻𝐹𝑆

𝑖

(𝐵, 𝐴); 𝑖 = 1, 2.

Proof. (1) The inequality 0 ≤ 𝜌DHFS
1

(𝐴, 𝐵) and 0 ≤

𝜌DHFS
2

(𝐴, 𝐵) is obvious. Below let us prove that
𝜌DHFS

1

(𝐴, 𝐵) ≤ 1, 𝜌DHFS
2

(𝐴, 𝐵) ≤ 1:

𝐶DHFS
1
(𝐴, 𝐵)

=

𝑛

∑
𝑖=1

(
1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑
𝑗=1

𝛾
𝐴𝜎
(𝑗)

(𝑥
𝑖
) 𝛾
𝐵𝜎
(𝑗)

(𝑥
𝑖
)

+
1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑
𝑘=1

𝜂
𝐴𝜎
(𝑘)

(𝑥
𝑖
) 𝜂
𝐵𝜎
(𝑘)

(𝑥
𝑖
))

=

𝑛

∑
𝑖=1

(

𝑙
ℎ(𝑖)

∑
𝑗=1

𝛾
𝐴𝜎
(𝑗)

(𝑥
𝑖
) 𝛾
𝐵𝜎
(𝑗)

(𝑥
𝑖
)

𝑙
ℎ(𝑖)

+

𝑙
𝑔(𝑖)

∑
𝑘=1

𝜂
𝐴𝜎
(𝑘)

(𝑥
𝑖
) 𝜂
𝐵𝜎
(𝑘)

(𝑥
𝑖
)

𝑙
𝑔(𝑖)

)

= (

𝑙
ℎ(1)

∑
𝑗=1

𝛾
𝐴𝜎
(𝑗)

(𝑥
1
)

√𝑙
ℎ(1)

⋅
𝛾
𝐵𝜎
(𝑗)

(𝑥
1
)

√𝑙
ℎ(1)

+

𝑙
ℎ(2)

∑
𝑗=1

𝛾
𝐴𝜎
(𝑗)

(𝑥
2
)

√𝑙
ℎ(2)

⋅
𝛾
𝐵𝜎
(𝑗)

(𝑥
2
)

√𝑙
ℎ(2)

+ ⋅ ⋅ ⋅ +

𝑙
ℎ(𝑛)

∑
𝑗=1

𝛾
𝐴𝜎
(𝑗)

(𝑥
𝑛
)

√𝑙
ℎ(𝑛)

⋅
𝛾
𝐵𝜎
(𝑗)

(𝑥
𝑛
)

√𝑙
ℎ(𝑛)

)

+(

𝑙
𝑔(1)

∑
𝑘=1

𝜂
𝐴𝜎
(𝑘)

(𝑥
1
)

√𝑙
𝑔(1)

⋅
𝜂
𝐵𝜎
(𝑘)

(𝑥
1
)

√𝑙
𝑔(1)

+

𝑙
𝑔(2)

∑
𝑘=1

𝜂
𝐴𝜎
(𝑘)

(𝑥
2
)

√𝑙
𝑔(2)

⋅
𝜂
𝐵𝜎
(𝑘)

(𝑥
2
)

√𝑙
𝑔(2)

+ ⋅ ⋅ ⋅ +

𝑙
𝑔(𝑛)

∑
𝑘=1

𝜂
𝐴𝜎
(𝑘)

(𝑥
𝑛
)

√𝑙
𝑔(𝑛)

⋅
𝜂
𝐵𝜎
(𝑘)

(𝑥
𝑛
)

√𝑙
𝑔(𝑛)

).

(11)

Using the Cauchy-Schwarz inequality

(𝑥
1
𝑦
1
+ 𝑥
2
𝑦
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
𝑦
𝑛
)
2

≤ (𝑥
2

1
+ 𝑥
2

2
+ ⋅ ⋅ ⋅ + 𝑥

2

𝑛
) ⋅ (𝑦
2

1
+ 𝑦
2

2
+ ⋅ ⋅ ⋅ + 𝑦

2

𝑛
) ,

(12)

where (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑅
𝑛

, (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ 𝑅
𝑛, we obtain

𝐶DHFS
1
(𝐴, 𝐵)

2

≤ (

𝑙
ℎ(1)

∑
𝑗=1

𝛾
2

𝐴𝜎
(𝑗)

(𝑥
1
)

𝑙
ℎ(1)

+

𝑙
ℎ(2)

∑
𝑗=1

𝛾
2

𝐴𝜎
(𝑗)

(𝑥
2
)

𝑙
ℎ(2)

+ ⋅ ⋅ ⋅ +

𝑙
ℎ(𝑛)

∑
𝑗=1

𝛾
2

𝐴𝜎
(𝑗)

(𝑥
𝑛
)

𝑙
ℎ(𝑛)

+

𝑙
𝑔(1)

∑
𝑘=1

𝜂
2

𝐴𝜎
(𝑘)

(𝑥
1
)

𝑙
𝑔(1)

+

𝑙
𝑔(2)

∑
𝑘=1

𝜂
2

𝐴𝜎
(𝑘)

(𝑥
2
)

𝑙
𝑔(2)

+ ⋅ ⋅ ⋅ +

𝑙
𝑔(𝑛)

∑
𝑘=1

𝜂
2

𝐴𝜎
(𝑘)

(𝑥
𝑛
)

𝑙
𝑔(𝑛)

)

⋅ (

𝑙
ℎ(1)

∑
𝑗=1

𝛾
2

𝐵𝜎
(𝑗)

(𝑥
1
)

𝑙
ℎ(1)

+

𝑙
ℎ(2)

∑
𝑗=1

𝛾
2

𝐵𝜎
(𝑗)

(𝑥
2
)

𝑙
ℎ(2)

+ ⋅ ⋅ ⋅ +

𝑙
ℎ(𝑛)

∑
𝑗=1

𝛾
2

𝐵𝜎
(𝑗)

(𝑥
𝑛
)

𝑙
ℎ(𝑛)

+

𝑙
𝑔(1)

∑
𝑘=1

𝜂
2

𝐵𝜎
(𝑘)

(𝑥
1
)

𝑙
𝑔(1)

+

𝑙
𝑔(2)

∑
𝑘=1

𝜂
2

𝐵𝜎
(𝑘)

(𝑥
2
)

𝑙
𝑔(2)

+ ⋅ ⋅ ⋅ +

𝑙
𝑔(𝑛)

∑
𝑘=1

𝜂
2

𝐵𝜎
(𝑘)

(𝑥
𝑛
)

𝑙
𝑔(𝑛)

)
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=

𝑛

∑
𝑖=1

(
1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑
𝑗=1

𝛾
2

𝐴𝜎
(𝑗)

(𝑥
𝑖
) +

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑
𝑘=1

𝜂
2

𝐴𝜎
(𝑘)

(𝑥
𝑖
))

⋅

𝑛

∑
𝑖=1

(
1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑
𝑗=1

𝛾
2

𝐵𝜎
(𝑗)

(𝑥
𝑖
) +

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑
𝑘=1

𝜂
2

𝐵𝜎
(𝑘)

(𝑥
𝑖
))

= 𝐶DHFS
1
(𝐴, 𝐴) ⋅ 𝐶DHFS

1
(𝐵, 𝐵) .

(13)

Therefore,

𝐶DHFS
1
(𝐴, 𝐵) ≤ (𝐶DHFS

1

(𝐴, 𝐴))
1/2

⋅ (𝐶DHFS
1
(𝐵, 𝐵))

1/2

.

(14)

So, 0 ≤ 𝜌DHFS
1

(𝐴, 𝐵) ≤ 1.
In fact, we have

(𝑥
2

1
+ 𝑥
2

2
+ ⋅ ⋅ ⋅ + 𝑥

2

𝑛
) ⋅ (𝑦
2

1
+ 𝑦
2

2
+ ⋅ ⋅ ⋅ + 𝑦

2

𝑛
)

≤ (max ((𝑥2
1
+ 𝑥
2

2
+ ⋅ ⋅ ⋅ + 𝑥

2

𝑛
) , (𝑦
2

1
+ 𝑦
2

2
+ ⋅ ⋅ ⋅ + 𝑦

2

𝑛
)))
2

,

𝑛

∑
𝑖=1

(
1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑
𝑗=1

𝛾
2

𝐴𝜎
(𝑗)

(𝑥
𝑖
) +

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑
𝑘=1

𝜂
2

𝐴𝜎
(𝑘)

(𝑥
𝑖
))

⋅

𝑛

∑
𝑖=1

(
1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑
𝑗=1

𝛾
2

𝐵𝜎
(𝑗)

(𝑥
𝑖
) +

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑
𝑘=1

𝜂
2

𝐵𝜎
(𝑘)

(𝑥
𝑖
))

≤ (max
{

{

{

𝑛

∑
𝑖=1

(
1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑
𝑗=1

𝛾
2

𝐴𝜎
(𝑗)

(𝑥
𝑖
) +

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑
𝑘=1

𝜂
2

𝐴𝜎
(𝑘)

(𝑥
𝑖
)) ,

𝑛

∑
𝑖=1

(
1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑
𝑗=1

𝛾
2

𝐵𝜎
(𝑗)

(𝑥
𝑖
)+

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑
𝑘=1

𝜂
2

𝐵𝜎
(𝑘)

(𝑥
𝑖
))
}

}

}

)

2

.

(15)

Then

(𝐶DHFS
1
(𝐴, 𝐴) ⋅ 𝐶DHFS

1
(𝐵, 𝐵))

1/2

≤ max {𝐶DHFS
1
(𝐴, 𝐴) , 𝐶DHFS

1
(𝐵, 𝐵)} .

(16)

We also obtain 0 ≤ 𝜌DHFS
2

(𝐴, 𝐵) ≤ 1.
(2) and (3) are straightforward.

Moreover, from the proof of Theorem 7, we have Theo-
rem 8 easily.

Theorem 8. For two DHFSs 𝐴 and 𝐵 on 𝑋, then
𝜌
𝐷𝐻𝐹𝑆

1

(𝐴, 𝐵) ≥ 𝜌
𝐷𝐻𝐹𝑆

2

(𝐴, 𝐵).

However, from Theorem 7, we notice that all the above
correlation coefficients cannot guarantee that the correlation
coefficient of any two DHFSs equals one if and only if these
two DHFSs are the same. Thus, how to derive the correlation
coefficients of the DHFSs satisfying this desirable property
is an interesting research topic. To solve this issue, in what
follows, we develop a newmethod to calculate the correlation
coefficient of the DHFSs 𝐴 and 𝐵.

Definition 9. For two DHFSs 𝐴 and 𝐵 on 𝑋, the correlation
coefficient of 𝐴 and 𝐵, denoted as 𝜌DHFS

3

(𝐴, 𝐵), is defined by

𝜌DHFS
3
(𝐴, 𝐵)

= (
1

2𝑛

𝑛

∑
𝑖=1

(
Δ𝛾
𝜆

min + Δ𝛾
𝜆

max

Δ𝛾𝜆
𝑖
+ Δ𝛾𝜆max

+
Δ𝜂
𝜆

min + Δ𝜂
𝜆

max

Δ𝜂𝜆
𝑖
+ Δ𝜂𝜆max

))

1/𝜆

,

(17)

where

Δ𝛾
𝜆

𝑖
=

1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑
𝑗=1


𝛾
𝐴𝜎
(𝑗)

(𝑥
𝑖
) − 𝛾
𝐵𝜎
(𝑗)

(𝑥
𝑖
)


𝜆

,

Δ𝛾
𝜆

min = min
𝑖

{Δ𝛾
𝜆

𝑖
} , Δ𝛾

𝜆

max = max
𝑖

{Δ𝛾
𝜆

𝑖
} ,

Δ𝜂
𝜆

𝑖
=

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑
𝑘=1


𝜂
𝐴𝜎
(𝑘)

(𝑥
𝑖
) − 𝜂
𝐵𝜎
(𝑘)

(𝑥
𝑖
)


𝜆

,

Δ𝛾
𝜆

min = min
𝑖

{Δ𝜂
𝜆

𝑖
} , Δ𝛾

𝜆

max = max
𝑖

{Δ𝜂
𝜆

𝑖
} ,

𝜆 > 0.

(18)

Equation (17) is motivated by the generalized idea
provided by Xu [18]. Obviously, the greater the value of
𝜌DHFS

3

(𝐴, 𝐵), the closer 𝐴 to 𝐵. By Definition 9, we have
Theorem 10.

Theorem 10. The correlation coefficient 𝜌
𝐷𝐻𝐹𝑆

3

(𝐴, 𝐵) satisfies
the following properties:

(1) 0 ≤ 𝜌
𝐷𝐻𝐹𝑆

3

(𝐴, 𝐵) ≤ 1;
(2) 𝐴 = 𝐵 ⇔ 𝜌

𝐷𝐻𝐹𝑆
3

(𝐴, 𝐵) = 1;
(3) 𝜌
𝐷𝐻𝐹𝑆

3

(𝐴, 𝐵) = 𝜌
𝐷𝐻𝐹𝑆

3

(𝐵, 𝐴).

Proof. (1) The inequality 0 ≤ 𝜌DHFS
3

(𝐴, 𝐵) is obvious. Below
let us prove that 𝜌DHFS

3

(𝐴, 𝐵) ≤ 1 :

Δ𝛾
𝜆

min + Δ𝛾
𝜆

max

Δ𝛾𝜆
𝑖
+ Δ𝛾𝜆max

+
Δ𝜂
𝜆

min + Δ𝜂
𝜆

max

Δ𝜂𝜆
𝑖
+ Δ𝜂𝜆max

for 𝑖 = 1, 2, . . . , 𝑛

=
(Δ𝛾
𝜆

min/Δ𝛾
𝜆

max) + 1

(Δ𝛾𝜆
𝑖
/Δ𝛾𝜆max) + 1

+
(Δ𝜂
𝜆

min/Δ𝜂
𝜆

max) + 1

(Δ𝜂𝜆
𝑖
/Δ𝜂𝜆max) + 1

≤ 2.

(19)

We obtain

𝜌DHFS
3
(𝐴, 𝐵)

=
1

2𝑛

𝑛

∑
𝑖=1

(
Δ𝛾
𝜆

min + Δ𝛾
𝜆

max

Δ𝛾𝜆
𝑖
+ Δ𝛾𝜆max

+
Δ𝜂
𝜆

min + Δ𝜂
𝜆

max

Δ𝜂𝜆
𝑖
+ Δ𝜂𝜆max

)

≤
1

2𝑛
⋅ 2𝑛

= 1.

(20)

(2) and (3) are obvious.
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Usually, in practical applications, the weight of each
element 𝑥

𝑖
∈ 𝑋 should be taken into account, and, so,

we present the following weighted correlation coefficient.
Assume that the weight of the element 𝑥

𝑖
∈ 𝑋 is 𝑤

𝑖
(𝑖 =

1, 2, . . . , 𝑛) with 𝑤
𝑖
∈ [0, 1] and ∑𝑛

𝑖=1
𝑤
𝑖
= 1; then we extend

the correlation coefficient formulas given:

𝜌DHFS
−𝑤1

(𝐴, 𝐵)

= (

𝑛

∑
𝑖=1

𝑤
𝑖
(

1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑
𝑗=1

𝛾
𝐴𝜎
(𝑗)

(𝑥
𝑖
) 𝛾
𝐵𝜎
(𝑗)

(𝑥
𝑖
)

+
1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑
𝑘=1

𝜂
𝐴𝜎
(𝑘)

(𝑥
𝑖
) 𝜂
𝐵𝜎
(𝑘)

(𝑥
𝑖
)))

×((

𝑛

∑
𝑖=1

𝑤
𝑖
(

1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑
𝑗=1

𝛾
2

𝐴𝜎
(𝑗)

(𝑥
𝑖
) +

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑
𝑘=1

𝜂
2

𝐴𝜎
(𝑘)

(𝑥
𝑖
))

⋅

𝑛

∑
𝑖=1

𝑤
𝑖
(

1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑
𝑗=1

𝛾
2

𝐵𝜎
(𝑗)

(𝑥
𝑖
)

+
1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑
𝑘=1

𝜂
2

𝐵𝜎
(𝑘)

(𝑥
𝑖
)))

1/2

)

−1

,

(21)

𝜌DHFS
−𝑤2

(𝐴, 𝐵)

= (

𝑛

∑
𝑖=1

𝑤
𝑖
(

1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑
𝑗=1

𝛾
𝐴𝜎
(𝑗)

(𝑥
𝑖
) 𝛾
𝐵𝜎
(𝑗)

(𝑥
𝑖
)

+
1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑
𝑘=1

𝜂
𝐴𝜎
(𝑘)

(𝑥
𝑖
) 𝜂
𝐵𝜎
(𝑘)

(𝑥
𝑖
)))

× (max
{

{

{

𝑤
𝑖

𝑛

∑
𝑖=1

(
1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑
𝑗=1

𝛾
2

𝐴𝜎
(𝑗)

(𝑥
𝑖
)

+
1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑
𝑘=1

𝜂
2

𝐴𝜎
(𝑘)

(𝑥
𝑖
)) ,

𝑛

∑
𝑖=1

𝑤
𝑖
(

1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑
𝑗=1

𝛾
2

𝐵𝜎
(𝑗)

(𝑥
𝑖
)

+
1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑
𝑘=1

𝜂
2

𝐵𝜎
(𝑘)

(𝑥
𝑖
))

}

}

}

)

−1

,

(22)

𝜌DHFS
−𝑤3

(𝐴, 𝐵)

= (
1

2

𝑛

∑
𝑖=1

𝑤
𝑖
(
Δ𝛾
𝜆

min + Δ𝛾
𝜆

max

Δ𝛾𝜆
𝑖
+ Δ𝛾𝜆max

+
Δ𝜂
𝜆

min + Δ𝜂
𝜆

max

Δ𝜂𝜆
𝑖
+ Δ𝜂𝜆max

))

1/𝜆

,

(23)

where

Δ𝛾
𝜆

𝑖
=

1

𝑙
ℎ(𝑖)

𝑙
ℎ(𝑖)

∑
𝑗=1


𝛾
𝐴𝜎
(𝑗)

(𝑥
𝑖
) − 𝛾
𝐵𝜎
(𝑗)

(𝑥
𝑖
)


𝜆

,

Δ𝛾
𝜆

min = min
𝑖

{Δ𝛾
𝜆

𝑖
} , Δ𝛾

𝜆

max = max
𝑖

{Δ𝛾
𝜆

𝑖
} ,

Δ𝜂
𝜆

𝑖
=

1

𝑙
𝑔(𝑖)

𝑙
𝑔(𝑖)

∑
𝑘=1


𝜂
𝐴𝜎
(𝑘)

(𝑥
𝑖
) − 𝜂
𝐵𝜎
(𝑘)

(𝑥
𝑖
)


𝜆

,

Δ𝛾
𝜆

min = min
𝑖

{Δ𝜂
𝜆

𝑖
} , Δ𝛾

𝜆

max = max
𝑖

{Δ𝜂
𝜆

𝑖
} ,

𝜆 > 0.

(24)

Note that all these formulas satisfy the properties in
Theorem 7.

In what follows, we use a medical diagnosis problem
in [28, 29] to illustrate the developed correlation coefficient
formulas. Actually, this is also a pattern recognition problem.

Example 11. To make a proper diagnosis 𝑄 = {𝑄
1
(viral

fever), 𝑄
2
(malaria), 𝑄

3
(typhoid), 𝑄

4
(stomach problem),

and 𝑄
5
(chest problem)} for a patient with the given values

of the symptoms, 𝑆 = {𝑆
1
(temperature), 𝑆

2
(headache),

𝑆
3
(cough), 𝑆

4
(stomach pain), and 𝑆

5
(chest pain)}, Xu

[18] considered all possible diagnoses and symptoms as
HFEs. Utilizing DHFSs can take much more information
into account; the more values we obtain from patients, the
greater epistemic certainty we have. So, in this paper, we use
DHFEs to deal with such cases; each symptom is described
by a DHFE, which is described by two sets (𝛾

𝑖𝑗
) and (𝜂

𝑖𝑗
).

(𝛾
𝑖𝑗
) indicates the degree that symptoms characteristic 𝑆

𝑖

satisfies the considered diagnoses 𝐺
𝑗
and (𝜂

𝑖𝑗
) indicates the

degree that the symptoms characteristic 𝑆
𝑖
does not satisfy

the considered diagnoses 𝐺
𝑗
. The data are given in Table 1.

The set of patients is 𝑃 = {Al,Bob, Joe,Ted}. The symptoms
which can be also described by DHFEs are given in Table 2.
We need to seek a diagnosis for each patient.

We utilize the correlation coefficient 𝜌DHFS1 to derive a
diagnosis for each patient. All the results for the considered
patients are listed in Table 3. From the arguments in Table 3,
we can find that Ted suffers from viral fever, Al and Joe from
malaria, and Bob from stomach problem.

If we utilize the correlation coefficient formulas 𝜌DHFS2
and 𝜌DHFS3 to derive a diagnosis, then the results are listed
in Tables 4 and 5, respectively.

From Tables 3–5 we know that the results obtained by
different correlation coefficient formulas are different. That
is because these correlation coefficient formulas are based on
different linear relationships.

4. Clustering Method Based on Direct Transfer
Algorithm for HFSs

Based on clustering algorithms for IFSs [30, 31], and HFSs
[23], and the correlation coefficient formulas developed
previously for DHFSs, in what follows, we propose a direct
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Table 1: Symptoms characteristic of the considered diagnoses.

Temperature Headache Cough Stomach pain Chest pain

Viral fever {(0.6, 0.4, 0.3 ),
(0.2, 0.0)}

{(0.7, 0.5, 0.3, 0.2),
(0.3, 0.1)}

{(0.5, 0.3),
(0.5, 0.4, 0.2)}

{(0.5, 0.4, 0.3, 0.2, 0.1),
(0.5,0.3)}

{(0.5, 0.4, 0.2, 0.1),
(0.5, 0.4, 0.3)}

Malaria {(0.9, 0.8, 0.7),
(0.1, 0.0)}

{(0.5, 0.3, 0.2, 0.1),
(0.4, 0.3)}

{(0.2, 0.1),
(0.7, 0.6, 0.5)}

{(0.6, 0.5, 0.3, 0.2, 0.1),
(0.3, 0.2)}

{(0.4, 0.3, 0.2, 0.1),
(0.6, 0.5, 0.4)}

Typhoid {(0.6, 0.3, 0.1),
(0.3, 0.2)}

{(0.9, 0.8, 0.7, 0.6),
(0.1, 0.0)}

{(0.5, 0.3),
(0.5, 0.4, 0.3,)}

{(0.5, 0.4, 0.3, 0.2, 0.1),
(0.5, 0.4)}

{(0.6, 0.4, 0.3, 0.2),
(0.4, 0.3, 0.2)}

Stomach problem {(0.5, 0.4, 0.2),
(0.5, 0.3)}

{(0.4, 0.3, 0.2, 0.1),
(0.4, 0.3)}

{(0.4, 0.3),
(0.6, 0.5, 0.4)}

{(0.9, 0.8, 0.7, 0.6, 0.5),
(0.1, 0.0)}

{(0.5, 0.4, 0.2, 0.1),
(0.5, 0.4, 0.3)}

Chest problem {(0.3, 0.2, 0.1),
(0.7, 0.6)}

{(0.5, 0.3, 0.2, 0.1),
(0.5, 0.3)}

{(0.3, 0.2),
(0.6, 0.4, 0.3)}

{(0.7, 0.6, 0.5, 0.3, 0.2),
(0.2, 0.1)}

{(0.8, 0.7, 0.6, 0.5),
(0.2, 0.1, 0.0)}

Table 2: Symptoms characteristic of the considered patients.

Temperature Headache Cough Stomach pain Chest pain

Al {(0.9, 0.7, 0,5), (0.1, 0.0)} {(0.4, 0.3, 0.2, 0.1),
(0.5, 0.4)} {(0.4, 0.3), (0.5, 0.4, 0.2)} {(0.6, 0.5, 0.4, 0.2,

0.1), (0.3.0.2)} {(0.4, 0.3, 0.2, 0.1), (0.5, 0.4, 0.3)}

Bob {(0.5, 0.4, 0.2), (0.5, 0.3)} {(0.5, 0.4, 0.3, 0.1),
(0.4, 0.3)} {(0.2, 0.1), (0.7, 0.6, 0.5)} {(0.9, 0.8, 0.6, 0.5,

0.4), (0.1, 0.0)} {(0.5, 0.4, 0.3, 0.2), (0.5, 0.4, 0.3)}

Joe {(0.9, 0.7, 0.6), (0.1, 0.0)} {(0.7, 0.4, 0.3, 0.1),
(0.2, 0.1)} {(0.3, 0.2), (0.5, 0.4, 0.3)} {(0.6, 0.4, 0.3, 0.2,

0.1), (0.4, 0.3)} {(0.6, 0.3, 0.2, 0.1), (0.4, 0.3, 0.2)}

Ted {(0.8, 0.7, 0.5), (0.2, 0.1)} {(0.6, 0.5, 0.4, 0.2),
(0.4, 0.3)} {(0.5, 0.3), (0.5, 0.4, 0.3)} {(0.6, 0.4, 0.3, 0.2,

0.1), (0.4, 0.3)} {(0.5, 0.4, 0.2, 0.1), (0.5, 0.4, 0.3)}

Table 3: Values of 𝜌DHFS1 for each patient to the considered set of
possible diagnoses.

Viral fever Malaria Typhoid Stomach
problem

Chest
problem

Al 0.9257 0.9620 0.7957 0.8680 0.7110
Bob 0.8380 0.8791 0.8041 0.9922 0.9035
Joe 0.9427 0.9521 0.8757 0.9329 0.7026
Ted 0.9718 0.9472 0.8890 0.8790 0.7644

transfer algorithm to clustering analysis with respect to the
problem of complex operation of matrix synthesis when
reconstructing analogical relation to equivalence relation
clustering under hesitant fuzzy environments. Before doing
this, some concepts are introduced firstly.

Definition 12. Let 𝐴
𝑗
(𝑗 = 1, 2, . . . , 𝑚) be 𝑚 DHFs; then 𝐶 =

(𝜌
𝑖𝑗
)
𝑚×𝑚

is called an associationmatrix, where 𝜌
𝑖𝑗
= 𝜌(𝐴

𝑖
, 𝐴
𝑗
)

is the association coefficient of 𝐴
𝑖
and 𝐴

𝑗
, which has the

following properties:

(1) 0 ≤ 𝜌
𝑖𝑗
≤ 1, for all 𝑖, 𝑗 = 1, 2, . . . , 𝑚;

(2) 𝜌
𝑖𝑗
= 1 if and only if 𝐴

𝑖
= 𝐴
𝑗
;

(3) 𝜌
𝑖𝑗
= 𝜌
𝑗𝑖
, for all 𝑖, 𝑗 = 1, 2, . . . , 𝑚.

Definition 13 (see [23, 30]). Let𝐶 = (𝜌
𝑖𝑗
)
𝑚×𝑚

be an association
matrix; if 𝐶2 = 𝐶 ∘ 𝐶 = (𝜌

𝑖𝑗
)
𝑚×𝑚

, then 𝐶
2 is called a

composition matrix of 𝐶, where 𝜌
𝑖𝑗
= max{min{𝜌

𝑖𝑘
, 𝜌
𝑘𝑗
}}, for

all 𝑖, 𝑗 = 1, 2, . . . , 𝑚.

Based on Definition 13, we have the following theorem.

Theorem 14 (see [23, 30]). Let 𝐶 = (𝜌
𝑖𝑗
)
𝑚×𝑚

be an association
matrix; then the composition matrix 𝐶2 is also an association
matrix.

Theorem 15 (see [23, 30]). Let 𝐶 = (𝜌
𝑖𝑗
)
𝑚×𝑚

be an association
matrix; then, for any nonnegative integer 𝑘, the composition
matrix 𝐶

2
𝑘+1

derived from 𝐶
2
𝑘+1

= 𝐶
2
𝑘

∘ 𝐶
2
𝑘

is also an
association matrix.

Definition 16 (see [23, 30]). Let 𝐶 = (𝜌
𝑖𝑗
)
𝑚×𝑚

be an
association matrix, if 𝐶2 ⊆ 𝐶, that is,

max
𝑘

{min {𝜌
𝑖𝑘
, 𝜌
𝑘𝑗
}} ≤ 𝜌

𝑖𝑗
, ∀𝑖, 𝑗 = 1, 2, . . . , 𝑚, (25)

then 𝐶 is called an equivalent association matrix.

By the transitivity principle of equivalent matrix, we can
easily prove the following theorem.

Theorem 17 (see [23, 30, 32]). Let 𝐶 = (𝜌
𝑖𝑗
)
𝑚×𝑚

be an
association matrix; then, after the finite times of compositions:
𝐶 → 𝐶

2

→ 𝐶
4

→ ⋅ ⋅ ⋅ → 𝐶
2𝑘

→ ⋅ ⋅ ⋅ , there must exist
a positive integer 𝑘 such that 𝐶2

𝑘

= 𝐶
2
𝑘+1

, and 𝐶
2
𝑘

is also an
equivalent association matrix.

Definition 18 (see [23, 30, 31]). Let 𝐶 = (𝜌
𝑖𝑗
)
𝑚×𝑚

be an
equivalent correlation matrix. Then we call 𝐶

𝜆
= (
𝜆

𝜌
𝑖𝑗
)
𝑚×𝑚

the 𝜆-cutting matrix of 𝐶, where

𝜆

𝜌
𝑖𝑗
= {

0 if 𝜌
𝑖𝑗
< 𝜆,

1 if 𝜌
𝑖𝑗
≥ 𝜆,

𝑖, 𝑗 = 1, 2, . . . , 𝑚 (26)

and 𝜆 is the confidence level with 𝜆 ∈ [0, 1].
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Table 4: Values of 𝜌DHFS2 for each patient to the considered set of possible diagnoses.

Viral fever Malaria Typhoid Stomach problem Chest problem
Al 0.8718 0.8888 0.7571 0.8286 0.7591
Bob 0.7586 0.8451 0.7960 0.9852 0.8889
Joe 0.9075 0.8607 0.8152 0.8712 0.6500
Ted 0.8764 0.9140 0.8835 0.8678 0.7550

Table 5: Values of 𝜌DHFS3 for each patient to the considered set of possible diagnoses.

Viral fever Malaria Typhoid Stomach problem Chest problem
Al 0.8085 0.7739 0.7900 0.7515 0.8026
Bob 0.7480 0.7714 0.6824 0.7547 0.8006
Joe 0.7925 0.7887 0.7548 0.6878 0.8100
Ted 0.8063 0.7244 0.7516 0.7386 0.8230

Next, a traditional transfer closure algorithm is given as
follows.

Step 1. Let {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
} be a set of DHFSs in 𝑋 =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}. We can calculate the correlation coefficients

of the DHFSs and then construct a correlation matrix 𝐶 =

(𝜌
𝑖𝑗
)
𝑚×𝑚

, where 𝜌
𝑖𝑗
= 𝜌(𝐴

𝑖
, 𝐴
𝑗
).

Step 2. Check whether 𝐶 = (𝜌
𝑖𝑗
)
𝑚×𝑚

is an equivalent
correlation matrix; that is, check whether it satisfies 𝐶2 ⊆

𝐶, where

𝐶
2

= 𝐶 ∘ 𝐶 = (𝜌
𝑖𝑗
)
𝑚×𝑚

, 𝜌
𝑖𝑗
= max
𝑘

{min {𝜌
𝑖𝑘
, 𝜌
𝑘𝑗
}} ,

𝑖, 𝑗 = 1, 2, . . . , 𝑚.

(27)

If it does not hold, we construct the equivalent correlation
matrix 𝐶2

𝑘

: 𝐶 → 𝐶
2

→ 𝐶
4

→ ⋅ ⋅ ⋅ → 𝐶
2𝑘

→ ⋅ ⋅ ⋅ , until
𝐶
2
𝑘

= 𝐶
2
𝑘+1

.

Step 3. For a confidence level 𝜆, we construct a 𝜆-cutting
matrix 𝐶

𝜆
= (
𝜆

𝜌
𝑖𝑗
)
𝑚×𝑚

through Definition 18 in order to
classify the DHFSs 𝐴

𝑗
(𝑗 = 1, 2, . . . , 𝑚). If all elements of the

𝑖th line (column) are the same as the corresponding elements
of the 𝑗th line (column) in𝐶

𝜆
, then the DHFSs𝐴

𝑖
and𝐴

𝑗
are

of the same type. By means of this principle, we can classify
all these𝑚 𝐴

𝑗
(𝑗 = 1, 2, . . . , 𝑚).

By analyzing the aforementioned transfer closure algo-
rithm, this algorithm has one drawback such as complex
operation of matrix synthesis when reconstructing the equiv-
alent correlation matrix. In this paper, we have the following
theorem of the correlation coefficients in dual hesitant fuzzy
environment.

Theorem 19. For all 𝑥, 𝑦 ∈ 𝐴, for the confidence level 𝜆,
if ∃𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑝
, when 𝜌(𝑥, 𝑥

1
) ≥ 𝜆, 𝜌(𝑥

1
, 𝑥
2
) ≥ 𝜆,

𝜌(𝑥
2
, 𝑥
3
) ≥ 𝜆, . . . , 𝜌(𝑥

𝑝
, 𝑦) ≥ 𝜆, then 𝑥, 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑝
and 𝑦

are of the same type.

Proof. we are motivated by the generalized idea based on
the transitivity principle of ordinary equivalent relation 𝑅:
for all 𝑥, 𝑦 ∈ 𝐴 (here, 𝐴 is an ordinary set, not a fuzzy
set), ∃𝑥

1
, 𝑥
2
, 𝑥
3
. . . , 𝑥
𝑝
, when (𝑥, 𝑥

1
) ∈ 𝑅, (𝑥

1
, 𝑥
2
) ∈

𝑅, . . . , (𝑥
𝑘
, 𝑥
𝑘+1

) ∈ 𝑅, . . . , (𝑥
𝑝
, 𝑦) ∈ 𝑅, we can have (𝑥, 𝑦) ∈ 𝑅.

And from Definition 18, we can see that the 𝜆-cutting
matrix of 𝐶 is an ordinary correlation matrix, which com-
pletes the proof of Theorem 19.

From the above theoretical analysis, we propose a direct
transfer algorithm for clustering DHFSs as follows.

Step 1. Let 𝐴 = {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
} be a set of DHFSs in 𝑋 =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}. We can calculate the correlation coefficients

of the DHFSs and then construct a correlation matrix 𝐶 =

(𝜌
𝑖𝑗
)
𝑚×𝑚

, where 𝜌
𝑖𝑗
= 𝜌(𝐴

𝑖
, 𝐴
𝑗
).

Step 2. By setting the threshold to the confidence level 𝜆, we
can construct a 𝜆-cutting matrix 𝐶

𝜆
= (
𝜆

𝜌
𝑖𝑗
)
𝑚×𝑚

. If 𝜌
𝑖𝑗
= 1,

this means that the DHFSs𝐴
𝑖
and𝐴

𝑗
are of the same type. By

means of this principle, we can classify all these 𝑚 𝐴
𝑗
(𝑗 =

1, 2, . . . , 𝑚).

We can see that the transfer closure algorithm must
construct the equivalent correlation matrix 𝐶 → 𝐶

2

→

𝐶
4

→ ⋅ ⋅ ⋅ → 𝐶
2𝑘

→ ⋅ ⋅ ⋅ , until 𝐶2
𝑘

= 𝐶
2
𝑘+1

and then construct a 𝜆-cutting matrix 𝐶
𝜆

= (
𝜆

𝜌
𝑖𝑗
)
𝑚×𝑚

through Definition 18 in order to classify the DHFSs 𝐴
𝑗
(𝑗 =

1, 2, . . . , 𝑚). Simply, the transfer algorithm only constructs a
𝜆-cutting matrix 𝐶

𝜆
= (
𝜆

𝜌
𝑖𝑗
)
𝑚×𝑚

by setting the threshold to
the confidence level 𝜆 and then classifies the DHFSs 𝐴

𝑗
(𝑗 =

1, 2, . . . , 𝑚) directly. In what follows, we will talk about the
relationship between the transfer closure algorithm and the
direct transfer algorithm.

Theorem20. Theclustering results are the same by the transfer
closure algorithm and the direct transfer algorithm, at the same
confidence level.
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Proof. (1) For a confidence level 𝜆, for all 𝐴
𝑖
, 𝐴
𝑗

∈ 𝐴,
∃𝑥
1
, 𝑥
2
, 𝑥
3
. . . , 𝑥
𝑝
, if 𝜌(𝐴

𝑖
, 𝑥
1
) ≥ 𝜆, 𝜌(𝑥

1
, 𝑥
2
) ≥ 𝜆, 𝜌(𝑥

2
, 𝑥
3
) ≥

𝜆, . . . , 𝜌(𝑥
𝑝
, 𝐴
𝑗
) ≥ 𝜆, then 𝐴

𝑖
and 𝐴

𝑗
are of the same type by

the direct transfer algorithm.
Assume that we construct the equivalent correlation

matrix 𝐶2
𝑘

when we employ the transfer closure algorithm.
We must prove that 𝜌

𝐶
2
𝑘 (𝐴
𝑖
, 𝑥
𝑗
) ≥ 𝜆. Consider

𝜌
𝐶
2 (𝐴
𝑖
, 𝐴
𝑗
)

= max
𝐴
𝑞
∈𝐴

{min {𝜌
𝐶
(𝐴
𝑖
, 𝐴
𝑞
) , 𝜌
𝐶
(𝐴
𝑞
, 𝐴
𝑗
)}} ,

𝑖, 𝑗, 𝑞 = 1, 2, . . . , 𝑚

= max
𝐴
𝑞
∈𝐴,𝐴

𝑖
̸= 𝐴
𝑗

{max {min {𝜌
𝐶
(𝐴
𝑖
, 𝐴
𝑞
) , 𝜌
𝐶
(𝐴
𝑞
, 𝐴
𝑗
)}} ,

𝜌
𝐶
(𝐴
𝑖
, 𝐴
𝑗
)}

≥ 𝜌
𝐶
(𝐴
𝑖
, 𝐴
𝑗
) .

(28)

So 𝐶
2

⊇ 𝐶, and, for the same reason, we have 𝐶2
𝑘

⊇

𝐶
2
𝑘−1

⊇ 𝐶
2
𝑘−2

, . . . , ⊇ 𝐶
2

⊇ 𝐶. Consider

𝜌
𝐶
2
𝑘 (𝐴
𝑖
, 𝐴
𝑗
)

= max
𝐴
𝑞
∈𝐴

{min {𝜌
𝐶
2
𝑘 (𝐴
𝑖
, 𝐴
𝑞
) , 𝜌
𝐶
2
𝑘 (𝐴
𝑞
, 𝐴
𝑗
)}} ,

𝑖, 𝑗, 𝑞 = 1, 2, . . . , 𝑚

= max
𝐴
𝑞
∈𝐴,𝐴

𝑞
̸= 𝐴
𝑥𝑝

{max{min {𝜌
𝐶
2
𝑘 (𝐴
𝑖
, 𝐴
𝑝
) , 𝜌
𝐶
2
𝑘 (𝐴
𝑝
, 𝐴
𝑗
)} ,

min {𝜌
𝐶
2
𝑘 (𝐴
𝑖
, 𝐴
𝑥
𝑝

) ,

𝜌
𝐶
2
𝑘 (𝐴
𝑥
𝑝

, 𝐴
𝑗
)}}}

≥ min {𝜌
𝐶
2
𝑘 (𝐴
𝑖
, 𝐴
𝑥
𝑝

) , 𝜌
𝐶
2
𝑘 (𝐴
𝑥
𝑝

, 𝐴
𝑗
)}

≥ min {𝜌
𝐶
2
𝑘 (𝐴
𝑖
, 𝐴
𝑥
𝑝−1

) ,

𝜌
𝐶
2
𝑘 (𝐴
𝑥
𝑝−1

, 𝐴
𝑥
𝑝

) , 𝜌
𝐶
2
𝑘 (𝐴
𝑥
𝑝

, 𝐴
𝑗
)}

≥ min {𝜌
𝐶
2
𝑘 (𝐴
𝑖
, 𝐴
𝑥
1

) , 𝜌
𝐶
2
𝑘 (𝐴
𝑥
1

, 𝐴
𝑥
2

)

, . . . , 𝜌
𝐶
2
𝑘 (𝐴
𝑖
, 𝐴
𝑥
𝑝−1

) , 𝜌
𝐶
2
𝑘 (𝐴
𝑥
𝑝−1

, 𝐴
𝑥
𝑝

) ,

𝜌
𝐶
2
𝑘 (𝐴
𝑥
𝑝

, 𝐴
𝑗
)}

≥ min {𝜌
𝐶
(𝐴
𝑖
, 𝐴
𝑥
1

) , 𝜌
𝐶
(𝐴
𝑥
1

, 𝐴
𝑥
2

)

, . . . , 𝜌
𝐶
(𝐴
𝑖
, 𝐴
𝑥
𝑝−1

) ,

𝜌
𝐶
(𝐴
𝑥
𝑝−1

, 𝐴
𝑥
𝑝

) , 𝜌
𝐶
(𝐴
𝑥
𝑝

, 𝐴
𝑗
)}

≥ 𝜆.

(29)

For a confidence level 𝜆, when we get that 𝐴
𝑖
and 𝐴

𝑗
are

of the same type using the direct transfer algorithm, we can
also have the same clustering results by the transfer closure
algorithm.

(2) For a confidence level 𝜆, for all 𝐴
𝑖
, 𝐴
𝑗
∈ 𝐴, ∃ the

equivalent correlation matrix 𝐶2
𝑘

, 𝜌
𝐶
2
𝑘 (𝐴
𝑖
, 𝑥
𝑗
) ≥ 𝜆, then, 𝐴

𝑖

and𝐴
𝑗
are of the same type by the transfer closure algorithm.

Let

𝜌
𝐶
2
𝑘 (𝐴
𝑖
, 𝐴
𝑗
)

= max
𝐴
𝑞
∈𝐴

{min {𝜌
𝐶
2
𝑘−1 (𝐴

𝑖
, 𝐴
𝑞
) , 𝜌
𝐶
2
𝑘−1 (𝐴

𝑞
, 𝐴
𝑗
)}} .

(30)

Then∃𝑥
1
, 𝜌
𝐶
2
𝑘 (𝐴
𝑖
, 𝐴
𝑗
) = min{𝜌

𝐶
2
𝑘−1 (𝐴
𝑖
, 𝐴
𝑥
1

), 𝜌
𝐶
2
𝑘−1 (𝐴
𝑥
1

,

𝐴
𝑗
)} ≥ 𝜆, 𝜌

𝐶
2
𝑘−1 (𝐴
𝑖
, 𝐴
𝑥
1

) ≥ 𝜆, 𝜌
𝐶
2
𝑘−1 (𝐴
𝑥
1

, 𝐴
𝑗
) ≥ 𝜆.

So 𝐴
𝑖
and 𝐴

𝑗
are the same type in 𝐶

2
𝑘−1

by the direct
transfer algorithm.

For the same reason, ∃𝑥
2
, 𝜌
𝐶
2
𝑘−2 (𝐴
𝑖
, 𝐴
𝑥
2

) ≥ 𝜆, 𝜌
𝐶
2
𝑘−2 (𝐴
𝑥
2

,

𝐴
𝑥
1

) ≥ 𝜆. ∃𝑥
3
, 𝜌
𝐶
2
𝑘−2 (𝐴
𝑥
1

, 𝐴
𝑥
3

) ≥ 𝜆, 𝜌
𝐶
2
𝑘−2 (𝐴
𝑥
3

, 𝐴
𝑗
) ≥ 𝜆.

𝐴
𝑖
and𝐴

𝑗
are the same type in𝐶2

𝑘−2

by the direct transfer
algorithm.

So, ∃𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

2
𝑘 , 𝜌
𝐶
(𝐴
𝑖
, 𝐴
𝑥
1

) ≥ 𝜆, 𝜌
𝐶
(𝐴
𝑥
1

, 𝐴
𝑥
2

) ≥

𝜆, 𝜌
𝐶
(𝐴
𝑥
2

, 𝐴
𝑥
3

) ≥ 𝜆, . . . , 𝜌
𝐶
(𝐴
𝑥
2𝑘 , 𝐴
𝑗
) ≥ 𝜆.

𝐴
𝑖
and 𝐴

𝑗
are the same type in 𝐶 by the direct transfer

algorithm.
For a confidence level 𝜆, when we get 𝐴

𝑖
and 𝐴

𝑗
are of

the same type using the transfer closure algorithm, we can
also have the same clustering results by the direct transfer
algorithm, which completes the proof.

We assume 𝐴 = {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
} to be a set of DHFSs,

and we construct the equivalent correlation matrix𝐶2
𝑘

: 𝐶 →

𝐶
2

→ 𝐶
4

→ ⋅ ⋅ ⋅ → 𝐶
2𝑘

→ ⋅ ⋅ ⋅ , until 𝐶2
𝑘

= 𝐶
2
𝑘+1

and
then construct a 𝜆-cutting matrix 𝐶

𝜆
= (
𝜆

𝜌
𝑖𝑗
)
𝑚×𝑚

for the
transfer closure algorithm. Consequently, the running time
of the transfer closure algorithm is 𝑇tca = 𝑂(𝑘𝑚

3

+ 𝑘𝑚
2

); by
the same arguments, the direct transfer algorithm requires
𝑇dta = 𝑂(𝑚

2

) time on the same example. And we have
established 𝑆tca = 𝑂(𝑚

2

) space bound at least for the step of
constructing the equivalent correlation matrix based on the
transfer closure algorithm, while, for the transfer algorithm,
it constructs a 𝜆-cutting matrix 𝐶

𝜆
= (
𝜆

𝜌
𝑖𝑗
)
𝑚×𝑚

by setting
the threshold to the confidence level 𝜆 and needs 𝑆tca = 𝑂(𝑚)

space bound. We can see that the computational complexity
of both two algorithms ranges depends on the number of 𝑚,
and the direct transfer algorithm exhibits better behavior.

Below, we conduct experiments in order to demonstrate
the effectiveness of the proposed clustering algorithm for
DHFSs.

Example 21. Every diamond is a miracle of time and place
and chance. Like snowflakes, no two are exactly alike. Every
consumer shopping for diamonds is faced with endless
diamond combinations. In addition to different diamond
combinations, prices are also influenced by market supply
and demand conditions, fashion trends, and so forth. While
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Table 6: Diamond data set.

“D” color “FL” clarity “3 excellent” cut “1 carat” weight
𝐴
1

{(0.5, 0.4, 0.3); (0.4, 0.2)} {(0.6, 0.5); (0.3, 0.2, 0.1)} {(0.6, 0.4, 0.3); (0.4, 0.2, 0.1)} {(0.6); (0.4)}
𝐴
2

{(0.8, 0.7, 0.6); (0.2, 0.1)} {(0.7, 0.6); (0.3, 0.2, 0.1)} {(0.7, 0.6, 0.5); (0.3, 0.2, 0.1)} {(0.7); (0.2)}
𝐴
3

{(0.9, 0.8, 0.7); (0.1, 0.0)} {(0.8, 0.7); (0.2, 0.1, 0.0)} {(0.8, 0.7, 0.6); (0.2, 0.1, 0.0)} {(0.9); (0.1)}
𝐴
4

{(0.4, 0.3, 0.1); (0.6, 0.5)} {(0.6, 0.5); (0.4, 0.2, 0.1)} {(0.6, 0.5, 0.4); (0.3, 0.2, 0.1)} {(0.3); (0.6)}
𝐴
5

{(0.6, 0.5, 0.4); (0.3, 0.2)} {(0.3, 0.2); (0.6, 0.5, 0.4)} {(0.3, 0.2, 0.1); (0.6, 0.5, 0.4)} {(0.1); (0.8)}
𝐴
6

{(0.6, 0.5, 0.4); (0.4, 0.2)} {(0.7, 0.6); (0.3, 0.2, 0.1)} {(0.2, 0.1, 0.0); (0.7, 0.2, 0.1)} {(0.8); (0.1)}
𝐴
7

{(0.8, 0.6, 0.5); (0.2, 0.1)} {(0.6, 0.5); (0.3, 0.2, 0.1)} {(0.4, 0.3, 0.2); (0.5, 0.4, 0.3)} {(0.5); (0.4)}
𝐴
8

{(0.7, 0.6, 0.5); (0.2, 0.0)} {(0.4, 0.3); (0.6, 0.5, 0.4)} {(0.6, 0.5, 0.4); (0.4, 0.3, 0.2)} {(0.8); (0.2)}
𝐴
9

{(0.4, 0.3, 0.2); (0.6, 0.5)} {(0.4, 0.3); (0.6, 0.5, 0.4)} {(0.2, 0.1, 0.0); (0.8, 0.6, 0.5)} {(0.2); (0.6)}
𝐴
10

{(0.2, 0.1, 0.0); (0.7, 0.6)} {(0.8, 0.6); (0.2, 0.1, 0.0)} {(0.6, 0.5, 0.3); (0.4, 0.2, 0.1)} {(0.7); (0.3)}

consumers’ tastes and budgets change, most seek to find a
fair price for the diamond they choose. Until the middle of
the twentieth century, there was no agreed upon standard by
which diamonds could be judged. No matter how beautiful
a diamond may look you simply cannot see its true quality.
GIA created the first and now globally accepted standard
for describing diamonds: color, clarity, cut, and carat weight.
Concerning color, the less color in the stone there is, the
more desirable and valuable it is. Grades run from “D”
to “X.” Clarity measures the amount, size, and placement
of internal “inclusions”, and external “blemishes.” Grades
run from “Flawless” to “included.” Cut does not refer to
a diamond’s shape but to the proportion and arrangement
of its facets and the quality of workmanship. Grades range
from “excellent” to “poor.” Carat refers to a diamond’s weight.
Generally speaking, the higher the carat weight, the more

expensive the stone. Two diamonds of equal carat weight,
however, can have very different quality and price when
the other three Cs are considered. We choose a “perfect”
diamond whose 4C is “D” color, “FL” clarity, “3 excellent”
cut, and “1carat” weight. For the convenience of analysis, the
weight vector of these attributes is𝑤 = (0.25, 0.25, 0.25, 0.25).
Here, there are ten diamonds. In order to better make the
assessment, several evaluation organizations are requested.
The normalized evaluation diamond data, represented by
DHFSs, are displayed in Table 6.

Now we utilize the direct transfer algorithm to cluster the
ten diamonds, which involves the following steps.

Step 1. Utilize (21) to calculate the association coefficients,
and then construct an association matrix:

𝐶 =

(
(
(
(
(
(
(
(

(

1.0000 0.9495 0.9010 0.9227 0.7571 0.8270 0.9542 0.9123 0.7778 0.9241

0.9495 1.0000 0.9853 0.8053 0.6436 0.8948 0.9457 0.9404 0.6226 0.8260

0.9010 0.9853 1.0000 0.7164 0.5146 0.8697 0.8904 0.9076 0.4867 0.7811

0.9227 0.8053 0.7164 1.0000 0.8174 0.7353 0.8490 0.7463 0.8484 0.9025

0.7571 0.6436 0.5146 0.8174 1.0000 0.6003 0.8240 0.6997 0.9316 0.5822

0.8270 0.8948 0.8697 0.7353 0.6003 1.0000 0.9048 0.8750 0.6948 0.8540

0.9542 0.9457 0.8904 0.8490 0.8240 0.9048 1.0000 0.9105 0.7993 0.8018

0.9123 0.9404 0.9076 0.7463 0.6997 0.8750 0.9105 1.0000 0.6826 0.7612

0.7778 0.6226 0.4867 0.8484 0.9316 0.6948 0.7993 0.6826 1.0000 0.7206

0.9241 0.8260 0.7811 0.9025 0.5822 0.8540 0.8018 0.7612 0.7206 1.0000

)
)
)
)
)
)
)
)

)

(31)

Step 2. We give a detailed sensitivity analysis with respect
to the confidence level, and, by (26), we get all the possible
classifications of the ten diamonds; see Table 7 and Figure 1.

From the above numerical analysis, under the group
setting, the experts’ evaluation information usually does not
reach an agreement for the objects that need to be classified.
Example 21 clearly shows that the clustering algorithm based
on DHFSs provides a proper way to resolve this issue.

In the following, a comparison is made among the
method proposed in this paper, Chen et al.’s method [23], and
Zhao et al.’s method [31] in Table 8.

Through Table 8, it is worthy of pointing out that the
clustering results of the direct transfer clustering method
proposed in this paper are exactly the same with those
of Chen et al.’s transfer clustering method and Zhao et
al.’s Boole method, but our method does not need to use
the transitive closure technique to calculate the equivalent
matrix of the association matrix and thus requires much
less computational effort than Chen et al.’s method. The
computational complexity of Chen et al.’s method and Zhao
et al.’s method has, relatively, high computational complexity,
which indeed motivates our clustering method proposed in
this paper. Furthermore, from Example 21 we can see that
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Table 7: The clustering result of 10 diamonds.

Class Confidence level Dual hesitant fuzzy clustering algorithm
10 0.9853 < 𝜆 ≤ 1 {𝐴

1
} , {𝐴
2
} , {𝐴
3
} , {𝐴
4
} , {𝐴
5
} , {𝐴
6
} , {𝐴
7
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

9 0.9542 < 𝜆 ≤ 0.9853 {𝐴
2
, 𝐴
3
} , {𝐴
1
} , {𝐴
4
} , {𝐴
5
} , {𝐴
6
} , {𝐴
7
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

8 0.9495 < 𝜆 ≤ 0.9542 {𝐴
2
, 𝐴
3
} , {𝐴
1
, 𝐴
7
} , {𝐴
4
} , {𝐴
5
} , {𝐴
6
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

7 0.9404 < 𝜆 ≤ 0.9495 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
} , {𝐴
4
} , {𝐴
5
} , {𝐴
6
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

6 0.9316 < 𝜆 ≤ 0.9404 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
, 𝐴
8
} , {𝐴
4
} , {𝐴
5
} , {𝐴
6
} , {𝐴
9
} , {𝐴
10
}

5 0.9241 < 𝜆 ≤ 0.9316 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
, 𝐴
8
} , {𝐴
5
, 𝐴
9
} , {𝐴
4
} , {𝐴
6
} , {𝐴
10
}

4 0.9227 < 𝜆 ≤ 0.9241 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
, 𝐴
8
, 𝐴
10
} , {𝐴
5
, 𝐴
9
} , {𝐴
4
} , {𝐴
6
}

3 0.9123 < 𝜆 ≤ 0.9227 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐴
7
, 𝐴
8
, 𝐴
10
} , {𝐴
5
, 𝐴
9
} , {𝐴
6
}

2 0.8484 < 𝜆 ≤ 0.9123 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐴
6
, 𝐴
7
, 𝐴
8
, 𝐴
10
} , {𝐴
5
, 𝐴
9
}

1 0 < 𝜆 ≤ 0.8484 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐴
5
, 𝐴
6
, 𝐴
7
, 𝐴
8
, 𝐴
9
, 𝐴
10
}

Table 8: Comparisons of the derived results.

Classes The results derived by the direct transfer
algorithm method

The results derived by Chen et al.’s
transfer algorithm method

The results derived by Zhao et al.’s Boole
method

10 {𝐴
1
} , {𝐴
2
} , {𝐴
3
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
7
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

{𝐴
1
} , {𝐴
2
} , {𝐴
3
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
7
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

{𝐴
1
} , {𝐴
2
} , {𝐴
3
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
7
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

9 {𝐴
2
, 𝐴
3
} , {𝐴
1
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
7
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

{𝐴
2
, 𝐴
3
} , {𝐴
1
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
7
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

{𝐴
2
, 𝐴
3
} , {𝐴
1
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
7
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

8 {𝐴
2
, 𝐴
3
} , {𝐴
1
, 𝐴
7
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

{𝐴
2
, 𝐴
3
} , {𝐴
1
, 𝐴
7
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

{𝐴
2
, 𝐴
3
} , {𝐴
1
, 𝐴
7
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

7 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

{𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

{𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
8
} , {𝐴
9
} , {𝐴
10
}

6 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
, 𝐴
8
},

{𝐴
4
} , {𝐴
5
} , {𝐴
6
} , {𝐴
9
} , {𝐴
10
}

{𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
, 𝐴
8
},

{𝐴
4
} , {𝐴
5
} , {𝐴
6
} , {𝐴
9
} , {𝐴
10
}

{𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
, 𝐴
8
} , {𝐴
4
} , {𝐴
5
},

{𝐴
6
} , {𝐴
9
} , {𝐴
10
}

5 {𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
7
, 𝐴
8
},

{𝐴
5
, 𝐴
9
} , {𝐴
4
} , {𝐴
6
} , {𝐴
10
}

{𝐴
1
, 𝐴
2
, 𝐴
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Figure 1: The clustering result of 10 diamonds.

the clustering results have much to do with the threshold;
the smaller the confidence level is, the more detailed the
clustering will be.

5. Conclusions

Dual hesitant fuzzy set, as an extension of fuzzy set, can
describe the situation that people have hesitancy when they
make a decision more objectively than other extensions of
fuzzy set (interval-valued fuzzy set, intuitionistic fuzzy set,
type-2 fuzzy set, and fuzzy multiset). In this paper, the
correlation coefficients for DHFSs have been studied. Their
properties have been discussed, and the differences and
correlations among them have been investigated in detail.
We have made the clustering analysis under dual hesitant
fuzzy environments with one typical real world example. To
further extend the application range of the present clustering
algorithm, in particular for the case that needs to assign
weights for different experts, it will be necessary to generalize
the original definition of DHFSs.

Given that DHFSs are a suitable technique of denoting
uncertain information that is widely encountered in daily life
and the latent applications of our algorithm in the field of data
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mining, information retrieval and pattern recognition, and so
forth, may be the directions for future research.
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