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We prove the existence and uniqueness of solutions for two classes of infinite delay nonlinear fractional order differential equations
involving Riemann-Liouville fractional derivatives. The analysis is based on the alternative of the Leray-Schauder fixed-point
theorem, the Banach fixed-point theorem, and the Arzela-Ascoli theorem in Ω = {𝑦 : (−∞, 𝑏] → R : 𝑦|(−∞,0] ∈ B} such
that 𝑦|[0,𝑏] is continuous andB is a phase space.

1. Introduction

Fractional derivatives and integrals have been vastly used in
different fields, facing a huge development especially during
the last few decades (see, e.g., [1–9] and the references there-
in). The approaches based on fractional calculus establish
models of engineering systems better than the ordinary
derivatives approaches [1–6].

In particular, fractional differential equations as an im-
portant research branch of fractional calculus attractedmuch
more attention (see, e.g., [10–20] and the references therein).
Also varieties of schemes for numerical solutions of fractional
differential equations are reported (see, e.g., [6, 21–23] and the
references therein). We notice that some investigations have
been done on the existence and uniqueness of solutions for
fractional differential equations with delay (see, e.g., [24, 25]
and the references therein).

Having all the aforementioned facts inmind, in this paper
we study the existence and uniqueness of solutions for a class
of delayed fractional differential equations, namely,

L (D) 𝑦 (𝑡) = 𝑓 (𝑡, 𝑦𝑡) , 𝑡 ∈ 𝐽 = [0, 𝑏] ,

𝑦 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ (−∞, 0] ,

(1)

whereL(D) = 𝐷𝛼0+ − 𝑡
𝑛
𝐷
𝛽

0+
, 0 < 𝛽 < 𝛼 < 1, 𝑛 is a positive

integer, 𝑓 : 𝐽 ×B → R is a given function satisfying some
assumptions that will be specified later, 𝜙 ∈ B with 𝜙(0) =
0, and B is called a phase space that will be defined later.
𝐷
𝛼
0+ and 𝐷

𝛽

0+
are the standard Riemann-Liouville fractional

derivatives. 𝑦𝑡, which is an element B, is defined as any
function 𝑦 on (−∞, 𝑏] as follows:

𝑦𝑡 (𝑠) = 𝑦 (𝑡 + 𝑠) , 𝑠 ∈ (−∞, 0] , 𝑡 ∈ 𝐽. (2)
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Here 𝑦𝑡(⋅) represents the preoperational state from time
−∞ up to time 𝑡. We also consider the following nonlinear
fractional differential equation:

L (D) {𝑦 (𝑡) − 𝑔 (𝑡, 𝑦𝑡)} = 𝑓 (𝑡, 𝑦𝑡) , 𝑡 ∈ 𝐽,

𝑦 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ (−∞, 0] ,

(3)

where 𝛼, 𝛽, 𝑓, 𝜙, andL(D) are as (1) and 𝑔 : 𝐽 ×B → R is
a given function which satisfies 𝑔(0, 𝜙) = 0.

The notion of the phase space B plays an important
role in the study of both qualitative and quantitative theories
for functional differential equations. A common choice is
a seminormed space satisfying suitable axioms, which was
introduced by Hale and Kato [26].

Our approach is based on theBanach fixed-point theorem
and on the nonlinear alternative of Leray-Schauder type [27,
28]. The organization of the paper is as follows.

In Section 2, we present some basic mathematical tools
used in the paper.Themain results are presented in Section 3.
Section 4 is dedicated to our conclusions.

2. Preliminaries

In this section, we present some basic notations and proper-
ties which are used throughout this paper. First of all, we will
explain the phase spaceB introduced by Hale and Kato [26].
Let R≤0 = (−∞, 0], R≥0 = [0, +∞), R = (−∞, +∞), and let
𝐸 be a Banach space with norm | ⋅ |𝐸. Further, letB be a linear
space of functions mapping R− into 𝐸 with seminorm | ⋅ |B

having the following axioms,

(B1) If𝑦 : (−∞, 𝜎+𝑏) → 𝐸, 𝑏 > 0 is continuous on [𝜎, 𝜎+
𝑏) and 𝑦𝜎 ∈B, then 𝑦𝑡 ∈B and 𝑦𝑡 are continuous for
any 𝑡 ∈ [𝜎, 𝜎 + 𝑏).

(B2) There exist functions 𝑘(𝑡) > 0 and 𝑚(𝑡) ≥ 0 with
the following properties. (i) 𝑘(𝑡) is continuous for 𝑡 ∈
R≥0. (ii) 𝑚(𝑡) is locally bounded for 𝑡 ∈ R≥0. (iii)
For every function, 𝑦 has the properties of (𝐵1) and
𝑡 ∈ [𝜎, 𝜎 + 𝑏), holds that |𝑦𝑡|B ≤ 𝑘(𝑡 − 𝜎) sup{|𝑦(𝑠)|𝐸 :
𝜎 ≤ 𝑠 ≤ 𝑡} + 𝑚(𝑡 − 𝜎)|𝑦𝜎|B.

(B3) There exists a positive constant 𝐿 such that |𝜙(0)|𝐸 ≤
𝐿 |𝜙|B for all 𝜙 ∈B.

(B4) The quotient space B̂ :=B/| ⋅ |B is a Banach space.

We notice that in this paper, we select 𝜎 = 0 and 𝐸 = R; thus
(iii) can be converted to |𝑦𝑡|B ≤ 𝑘(𝑡) sup{|𝑦(𝑠)|𝐸 : 0 ≤ 𝑠 ≤
𝑡} + 𝑚(𝑡)|𝑦0|B, for all 𝑡 ∈ [0, 𝑏).

See [28] for examples of the phase space B satisfying all
axioms (B1)–(B4).

Let R+ = (0, +∞) and 𝐶
0
(R+) be the space of all

continuous real function on R+. Consider also the space
𝐶
0
(R)
≥0 of all continuous real functions on R≥0 which later

identifies with the class of all 𝑓 ∈ 𝐶
0
(R+) such that

lim𝑡→0+𝑓(𝑡) = 𝑓(0
+
) ∈ R. By 𝐶(𝐽,R), we denote the Banach

space of all continuous functions from 𝐽 intoRwith the norm
‖𝑦‖∞ := sup{|𝑦(𝑡)| : 𝑡 ∈ 𝐽}, where | ⋅ | is a suitable complete
norm on R.

The most common notation for 𝛼th order derivative of
a real-valued function 𝑦(𝑡), which is defined in an interval
denoted by (𝑎, 𝑏), is 𝐷𝛼𝑎𝑦(𝑡). Here, the negative value of 𝛼
corresponds to the fractional integral.

Definition 1. For a function𝑦defined on an interval [𝑎, 𝑏], the
Riemann-Liouville fractional integral of 𝑦 of order 𝛼 > 0 is
defined by [1, 6]

𝐼
𝛼

𝑎+𝑦 (𝑡) =
1

Γ (𝛼)
∫

𝑡

𝑎

(𝑡 − 𝑠)
𝛼−1
𝑦 (𝑠) 𝑑𝑠, 𝑡 > 𝑎, (4)

and the Riemann-Liouville fractional derivative of 𝑦(𝑡) of
order 𝛼 > 0 reads as

𝐷
𝛼

𝑎+𝑦 (𝑡) =
𝑑
𝑛

𝑑𝑡𝑛
{𝐼
𝑛−𝛼

𝑎+ 𝑦 (𝑡)} , 𝑛 − 1 < 𝛼 ≤ 𝑛. (5)

Also, we denote 𝐷𝛼𝑎+𝑦(𝑡) as 𝐷
𝛼
𝑎𝑦(𝑡) and 𝐼

𝛼
𝑎+𝑦(𝑡) as 𝐼

𝛼
𝑎𝑦(𝑡).

Further, 𝐷𝛼0+𝑦(𝑡) and 𝐼
𝛼
0+𝑦(𝑡) are referred to as 𝐷𝛼𝑦(𝑡) and

𝐼
𝛼
𝑦(𝑡), respectively. If the fractional derivative 𝐷𝛼𝑎𝑦(𝑡) is

integrable, then we have [4, page 71]

𝐼
𝛼

𝑎 (𝐷
𝛽

𝑎𝑦 (𝑡))

= 𝐼
𝛼−𝛽

𝑎 𝑦 (𝑡) − [𝐼
1−𝛽

𝑎 𝑦 (𝑡)]
𝑡=𝑎

(𝑡 − 𝑎)
𝛼−1

Γ (𝛼)
,

0 < 𝛽 ≤ 𝛼 < 1.

(6)

If 𝑦 is continuous on [𝑎, 𝑏], then 𝐷
𝛼
𝑎𝑦(𝑡) is integrable,

𝐼
1−𝛽
𝑦(𝑡)|𝑡=𝑎 = 0, and

𝐼
𝛼

𝑎 (𝐷
𝛽

𝑎𝑦 (𝑡)) = 𝐼
𝛼−𝛽

𝑎 𝑦 (𝑡) , 0 < 𝛽 ≤ 𝛼 < 1. (7)

Proposition 2. Let 𝑦 be continuous on [0, 𝑏] and 𝑛 a nonneg-
ative integer, then

(i) 𝐼𝛼 (𝑡𝑛𝑦 (𝑡))=
𝑛

∑

𝑘=0

(
−𝛼

𝑘
) [𝐷
𝑘
𝑡
𝑛
] [𝐼
𝛼+𝑘
𝑦 (𝑡)]

=

𝑛

∑

𝑘=0

(
−𝛼

𝑘
)
𝑛!𝑡
𝑛−𝑘

(𝑛 − 𝑘)!
𝐼
𝛼+𝑘
𝑦 (𝑡) ,

(8)

(ii) 𝐼𝛼 (𝑡𝑛𝐷𝛽𝑦 (𝑡)) =
𝑛

∑

𝑘=0

(
−𝛼

𝑘
)
𝑛!𝑡
𝑛−𝑘

(𝑛 − 𝑘)!
𝐼
𝛼−𝛽+𝑘

𝑦 (𝑡) , (9)

where

(
−𝛼

𝑘
) = (−1)

𝑘 Γ (𝛼 + 1)

𝑘!Γ (𝛼)
= (−1)

𝑘
(
𝛼 + 𝑘 − 1

𝑘
)

=
Γ (1 − 𝛼)

Γ (𝑘 + 1) Γ (1 − 𝛼 − 𝑘)
.

(10)

Proof. (i) can be found in [6, page 53], and (ii) is an immediate
consequence of (7), and (i).

Lemma 3 (see [29]). Let V : [0, 𝑏] → [0,∞) be a real func-
tion and 𝑤(⋅) a nonnegative, locally integrable function on
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[0, 𝑏]. If there exist positive constants 𝑎 and 𝛼 ∈ (0, 1) such that
V(𝑡) ≤ 𝑤(𝑡) + 𝑎 ∫

𝑡

0
(𝑡 − 𝑠)

−𝛼V(𝑠)𝑑𝑠, then there exists a constant
𝐾 = 𝐾(𝛼) such that V(𝑡) ≤ 𝑤(𝑡)+𝐾𝑎∫𝑡

0
𝑤(𝑠)(𝑡− 𝑠)

−𝛼
𝑑𝑠, for all

𝑡 ∈ [0, 𝑏].

In this paper we use the alternative Leray-Schauder’s
theorem and Banach’s contraction principle for getting the
main results. These theorems can be found in [27, 28].

3. Existence and Uniqueness

In this section, we prove the existence results for (1) and (3)
by using the alternative of Leray-Schauder’s theorem. Further,
our results for the unique solution is based on the Banach
contraction principle. Let us start by defining what we mean
by a solution of (1). Let the space

Ω = {𝑦 : (−∞, 𝑏] → R : 𝑦|(−∞,0] ∈B

and 𝑦|[0,𝑏] is continuous} .
(11)

A function 𝑦 ∈ Ω is said to be a solution of (1) if 𝑦 satisfies
(1).

For the existence results on (1), we need the following
lemma.

Lemma 4. Equation (1) is equivalent to the Volterra integral
equation

𝑦 (𝑡) =

𝑛

∑

𝑘=0

(
−𝛼

𝑘
)
𝑛!𝑡
𝑛−𝑘

(𝑛 − 𝑘)!
𝐼
𝛼−𝛽+𝑘

𝑦 (𝑡) + 𝐼
𝛼
𝑓 (𝑡, 𝑦𝑡) , 𝑡 ∈ 𝐽.

(12)

Proof. The proof is an immediate consequence of
Proposition 2.

To study the existence and uniqueness of solutions for
(1), we transform (1) into a fixed-point problem. Consider the
operator 𝑃 : Ω → Ω defined by

𝑃𝑦 (𝑡) = {
L (𝐼) 𝑦 (𝑡) + 𝐼

𝛼
𝑓 (𝑡, 𝑦𝑡) , 𝑡 ∈ [0, 𝑏] ,

𝜙 (𝑡) , 𝑡 ∈ (−∞, 0] ,
(13)

where,

L (𝐼) =

𝑛

∑

𝑘=0

(
−𝛼

𝑘
)
𝑛!𝑡
𝑛−𝑘

(𝑛 − 𝑘)!
𝐼
𝛼−𝛽+𝑘

. (14)

Let 𝑥(⋅) : (−∞, 𝑏] → R be the function defined as

𝑥 (𝑡) = {
0, if 𝑡 ∈ [0, 𝑏] ,
𝜙 (𝑡) , if 𝑡 ∈ (−∞, 0] .

(15)

Then, we get 𝑥0 = 𝜙. For each 𝑧 ∈ 𝐶([0, 𝑏],R) with 𝑧(0) = 0,
we denote by 𝑧 the function defined as follows:

𝑧 (𝑡) = {
𝑧 (𝑡) , if 𝑡 ∈ [0, 𝑏] ,
0, if 𝑡 ∈ (−∞, 0] .

(16)

If 𝑦(⋅) satisfies the integral equation 𝑦(𝑡) = L(𝐼)𝑦(𝑡) +
𝐼
𝛼
𝑓(𝑡, 𝑦𝑡), then we can decompose 𝑦(⋅) as 𝑦(𝑡) = 𝑧(𝑡) + 𝑥(𝑡),

−∞ < 𝑡 ≤ 𝑏, which implies 𝑦𝑡 = 𝑧𝑡 + 𝑥𝑡 for every 0 ≤ 𝑡 ≤ 𝑏,
and the function 𝑧(⋅) satisfies

𝑧 (𝑡) =L (𝐼) 𝑧 (𝑡) + 𝐼
𝛼
𝑓 (𝑡, 𝑧𝑡 + 𝑥𝑡) , (17)

set 𝐶0 = {𝑧 ∈ 𝐶([0, 𝑏],R) : 𝑧(0) = 0}, and let ‖ ⋅ ‖𝑏 be the
seminorm in 𝐶0 defined by ‖𝑧‖𝑏 = ‖𝑧0‖B + sup{|𝑧(𝑡)| : 0 ≤
𝑡 ≤ 𝑏} = sup{|𝑧(𝑡)| : 0 ≤ 𝑡 ≤ 𝑏}, 𝑧 ∈ 𝐶0. 𝐶0 is a Banach space
with norm ‖ ⋅ ‖𝑏. Let the operator 𝐹 : 𝐶0 → 𝐶0 be defined by

𝐹𝑧 (𝑡) =L (𝐼) 𝑧 (𝑡) + 𝐼
𝛼
𝑓 (𝑡, 𝑧𝑡 + 𝑥𝑡) , (18)

where 𝑡 ∈ [0, 𝑏]. The operator 𝑃 has a fixed point equivalent
to 𝐹 that has a fixed point too.

Theorem5. Assume that𝑓 is a continuous function, and there
exist 𝑝, 𝑞 ∈ 𝐶(𝐽,R+) such that |𝑓(𝑡, 𝑢)| ≤ 𝑝(𝑡)+𝑞(𝑡)‖𝑢‖B, 𝑡 ∈
𝐽, 𝑢 ∈B. Then, (1) has at least one solution on (−∞, 𝑏].

Proof. It is enough to show that the operator 𝐹 : 𝐶0 → 𝐶0

defined as (18) satisfies the following: (i) 𝐹 is continuous, (ii)
𝐹 maps bounded sets into bounded sets in 𝐶0, (iii) 𝐹 maps
bounded sets into equicontinuous sets of 𝐶0, and (iv) 𝐹 is
completely continuous.

(i) Let {𝑧𝑛} converges to 𝑧 in 𝐶0, then

𝐹𝑧𝑛 (𝑡) − 𝐹𝑧 (𝑡)


≤

𝑛

∑

𝑘=0

(
−𝛼
𝑘 )
 𝑛!𝑡
𝑛−𝑘

(𝑛 − 𝑘)!
𝐼
𝛼−𝛽+𝑘 𝑧𝑛 (𝑡) − 𝑧 (𝑡)



+ 𝐼
𝛼 𝑓 (𝑡, (𝑧𝑛)𝑡

+ 𝑥𝑡) − 𝑓 (𝑡, 𝑧𝑡 + 𝑥𝑡)


≤

𝑛

∑

𝑘=0

(
−𝛼
𝑘 )
 𝑛! 𝑏
𝑛−𝑘 𝑧𝑛 − 𝑧



(𝑛 − 𝑘)!Γ (𝛼 − 𝛽 + 𝑘 + 1)

+
𝑏
𝛼 𝑓 (𝑡, (𝑧𝑛)𝑡

+ 𝑥𝑡) − 𝑓 (𝑡, 𝑧𝑡 + 𝑥𝑡)


Γ (𝛼 + 1)
.

(19)

Hence, ‖𝐹𝑧𝑛(𝑡) − 𝐹𝑧(𝑡)‖ → 0 as 𝑧𝑛 → 𝑧, and thus 𝑓
is continuous.

(ii) For any 𝜆 > 0, let B𝜆 = {𝑧 ∈ 𝐶0 : ‖𝑧‖𝑏 ≤ 𝜆} be
a bounded set. We show that there exists a positive
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constant 𝜇 such that ‖𝐹𝑧‖∞ ≤ 𝜇. Let 𝑧 ∈ B𝜆, since 𝑓
is a continuous function, we have for each 𝑡 ∈ [0, 𝑏],

|𝐹𝑧 (𝑡)| ≤

𝑛

∑

𝑘=0

(
−𝛼
𝑘 )
 𝑛!𝑡
𝑛−𝑘

(𝑛 − 𝑘)!Γ (𝛼 − 𝛽 + 𝑘)

× ∫

𝑏

0

(𝑡 − 𝑠)
𝛼−𝛽+𝑘−1

𝑧 (𝑠)

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝑓 (𝑠, 𝑧𝑠 + 𝑥𝑠) 𝑑𝑠

≤

𝑛

∑

𝑘=0

(
−𝛼
𝑘 )
 𝑛!𝑏
𝑛+𝛼−𝛽

(𝑛 − 𝑘)!Γ (𝛼 − 𝛽 + 𝑘 + 1)
‖𝑧‖𝑏 +

1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

[𝑝 (𝑠) + 𝑞 (𝑠)
𝑧𝑠 + 𝑥𝑠

B
] 𝑑𝑠

≤

𝑛

∑

𝑘=0

(
−𝛼
𝑘 )
 𝑛!𝑏
𝑛+𝛼−𝛽

(𝑛 − 𝑘)!Γ (𝛼 − 𝛽 + 𝑘 + 1)
‖𝑧‖𝑏

+
𝑏
𝛼𝑝

∞

Γ (𝛼 + 1)
+
𝑏
𝛼𝑞

∞

Γ (𝛼 + 1)
{
𝑧𝑠
B

+
𝑥𝑠
B
}

≤

𝑛

∑

𝑘=0

(
−𝛼
𝑘 )
 𝑛!𝑏
𝑛+𝛼−𝛽

(𝑛 − 𝑘)!Γ (𝛼 − 𝛽 + 𝑘 + 1)
‖𝑧‖𝑏

+
𝑏
𝛼𝑝

∞

Γ (𝛼 + 1)
+ 𝑘𝑏𝜆 + 𝑚𝑏

𝜙
B

:= 𝜇,

(20)

where 𝑚𝑏 = sup{|𝑚(𝑡)| : 𝑡 ∈ [0, 𝑏]}, and 𝑘𝑏 =
sup{|𝑘(𝑡)| : 𝑡 ∈ [0, 𝑏]}. Hence, we obtain ‖𝐹𝑧‖∞ ≤ 𝜇.

(iii) Let 𝑡1, 𝑡2 ∈ [0, 𝑏] and 𝑡1 < 𝑡2. LetB𝜆 be a bounded set
of 𝐶0 as in (ii) and 𝑧 ∈B𝜆, then given 𝜖 > 0 choose

𝛿 = min{ 1

2Λ 1

𝜖
1/𝛼
,

1

2 (𝑛 + 1) Λ 2

𝜖
1/(𝛼−𝛽+𝑘)

:

𝑘 = 0, 1, . . . , 𝑛} ,

(21)

where

Λ 1 = 2

𝑝
∞

+ Λ
𝑞
∞

Γ (𝛼 + 1)
,

Λ 2 =

𝑛

∑

𝑘=0

2
(
−𝛼
𝑛

𝑘
)
 𝑘!𝑏
𝑛−𝑘
‖𝑧‖𝑏

(𝑛 − 𝑘)!Γ (𝛼 − 𝛽 + 𝑘 + 1)
,

(22)

and Λ = 𝑘𝑏𝜆 + 𝑚𝑏‖𝜙‖B. If |𝑡2 − 𝑡1| < 𝛿, then

𝐹𝑧 (𝑡2) − 𝐹𝑧 (𝑡1)


≤

𝑛

∑

𝑘=0


(
−𝛼
𝑛

𝑘
)

𝑘!𝑏
𝑛−𝑘

(𝑛 − 𝑘)!Γ (𝛼 − 𝛽 + 𝑘)
‖𝑧‖𝑏

×



∫

𝑡
1

0

{(𝑡2 − 𝑠)
𝛼−𝛽+𝑘−1

−(𝑡1 − 𝑠)
𝛼−𝛽+𝑘−1

} 𝑑𝑠

+∫

𝑡
2

𝑡
1

(𝑡2 − 𝑠)
𝛼−𝛽+𝑘−1

𝑑𝑠



+
1

Γ (𝛼)



∫

𝑡
1

0

{(𝑡2 − 𝑠)
𝛼−1

− (𝑡1 − 𝑠)
𝛼−1
} 𝑓 (𝑠, 𝑧𝑠 + 𝑥𝑥) 𝑑𝑠

+∫

𝑡
2

𝑡
1

(𝑡2 − 𝑠)
𝛼−1
𝑓 (𝑠, 𝑧𝑠 + 𝑥𝑥) 𝑑𝑠



≤

𝑛

∑

𝑘=0

2

(
−𝛼
𝑛

𝑘
)

𝑘!𝑏
𝑛−𝑘

(𝑛 − 𝑘)!Γ (𝛼 − 𝛽 + 𝑘 + 1)
‖𝑧‖𝑏(𝑡2 − 𝑡1)

𝛼−𝛽+𝑘

+

𝑝
∞

+ Λ
𝑞
∞

Γ (𝛼 + 1)
{∫

𝑡
1

0

{(𝑡2 − 𝑠)
𝛼−1

− (𝑡1 − 𝑠)
𝛼−1
} 𝑑𝑠

+∫

𝑡
2

𝑡
1

(𝑡2 − 𝑠)
𝛼−1
𝑑𝑠}

≤

𝑛

∑

𝑘=0

2

(
−𝛼
𝑛

𝑘
)

𝑘!𝑏
𝑛−𝑘

(𝑛 − 𝑘)!Γ (𝛼 − 𝛽 + 𝑘 + 1)
‖𝑧‖𝑏(𝑡2 − 𝑡1)

𝛼−𝛽+𝑘

+ 2

𝑝
∞

+ Λ
𝑞
∞

Γ (𝛼 + 1)
(𝑡2 − 𝑡1)

𝛼

= Λ 2𝛿
𝛼−𝛽+𝑘

+ Λ 1𝛿
𝛼
<
𝜖

2
+
𝜖

2
= 𝜖,

(23)

where ‖𝑧𝑠+𝑥𝑠‖B ≤ ‖𝑧𝑠‖B+‖𝑥𝑠‖B ≤ 𝑘𝑏𝜆+𝑚𝑏‖𝜙‖B :=

Λ. Hence, 𝐹(B𝜆) is equicontinuous.

(iv) It is an immediate consequence from (i)–(iii), togeth-
er with the Arzela-Ascoli theorem.

We show in the following that there exists an open set𝑈 ⊆ 𝐶0

with 𝑧 ̸= 𝛾𝐹(𝑧) for 𝛾 ∈ (0, 1) and 𝑧 ∈ 𝜕𝑈. Let 𝑧 ∈ 𝐶0 and
𝑧 = 𝛾𝐹(𝑧) for some 0 < 𝛾 < 1. Then, for each 𝑡 ∈ [0, 𝑏],
we have 𝑧(𝑡) = 𝜆{L(𝐼)𝑧(𝑡) + 𝐼𝛼𝑓(𝑡, 𝑧𝑡 + 𝑥𝑡)}. It follows by
assumption of the theorem

|𝑧 (𝑡)| ≤

𝑛

∑

𝑘=0

(
−𝛼
𝑛

𝑘
)
 𝑘!𝑏
𝑛−𝑘

(𝑛 − 𝑘)!Γ (𝛼 − 𝛽 + 𝑘)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−𝛽+𝑘−1

|𝑧 (𝑠)| 𝑑𝑠

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1 𝑓 (𝑠, 𝑧𝑠 + 𝑥𝑥)

 𝑑𝑠
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≤

𝑛

∑

𝑘=0

(
−𝛼
𝑛

𝑘
)
 𝑘!𝑏
𝑛−𝑘
‖𝑧‖𝑏

(𝑛 − 𝑘)!Γ (𝛼 − 𝛽 + 𝑘 + 1)

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝑞 (𝑠)

𝑧𝑠 + 𝑥𝑠
B
𝑑𝑠

+
𝑏
𝛼𝑝

∞

Γ (𝛼 + 1)
.

(24)

On other hand, we have
𝑧𝑠 + 𝑥𝑠

𝐵
≤
𝑧𝑠
B

+
𝑥𝑠
B

≤ 𝑘 (𝑡) sup {|𝑧 (𝑠)| : 0 ≤ 𝑠 ≤ 𝑡}

+ 𝑚 (𝑡)
𝑧0
B

+ 𝑘 (𝑡) sup {|𝑥 (𝑠)| : 0 ≤ 𝑠 ≤ 𝑡}

+ 𝑚 (𝑡)
𝑥0

B

≤ 𝑘𝑏 sup {|𝑧 (𝑠)| : 0 ≤ 𝑡 ≤ 𝑡}

+ 𝑚𝑏
𝜙
B
.

(25)

If we let 𝛿(𝑡) the right-hand side of (25), then ‖𝑧𝑠+𝑥𝑠‖B ≤ 𝛿(𝑡)

and, therefore,

|𝑧 (𝑡)| ≤

𝑛

∑

𝑘=0

(
−𝛼
𝑛

𝑘
)
 𝑘!𝑏
𝑛−𝑘
‖𝑧‖𝑏

(𝑛 − 𝑘)!Γ (𝛼 − 𝛽 + 𝑘 + 1)

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝑞 (𝑠) 𝛿 (𝑠) 𝑑𝑠 +

𝑏
𝛼𝑝

∞

Γ (𝛼 + 1)
.

(26)

Using the aforementioned inequality and the definition of 𝛿,
we get

𝛿 (𝑡) ≤

𝑛

∑

𝑘=0

(
−𝛼
𝑛

𝑘
)
 𝑘!𝑏
𝑛−𝑘
‖𝑧‖𝑏𝑘𝑏

(𝑛 − 𝑘)!Γ (𝛼 − 𝛽 + 𝑘 + 1)
+ 𝑚𝑏

𝜙
B

+
𝑘𝑏𝑏
𝛼𝑝

∞

Γ (𝛼 + 1)
+
𝑘𝑏
𝑞
∞

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝛿 (𝑠) 𝑑𝑠.

(27)

Then, using Lemma 3, there exists a constant Δ such that

|𝛿 (𝑡)| ≤
1

2
𝑘𝑏Λ 2 + 𝑚𝑏

𝜙
B

+
𝑘𝑏𝑏
𝛼𝑝

∞

Γ (𝛼 + 1)
+ Δ

𝑘𝑏
𝑞
∞

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝑅𝑑𝑠,

(28)

where Λ 2 is mentioned in (22), and

𝑅 =
1

2
𝑘𝑏Λ 2 + 𝑚𝑏

𝜙
B

+
𝑘𝑏𝑏
𝛼𝑝

∞

Γ (𝛼 + 1)
. (29)

Hence,

‖𝛿‖∞ ≤ 𝑅 +
𝑅Δ𝑏
𝛼
𝑘𝑏
𝑞
∞

Γ (𝛼 + 1)
:= �̃�, (30)

and then ‖𝑧‖∞ ≤ Λ 2 + �̃�‖𝐼
𝛼
𝑞‖∞ + 𝑏

𝛼
‖𝑝‖∞/Γ(𝛼 + 1).

Therefore,

‖𝑧‖∞ ≤
�̃�
𝐼
𝛼
𝑞
∞

+ 𝑏
𝛼𝑝

∞
/Γ (𝛼 + 1)

1 − Λ 2

:= Δ
∗
. (31)

Set 𝑈 = {𝑧 ∈ 𝐶0 : ‖𝑧‖𝑏 < Δ
∗
+ 1}. Then, 𝐹 : 𝑈 → 𝐶0

is continuous and completely continuous. From the choice of
𝑈, there is no 𝑧 ∈ 𝜕𝑈 such that 𝑧 = 𝛾𝐹(𝑧), for 𝛾 ∈ (0, 1);
therefore, by the nonlinear alternative of the Leray-Schauder
theorem, the proof is complete.

Theorem 6. Let 𝑓 : 𝐽 × 𝐵 → R be a continuous function. If
there exists a positive constant 𝑙 such that |𝑓(𝑡, 𝑢) − 𝑓(𝑡, V)| ≤
𝑙‖𝑢−V‖B, 𝑡 ∈ 𝐽, 𝑢, V ∈B, and 0 < 𝑇+𝑙𝑘𝑏𝑏𝛼/Γ(𝛼+1) := 𝐿 < 1
then (1) has a unique solution in the interval (−∞, 𝑏], where,

𝑇 =

𝑛

∑

𝑘=0

(
−𝛼
𝑛

𝑘
)
 𝑘!𝑏
𝑛−𝑘

(𝑛 − 𝑘)!Γ (𝛼 − 𝛽 + 𝑘 + 1)
. (32)

Proof. The solution of (1) is equivalent to the solution of the
integral equation (17). Hence, it is enough to show that the
operator 𝐹 : 𝐶0 → 𝐶0, satisfies the Banach fixed-point
theorem. Consider 𝑢, V ∈ 𝐶0 and for each 𝑡 ∈ [0, 𝑏], we have

|𝐹 (𝑧) (𝑡) − 𝐹 (𝑢) (𝑡)|

≤ 𝑇‖𝑢 − V‖𝑏 +
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝑙
𝑢𝑠 − V𝑠

B
𝑑𝑠

≤ 𝑇‖𝑢 − V‖𝑏 +
𝑙

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1𝑢𝑠 − V𝑠

B
𝑑𝑠

≤ 𝑇‖𝑢 − V‖𝑏 +
𝑙

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× 𝑘𝑏 sup ‖𝑢 (𝑠) − V (𝑠)‖ 𝑑𝑠

≤ {𝑇 +
𝑙𝑘𝑏

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝑙 𝑑𝑠} |𝑢 − V|𝑏

≤ {𝑇 +
𝑙𝑘𝑏𝑏
𝛼

Γ (𝛼 + 1)
} ‖𝑢 − V‖𝑏 = 𝐿‖𝑢 − V‖𝑏.

(33)

Hence, ‖𝐹(𝑧) − 𝐹(V)‖𝑏 ≤ 𝐿 ‖𝑧 − 𝑧
∗
‖𝑏, and then 𝐹 is a

contraction.Therefore,𝐹 has a unique fixed point by Banach’s
contraction principle.

Theorem 7. Let 𝑓 : 𝐽 ×B → R be a continuous function,
and let the following assumptions hold.

(H1) There exist𝑝, 𝑞 ∈ 𝐶(𝐽,R≥0) such that |𝑓(𝑡, 𝑢)| ≤ 𝑝(𝑡)+
𝑞(𝑡)‖𝑢‖B for each 𝑡 ∈ 𝐽, 𝑢 ∈B and and ‖𝐼𝛼𝑝‖ < +∞.

(H2) The function 𝑔 is continuous and completely continu-
ous. For any bounded setD inΩ, the set {𝑡 → 𝑔(𝑡, 𝑦𝑡) :

𝑦 ∈ D} is equicontinuous in 𝐶([0, 𝑏],R). There exist
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positive constants 𝑑1 and 𝑑2 such that |𝑔(𝑡, 𝑢)| ≤

𝑑1‖𝑢‖B + 𝑑2 for each 𝑡 ∈ [0, 𝑏] and 𝑢 ∈B.

If 𝑘𝑏𝑑1 ∈ (0, 1), then (3) has at least one solution on (−∞, 𝑏],
where 𝑘𝑏 = sup{|𝑘(𝑡)| : 𝑡 ∈ [0, 𝑏]}.

Proof. Consider the operator 𝑃∗ : Ω → Ω defined by

𝑃
∗
(𝑦) (𝑡)

= {
L (𝐼) 𝑦 (𝑡) + 𝐼

𝛼
𝑓 (𝑡, 𝑦𝑡) + 𝑔 (𝑡, 𝑦𝑡) , 𝑡 ∈ [0, 𝑏] ,

𝜙 (𝑡) , 𝑡 ∈ (−∞, 0] ,

(34)

where

L (𝐼) =

𝑛

∑

𝑘=0

(
−𝛼

𝑘
)
𝑛!𝑡
𝑛−𝑘

(𝑛 − 𝑘)!
𝐼
𝛼−𝛽+𝑘

. (35)

In analog toTheorem 5, we consider the operator 𝐹∗ : 𝐶0 →
𝐶0 defined by

𝐹
∗
𝑧 (𝑡) =L (𝐼) 𝑧 (𝑡) + 𝐼

𝛼
𝑓 (𝑡, 𝑧𝑡 + 𝑥𝑡) + 𝑔 (𝑡, 𝑧𝑡 + 𝑥𝑡) .

(36)

By using (H2) andTheorem 5, the operator 𝐹∗ is continuous
and completely continuous. Now, it is sufficient to show that
there exists an open set𝑈∗ ⊆ 𝐶0 with 𝑧 ̸= 𝜆𝐹

∗
(𝑧) for 𝛾 ∈ (0, 1)

and 𝑧 ∈ 𝜕𝑈∗.
Let 𝑧 ∈ 𝐶0 and 𝑧 = 𝛾𝐹

∗
(𝑧) for some 𝛾 ∈ (0, 1). Then, for

each 𝑡 ∈ [0, 𝑏], 𝑧(𝑡) = 𝛾[𝑔(𝑡, 𝑧𝑡 + 𝑥𝑡) +L(𝐼)𝑧(𝑡) + 𝐼
𝛼
𝑓(𝑡, 𝑧𝑡 +

𝑥𝑡)]. Hence,

|𝑧 (𝑡)| ≤ 𝑑1
𝑧𝑡 + 𝑥𝑡

B
+ 𝑑2

+

𝑛

∑

𝑘=0

(
−𝛼
𝑘 )
 𝑘!𝑏
𝑛−𝑘

(𝑛 − 𝑘)!Γ (𝛼 − 𝛽 + 𝑘 + 1)
‖𝑧‖𝑏

+
𝑏
𝛼
𝑛
𝑝
∞

Γ (𝛼 + 1)
+

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼
𝑛
−1
𝑞 (𝑠)

𝑧𝑠 + 𝑥𝑠
B
𝑑𝑠,

≤ 𝑑1𝛿 (𝑡) + 𝑑2 +
𝑏
𝛼𝑝

∞

Γ (𝛼 + 1)

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝑞 (𝑠) 𝛿 (𝑠) 𝑑𝑠

+

𝑛

∑

𝑘=0

(
−𝛼
𝑘 )
 𝑘!𝑏
𝑛−𝑘

(𝑛 − 𝑘)!Γ (𝛼 − 𝛽 + 𝑘 + 1)
‖𝑧‖𝑏,

(37)

where 𝛿(𝑡) is named the in right-hand side of (25) such that
‖𝑧𝑠 − 𝑥𝑠‖ ≤ 𝛿(𝑡). Since 0 < 𝑘𝑏𝑑1 < 1, if we let 𝑇∗ =

∑
𝑛

𝑘=0(| (
−𝛼
𝑘 ) |𝑘!𝑏

𝑛−𝑘
‖𝑧‖𝑏 𝑘𝑏/(𝑛 − 𝑘)!Γ(𝛼 − 𝛽 + 𝑘 + 1)), then

𝛿 (𝑡) ≤ 𝑘𝑏𝑑1𝛿 (𝑡) + 𝑘𝑏𝑑2 + 𝑚𝑏
𝜙
B

+ 𝑇
∗
+ 𝑚𝑏

𝜙
B

+
𝑘𝑏𝑏
𝛼𝑝

∞

Γ (𝛼 + 1)
+
𝑘𝑏
𝑞
∞

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝛿 (𝑠) 𝑑𝑠

≤
1

1 − 𝑘𝑏𝑑1

{𝑘𝑏𝑑2 + 𝑚𝑏
𝜙
B

+ 𝑇
∗
+ 𝑚𝑏

𝜙
B

+
𝑘𝑏𝑏
𝛼𝑝

∞

Γ (𝛼 + 1)
+
𝑘𝑏
𝑞
∞

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝛿 (𝑠) 𝑑𝑠} .

(38)

Then, using Lemma 3, there exists a constant Δ∗ such that

𝛿 (𝑡) ≤ 𝑘𝑏𝑑1𝛿 (𝑡) + 𝑘𝑏𝑑2 + 𝑚𝑏
𝜙
B

+ 𝑇
∗
+ 𝑚𝑏

𝜙
B

+
𝑘𝑏𝑏
𝛼𝑝

∞

Γ (𝛼 + 1)

+
𝑘𝑏
𝑞
∞

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝛿 (𝑠) 𝑑𝑠

≤
1

1 − 𝑘𝑏𝑑1

× {𝑘𝑏 𝑑2 + 𝑚𝑏
𝜙
B

+ 𝑇
∗
+ 𝑚𝑏

𝜙
B

+
𝑘𝑏𝑏
𝛼𝑝

∞

Γ (𝛼 + 1)

+ Δ
∗ 𝑘𝑏

𝑞
∞

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1
𝛿 (𝑠) 𝑑𝑠} ,

(39)

and, therefore, ‖𝑤‖∞ ≤ 𝑅 + 𝑅Δ
∗
𝑘𝑏‖𝑞
∗
‖∞/Γ(𝛼 + 1) := 𝐿

∗,
where ‖𝑞∗‖∞ = ‖𝑞‖∞/(1− 𝑘𝑏𝑑1) and 𝑅 = 1/(1−𝑘𝑏𝑑1)[𝑘𝑏𝑑2 +
𝑚𝑏‖𝜙‖B + (𝑘𝑏𝑏

𝛼
‖𝑝‖∞)/Γ(𝛼 + 1) + 𝑇

∗
]. Then,

‖𝑧‖∞ ≤ 𝑑1𝐿
∗
+ 𝑑2 +

𝑏
𝛼𝑝

∞

Γ (𝛼 + 1)
+ 𝐿

𝐼
𝛼
𝑞
∞

+ 𝑇
∗
, (40)

and, hence,

‖𝑧‖∞ ≤
𝑑1𝐿
∗
+ 𝑑2 + 𝑏

𝛼𝑝
∞
/Γ (𝛼 + 1) + 𝐿

∗𝐼
𝛼
𝑞
∞

1 − ‖𝑧‖∞𝑇
∗

:= 𝑀
∗
.

(41)

Set 𝑈∗ = {𝑧 ∈ 𝐶0 : ‖𝑧‖𝑏 < 𝑀
∗
+ 1}. From the choice of

𝑈
∗, there is no 𝑧 ∈ 𝜕𝑈∗ such that 𝑧 = 𝛾𝐹∗(𝑧) for 𝛾 ∈ (0, 1).

As a consequence of the nonlinear alternative of the Leray-
Schauder theorem, we deduce that 𝐹∗ has a fixed-point 𝑧∗ in
𝑈
∗, which is a solution of (3).

The unique solution of (3), under some conditions, is
studied in the following theorem which is the result of the
Banach contraction mapping.
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Theorem 8. Let 𝑓 : 𝐽 ×B → R be a continuous function,
and there exist positive constants 𝑙, 𝜇, such that

𝑓 (𝑡, 𝑢) − 𝑓 (𝑡, V)
 ≤ 𝑙‖𝑢 − V‖B,

𝑔 (𝑡, 𝑢) − 𝑔 (𝑡, V)
 ≤ 𝜇‖𝑢 − V‖B,

(42)

where 𝑡 ∈ 𝐽 and 𝑢, V ∈ B. Then, (3) with the following condi-
tions has a unique solution in the interval (−∞, 𝑏]

0 < 𝑇 +
𝑙𝑘𝑏𝑏
𝛼

Γ (𝛼 + 1)
< 1, 0 < 𝑘𝑏𝜇 + 𝑇 +

𝑘𝑏𝑙𝑏
𝛼

Γ (𝛼 + 1)
< 1,

(43)

such that 𝑇 is defined in Theorem 6.

Proof. The proof is a similar process Theorem 6.

4. Conclusions

In this paper, the existence and the uniqueness of solutions for
the nonlinear fractional differential equations with infinite
delay comprising standard Riemann-Liouville derivatives
have been discussed in the phase space. Leray-Schauder’s
alternative theorem and the Banach contraction principle
were used to prove the obtained results. Further general-
izations can be developed to some other class of fractional
differential equations such as L(𝐷)𝑦(𝑡) = 𝑓(𝑡, 𝑦𝑡), where
L(𝐷) = 𝐷

𝛼
𝑛 − ∑

𝑛−1

𝑗=1 𝑝𝑗(𝑡)𝐷
𝛼
𝑛−𝑗 , 0 < 𝛼1 < ⋅ ⋅ ⋅ < 𝛼𝑛 <

1, 𝑝𝑗(𝑡) = ∑
𝑁
𝑗

𝑘=0
𝑎𝑗𝑘𝑡
𝑘, and𝑁𝑗 is nonnegative integer.
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