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A dual quaternion is associated with two quaternions that have basis elements 𝑒
0
, 𝑒
1
, 𝑒
2
, 𝑒
3
, and 𝜀. Dual numbers are often written

in the form 𝑧 = 𝜁+𝜀𝜁∗, where 𝜀 is the dual identity and has the properties 𝜀2 = 0 (𝜀 ̸= 0). We research the properties of some regular
functions with values in dual quaternion and give applications of the extension problem for dual quaternion functions.

1. Introduction

LetT be the quaternion algebra constructed over a real anti-
Euclidean quadratic four-dimensional vector space. Brackx
[1], Deavours [2], and Sudbery [3] researched properties of
theories of a quaternion function.Naser [4] gave properties of
hyperholomorphic functions, and Nôno [5, 6] gave proper-
ties of various hyperholomorphic functions. They obtained
basic theorems such as Cauchy Theorem, Morera’s Theorem,
and Cauchy Integral Formula with respect to Clifford anal-
ysis. Also, we [7–10] have investigated certain properties of
hyperholomorphic functions and some regular functions in
Clifford analysis.

A dual quaternion algebra DH is an ordered pair of
quaternions and is constructed from real eight-dimensional
vector spaces. A dual quaternion can be represented in the
form 𝑧 = 𝜁 + 𝜀𝜁∗, where 𝜁 and 𝜁∗ are ordinary quaternions
and 𝜀 is the dual symbol. The quaternion can represent only
rotation, while the dual quaternion can do both rotation and
translation. So, the dual quaternion is used in applications to
3D computer graphics, robotics, and computer vision. Ken-
wright [11] gave characteristics of dual quaternions; Pennestr̀ı
and Stefanelli [12] researched some properties using dual, and
Kula and Yayli [13] investigated dual split quaternions and
screw motion in Minkowski 3-space.

Son [14–16] gave the extension problem for the solutions
of partial differential equations in R𝑛 and it is generalized
for the solutions of the Riesz system. In this paper, we give
some regular functions with values in dual quaternions and

research the extension problem for regular functions with
values in dual quaternions. Also, we give some applications
for these problems.

2. Preliminaries

We consider associated Pauli matrices

𝑒
0
= (

1 0

0 1
) , 𝑒

1
= (

𝑖 0

0 −𝑖
) ,

𝑒
2
= (

0 1

−1 0
) , 𝑒

3
= (

0 𝑖

𝑖 0
) .

(1)

Then the associated Pauli matrices satisfy the triple rule as
follows:

𝑒
2

𝑗
= −1, 𝑒

𝑗
𝑒
𝑘
+ 𝑒
𝑘
𝑒
𝑗
= −𝛿
𝑗𝑘

(𝑗, 𝑘 = 1, 2, 3) , (2)

where 𝛿
𝑗𝑘
is Kronecker delta. And we let the dual symbol

𝜀 = (

0 1

0 0
) (3)

be a nonzero and satisfy 0𝜀 = 𝜀0 = 0, 1𝜀 = 𝜀1 = 𝜀, 𝜀2 = 0. The
element 𝑒

0
is the identity and the element 𝜀 is the dual identity

ofT.
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The dual quaternion algebra DH is a noncommutative
and associative one of the quaternion algebra. Then

DH :=

{

{

{

𝑧 =

3

∑

𝑗=0

(𝑒
𝑗
𝑥
𝑗
+ 𝑒
𝑗
𝑥
∗

𝑗
𝜀) | 𝑥
𝑗
, 𝑥
∗

𝑗
∈ R

(𝑗 = 0, 1, 2, 3)

}

}

}

= {𝑧 = 𝜁 + 𝜁
∗
𝜀 | 𝜁, 𝜁

∗
∈ T} ≅ T ×T,

(4)

where 𝜁 = ∑3
𝑗=0
𝑒
𝑗
𝑥
𝑗
, 𝜁∗ = ∑3

𝑗=0
𝑒
𝑗
𝑥
∗

𝑗
, and 𝑥∗

𝑗
is a dual quater-

nion component of 𝑥
𝑗
. We can identify DH with C4. The

numbers of the skew fieldDH of dual quaternions are

𝑧 =

3

∑

𝑗=0

(𝑒
𝑗
𝑥
𝑗
+ 𝑒
𝑗
𝑥
∗

𝑗
𝜀)

=

3

∑

𝑗=0

𝑒
𝑗
𝜉
𝑗

= (

𝜉
0
+ 𝑖𝜉
1
𝜉
2
+ 𝑖𝜉
3

−𝜉
2
+ 𝑖𝜉
3
𝜉
0
− 𝑖𝜉
1

) ,

𝑤 =

3

∑

𝑗=0

(𝑒
𝑗
𝑦
𝑗
+ 𝑒
𝑗
𝑦
∗

𝑗
𝜀)

=

3

∑

𝑗=0

𝑒
𝑗
𝜂
𝑗

= (

𝜂
0
+ 𝑖𝜂
1
𝜂
2
+ 𝑖𝜂
3

−𝜂
2
+ 𝑖𝜂
3
𝜂
0
− 𝑖𝜂
1

) ,

(5)

where 𝜉
𝑗
= 𝑥
𝑗
+ 𝜀𝑥
∗

𝑗
and 𝜂

𝑗
= 𝑦
𝑗
+ 𝜀𝑦
∗

𝑗
(𝑗 = 0, 1, 2, 3). The

dual quaternion conjugate 𝑧∗ of 𝑧 is

𝑧
∗
=

3

∑

𝑗=0

(𝑒
𝑗
𝑥
𝑗
+ 𝑒
𝑗
𝑥
∗

𝑗
𝜀)

=

3

∑

𝑗=0

𝑒
𝑗
𝜉
𝑗

= (

𝜉
0
− 𝑖𝜉
1
−𝜉
2
− 𝑖𝜉
3

𝜉
2
− 𝑖𝜉
3
𝜉
0
+ 𝑖𝜉
1

) ,

(6)

where 𝑒
𝑗
= −𝑒
𝑗
.The absolute value |𝑧| of 𝑧 and the inverse 𝑧−1

of 𝑧 are, respectively,

|𝑧| = √𝑧𝑧
∗
= √

3

∑

𝑗=0

𝜉
2

𝑗
,

𝑧
−1
=

𝑧
∗

|𝑧|
2

(𝑧 ̸= 0) .

(7)

Let Ω be an open subset of C2 × C2 and let the dual
quaternion function

𝑓 : Ω 󳨀→ DH (8)

satisfy

𝑧 ∈ Ω

󳨃󳨀→ 𝑓 (𝑧)

=

3

∑

𝑗=0

𝑒
𝑗
𝑓
𝑗
(𝜁, 𝜁
∗
)

= (

𝑓
0
(𝜁, 𝜁
∗
) + 𝑖𝑓
1
(𝜁, 𝜁
∗
) 𝑓
2
(𝜁, 𝜁
∗
) + 𝑖𝑓
3
(𝜁, 𝜁
∗
)

−𝑓
2
(𝜁, 𝜁
∗
) + 𝑖𝑓
3
(𝜁, 𝜁
∗
) 𝑓
0
(𝜁, 𝜁
∗
) − 𝑖𝑓
1
(𝜁, 𝜁
∗
)

)

∈ DH,

(9)

where 𝑓
𝑗
(𝜁, 𝜁
∗
) = 𝑢
𝑗
(𝜁, 𝜁
∗
) + 𝜀𝑢

∗

𝑗
(𝜁, 𝜁
∗
) and 𝑢

𝑗
, 𝑢∗
𝑗
(𝑗 = 0, 1,

2, 3) are real-valued functions.
We use the following dual quaternion differential opera-

tors inDH:

𝐷 =

3

∑

𝑗=0

𝑒
𝑗

𝜕

𝜕𝑞
𝑗

=(

𝜕

𝜕𝑞
0

− 𝑖

𝜕

𝜕𝑞
1

−

𝜕

𝜕𝑞
2

− 𝑖

𝜕

𝜕𝑞
3

𝜕

𝜕𝑞
2

− 𝑖

𝜕

𝜕𝑞
3

𝜕

𝜕𝑞
0

+ 𝑖

𝜕

𝜕𝑞
1

),

(10)

and the dual quaternion conjugates differential operators

𝐷
∗
=

3

∑

𝑗=0

𝑒
𝑗

𝜕

𝜕𝑞
𝑗

= (

𝜕

𝜕𝑞
0

+ 𝑖

𝜕

𝜕𝑞
1

𝜕

𝜕𝑞
2

+ 𝑖

𝜕

𝜕𝑞
3

−

𝜕

𝜕𝑞
2

+ 𝑖

𝜕

𝜕𝑞
3

𝜕

𝜕𝑞
0

− 𝑖

𝜕

𝜕𝑞
1

),

(11)

where 𝜕/𝜕𝑞
𝑗
= 𝜕/𝜕𝑥

𝑗
+ 𝜀(𝜕/𝜕𝑥

∗

𝑗
) (𝑗 = 0, 1, 2, 3) and 𝑞

𝑗
=

𝑥
𝑗
+ (1/𝜀)𝑥

∗

𝑗
. Then we have

𝐷𝐷
∗
=

3

∑

𝑗=0

𝜕
2

𝜕𝑞
2

𝑗

= Δ
𝑞
. (12)

Definition 1. LetΩ be an open set inC2×C2. A function𝑓(𝑧)
is said to be 𝜀-regular inΩ if the following two conditions are
satisfied:

(a) 𝑓
𝑗
(𝑗 = 0, 1, 2, 3) are continuously differential func-

tions in Ω,
(b) 𝐷∗𝑓(𝑧) = 0 in Ω.
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Definition 2. LetΩ be an open set inC2×C2. A function𝑓(𝑧)
is said to be 𝜀-biregular in Ω if the following two conditions
are satisfied:

(a) 𝑓
𝑗
(𝑗 = 0, 1, 2, 3) are continuously differential func-

tions in Ω,
(b) 𝐷∗𝑓(𝑧) = 0 and 𝑓(𝑧)𝐷∗ = 0 in Ω.

The operators act for a function 𝑓(𝑧) onDH as follows:

𝐷
∗
𝑓 (𝑧) = (

3

∑

𝑗=0

𝑒
𝑗

𝜕

𝜕𝑞
𝑗

)(

3

∑

𝑗=0

𝑒
𝑗
𝑓
𝑗
)

= (

𝐷
∗

1
𝐷
∗

2

𝐷
∗

3
𝐷
∗

4

) ,

(13)

where

𝐷
∗

1
= (

𝜕𝑓
0

𝜕𝑞
0

−

𝜕𝑓
1

𝜕𝑞
1

−

𝜕𝑓
2

𝜕𝑞
2

−

𝜕𝑓
3

𝜕𝑞
3

)

+ 𝑖 (

𝜕𝑓
1

𝜕𝑞
0

+

𝜕𝑓
0

𝜕𝑞
1

+

𝜕𝑓
3

𝜕𝑞
2

−

𝜕𝑓
2

𝜕𝑞
3

) ,

𝐷
∗

2
= (

𝜕𝑓
2

𝜕𝑞
0

−

𝜕𝑓
3

𝜕𝑞
1

+

𝜕𝑓
0

𝜕𝑞
2

+

𝜕𝑓
1

𝜕𝑞
3

)

+ 𝑖 (

𝜕𝑓
3

𝜕𝑞
0

+

𝜕𝑓
2

𝜕𝑞
1

−

𝜕𝑓
1

𝜕𝑞
2

+

𝜕𝑓
0

𝜕𝑞
3

) ,

𝐷
∗

3
= (−

𝜕𝑓
2

𝜕𝑞
0

+

𝜕𝑓
3

𝜕𝑞
1

−

𝜕𝑓
0

𝜕𝑞
2

−

𝜕𝑓
1

𝜕𝑞
3

)

+ 𝑖 (

𝜕𝑓
3

𝜕𝑞
0

+

𝜕𝑓
2

𝜕𝑞
1

−

𝜕𝑓
1

𝜕𝑞
2

+

𝜕𝑓
0

𝜕𝑞
3

) ,

𝐷
∗

4
= (

𝜕𝑓
0

𝜕𝑞
0

−

𝜕𝑓
1

𝜕𝑞
1

−

𝜕𝑓
2

𝜕𝑞
2

−

𝜕𝑓
3

𝜕𝑞
3

)

+ 𝑖 (−

𝜕𝑓
1

𝜕𝑞
0

−

𝜕𝑓
0

𝜕𝑞
1

−

𝜕𝑓
3

𝜕𝑞
2

+

𝜕𝑓
2

𝜕𝑞
3

) ,

𝑓 (𝑧)𝐷
∗
= (

3

∑

𝑗=0

𝑒
𝑗
𝑓
𝑗
)(

3

∑

𝑗=0

𝑒
𝑗

𝜕

𝜕𝑞
𝑗

)

= (

𝐷
∗

5
𝐷
∗

6

𝐷
∗

7
𝐷
∗

8

) ,

(14)

where

𝐷
∗

5
= (

𝜕𝑓
0

𝜕𝑞
0

−

𝜕𝑓
1

𝜕𝑞
1

−

𝜕𝑓
2

𝜕𝑞
2

−

𝜕𝑓
3

𝜕𝑞
3

)

+ 𝑖 (

𝜕𝑓
1

𝜕𝑞
0

+

𝜕𝑓
0

𝜕𝑞
1

−

𝜕𝑓
3

𝜕𝑞
2

+

𝜕𝑓
2

𝜕𝑞
3

) ,

𝐷
∗

6
= (

𝜕𝑓
2

𝜕𝑞
0

+

𝜕𝑓
3

𝜕𝑞
1

+

𝜕𝑓
0

𝜕𝑞
2

−

𝜕𝑓
1

𝜕𝑞
3

)

+ 𝑖 (

𝜕𝑓
3

𝜕𝑞
0

−

𝜕𝑓
2

𝜕𝑞
1

+

𝜕𝑓
1

𝜕𝑞
2

+

𝜕𝑓
0

𝜕𝑞
3

) ,

𝐷
∗

7
= (−

𝜕𝑓
2

𝜕𝑞
0

−

𝜕𝑓
3

𝜕𝑞
1

−

𝜕𝑓
0

𝜕𝑞
2

+

𝜕𝑓
1

𝜕𝑞
3

)

+ 𝑖 (

𝜕𝑓
3

𝜕𝑞
0

−

𝜕𝑓
2

𝜕𝑞
1

+

𝜕𝑓
1

𝜕𝑞
2

+

𝜕𝑓
0

𝜕𝑞
3

) ,

𝐷
∗

8
= (

𝜕𝑓
0

𝜕𝑞
0

−

𝜕𝑓
1

𝜕𝑞
1

−

𝜕𝑓
2

𝜕𝑞
2

−

𝜕𝑓
3

𝜕𝑞
3

)

+ 𝑖 (−

𝜕𝑓
1

𝜕𝑞
0

−

𝜕𝑓
0

𝜕𝑞
1

+

𝜕𝑓
3

𝜕𝑞
2

−

𝜕𝑓
2

𝜕𝑞
3

) .

(15)

Remark 3. Equations (b) of Definition 2 are equivalent to the
following system:

𝜕𝑓
0

𝜕𝑞
0

−

𝜕𝑓
1

𝜕𝑞
1

−

𝜕𝑓
2

𝜕𝑞
2

−

𝜕𝑓
3

𝜕𝑞
3

= 0,

𝜕𝑓
1

𝜕𝑞
0

= −

𝜕𝑓
0

𝜕𝑞
1

,

𝜕𝑓
3

𝜕𝑞
2

=

𝜕𝑓
2

𝜕𝑞
3

,

𝜕𝑓
2

𝜕𝑞
0

= −

𝜕𝑓
0

𝜕𝑞
2

,

𝜕𝑓
3

𝜕𝑞
1

=

𝜕𝑓
1

𝜕𝑞
3

,

𝜕𝑓
3

𝜕𝑞
0

= −

𝜕𝑓
0

𝜕𝑞
3

,

𝜕𝑓
2

𝜕𝑞
1

=

𝜕𝑓
1

𝜕𝑞
2

.

(16)

3. Extension Problem for the Dual
Quaternion Functions

Definition 4. LetΩ be a domain in C𝑛 × C𝑛 (𝑛 ≥ 1). A func-
tion 𝑓(𝑧) = ∑𝑛−1

𝑗=0
𝑒
𝑗
𝑓
𝑗
(𝑧) is said to be regular inΩ if

𝐷𝑓 (𝑧) = 0, (17)

where𝐷 = ∑𝑛−1
𝑗=0
𝑒
𝑗
(𝜕/𝜕𝑞
𝑗
) onΩ.

Theorem 5 (uniqueness theorem for regular functions). If
two regular functions 𝑓 and 𝑔 in a domainΩ ⊂ C𝑛 × C𝑛 (𝑛 ≥
1) and coincide on a nonempty open set 𝐺 ⊂ Ω, then 𝑓 ≡ 𝑔 in
Ω.

Rocha-Chávez et al. [17] obtained the following remark.

Remark 6. For a regular function 𝑓 in the domain Ω ⊂ C𝑛 ×
C𝑛 (𝑛 ≥ 1) and a bounded domain 𝐺 with smooth boundary
𝑏𝐺, such that 𝐺 ⊂ Ω, one has

𝑓 (𝑧) =

1

𝑎
𝑛

∫

𝑏𝐺

𝜁 − 𝑧

󵄨
󵄨
󵄨
󵄨
𝜁 − 𝑧

󵄨
󵄨
󵄨
󵄨

𝑛
𝑑𝜎
𝜁
𝑓 (𝜁) , 𝑧 ∈ 𝐺, (18)

with 𝑎
𝑛
the area of the unit sphere in C𝑛 and 𝑑𝜎

𝜁
a Clifford

algebra valued differential form of order 𝑛 − 1.

Let Ω = Ω
1
× Ω
2
be a domain in C4 × C𝑛−4 (𝑛 ≥

5) where Ω
1
is a domain in C4(𝜉

0
, 𝜉
1
, 𝜉
2
, 𝜉
3
) and Ω

2
is a

domain in C𝑛−4(𝜉
4
, 𝜉
5
, . . . , 𝜉

𝑛−1
). Let 𝑈 be an open connected

neighborhood of 𝑏Ω.
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Proposition 7. If 𝑓(𝑧) is a regular function in 𝑈 ⊂ C4 ×
C𝑛−4 (𝑛 ≥ 5) which satisfies the condition

𝐷
∗
𝑓 (𝑧) = 0, (19)

then𝑓(𝑧) can be extended continuously to a regular function in
the whole domain of Ω. That is, there exists a regular function
̃
𝑓(𝑧) in Ω such that ̃𝑓(𝑧) = 𝑓(𝑧) in 𝑈.

Proof. ByRemark 6 and the proof of themain extension theo-
rem of Son [15], it is proved.

We consider the system of an extension of the system (16)

𝜕𝑓
0

𝜕𝑞
0

−

𝜕𝑓
1

𝜕𝑞
1

− ⋅ ⋅ ⋅ −

𝜕𝑓
𝑛−1

𝜕𝑞
𝑛−1

= 0,

𝜕𝑓
𝑗

𝜕𝑞
0

= −

𝜕𝑓
0

𝜕𝑞
𝑗

,

𝜕𝑓
𝑙

𝜕𝑞
𝑘

=

𝜕𝑓
𝑘

𝜕𝑞
𝑙

(𝑗, 𝑘, 𝑙 = 1, . . . , 𝑛 − 1) ,

(20)

where 𝑓(𝑧) = {𝑓
0
(𝑧), 𝑓
1
(𝑧), . . . , 𝑓

𝑛−1
(𝑧)} are the unknown

functions.
By using the same technique as in Son [15], we have the

following theorem.

Theorem 8. Let 𝑓(𝑧) = {𝑓
0
(𝑧), 𝑓
1
(𝑧), . . . , 𝑓

𝑛−1
(𝑧)} be a given

C2-solution of the system (20) in 𝑈 ⊂ C4 × C𝑛−4 (𝑛 ≥ 5),
which satisfies the system (16) in Remark 3. If the functions
𝑓
4
(𝑧), 𝑓
5
(𝑧), . . . , 𝑓

𝑛−1
(𝑧) depend only on 𝜉

0
, 𝜉
1
, 𝜉
2
, 𝜉
3
, and 𝑈

is an open neighborhood of the boundary of the domain Ω ⊂
C4 × C𝑛−4 (𝑛 ≥ 5), then 𝑓(𝑧) can be extended to a solution of
the system (20) in the whole domain of Ω.

Proof. Let the function 𝜙(𝑧)with values in Clifford algebra be
defined by

𝜙 (𝑧) =

𝑛−1

∑

𝑗=0

𝑓
𝑗
𝑒
𝑗
. (21)

Then we have 𝐷𝜙(𝑧) = 0 and 𝐷∗𝜙(𝑧) = 0. By Proposition 7,
the result follows.

We consider the following system:
𝑛−1

∑

𝑗=0

𝑚−1

∑

𝑘=0

𝐻
(𝑃)

𝑗𝑘
(𝑧)

𝜕𝑓
𝑗

𝜕𝑞
𝑘

= 0 (𝑃 = 1, . . . , 𝑝) , (22)

where 𝐻(𝑃)
𝑗𝑘
(𝑧) are holomorphic functions and 𝑓 = {𝑓

0
, 𝑓
1
,

. . . , 𝑓
𝑛−1
} are the unknown functions of the system (22).

LetΩ be an open set inC𝑛 (𝑛 ≥ 2) and let𝐾 be a compact
subset ofΩ such thatΩ\𝐾 is simply connected. We consider
the system

𝑛−1

∑

𝑗=0

𝑚−1

∑

𝑘=0

𝐻
(𝑃)

𝑗𝑘
(𝑧)

𝜕𝜔
𝑗

𝜕𝑞
𝑘

= 𝜑
(𝑃)

(𝑧)
(𝑃 = 1, . . . , 𝑝) , (23)

where 𝜑(𝑃)
(𝑧)
∈ C∞(Ω).

By using the same technique as in Son [16], we have the
following theorem and example.

Theorem 9. If every 𝜑 = {𝜑(1), . . . , 𝜑(𝑝)} ∈ C∞(Ω) in the
inhomogeneous system (23) has a solution

𝜔 = {𝜔
0
, . . . , 𝜔

𝑛−1
} ∈ C

∞
(Ω) , (24)

then every solution 𝑓 of (22) given inΩ\𝐾 can be extended to
a solution of this system (23) in the whole domain of Ω.

Proof. This result follows from the theorem in [18, page 30].

Example 10. We give an application of Theorem 9 to the sys-
tem (20) and recall the system (16) as follows:

𝜕𝑓
0

𝜕𝑞
0

−

𝜕𝑓
1

𝜕𝑞
1

− ⋅ ⋅ ⋅ −

𝜕𝑓
𝑛−1

𝜕𝑞
𝑛−1

= 0,

𝜕𝑓
𝑗

𝜕𝑞
0

+

𝜕𝑓
0

𝜕𝑞
𝑗

= 0,

𝜕𝑓
𝑙

𝜕𝑞
𝑘

−

𝜕𝑓
𝑘

𝜕𝑞
𝑙

= 0

(𝑗, 𝑘, 𝑙 = 1, . . . , 𝑛 − 1) .

(25)

Assume that

𝜕𝑓
𝑛−1

𝜕𝑞
𝑛−1

= 0. (26)

Then we have the following form:

𝜕𝑓
0

𝜕𝑞
0

−

𝜕𝑓
1

𝜕𝑞
1

− ⋅ ⋅ ⋅ −

𝜕𝑓
𝑛−2

𝜕𝑞
𝑛−2

= 0,

𝜕𝑓
𝑗

𝜕𝑞
0

+

𝜕𝑓
0

𝜕𝑞
𝑗

= 0,

𝜕𝑓
𝑙

𝜕𝑞
𝑘

−

𝜕𝑓
𝑘

𝜕𝑞
𝑙

= 0

(𝑗, 𝑘, 𝑙 = 1, . . . , 𝑛 − 2) .

(27)

The corresponding inhomogeneous system of (27) has the
following form:

𝜕𝜔
0

𝜕𝑞
0

−

𝜕𝜔
1

𝜕𝑞
1

− ⋅ ⋅ ⋅ −

𝜕𝜔
𝑛−2

𝜕𝑞
𝑛−2

= 𝜑,

𝜕𝜔
𝑗

𝜕𝑞
0

+

𝜕𝜔
0

𝜕𝑞
𝑗

= 𝜑
𝑗,0
,

𝜕𝜔
𝑗

𝜕𝑞
𝑘

−

𝜕𝜔
𝑘

𝜕𝑞
𝑗

= 𝜑
𝑗,𝑘
,

𝜕𝜔
𝑘

𝜕𝑞
0

+

𝜕𝜔
0

𝜕𝑞
𝑘

= 𝜑
𝑘,0
,

𝜕𝜔
𝑗

𝜕𝑞
𝑙

−

𝜕𝜔
𝑙

𝜕𝑞
𝑗

= 𝜑
𝑗,𝑙
,

𝜕𝜔
𝑘

𝜕𝑞
𝑙

−

𝜕𝜔
𝑙

𝜕𝑞
𝑘

= 𝜑
𝑘,𝑙

(𝑗, 𝑘, 𝑙 = 1, . . . , 𝑛 − 2) ,

(28)
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where 𝜑, 𝜑
𝑗,0
, 𝜑
𝑗,𝑘
, 𝜑
𝑘,0
, 𝜑
𝑗,𝑙
, 𝜑
𝑘,𝑙
∈ C∞(Ω). Then we can get

the system from (28) as

𝜕𝜔
𝑘

𝜕𝑞
𝑗

=

𝜕𝜔
𝑗

𝜕𝑞
𝑘

− 𝜑
𝑗,𝑘
,

𝜕𝜔
𝑘

𝜕𝑞
0

= −

𝜕𝜔
0

𝜕𝑞
𝑘

+ 𝜑
𝑘,0
,

𝜕𝜔
𝑙

𝜕𝑞
𝑗

=

𝜕𝜔
𝑗

𝜕𝑞
𝑙

− 𝜑
𝑗,𝑙
,

𝜕𝜔
𝑙

𝜕𝑞
𝑘

=

𝜕𝜔
𝑘

𝜕𝑞
𝑙

− 𝜑
𝑘,𝑙
,

(29)

𝜕
2
𝜔
𝑘

𝜕𝑞
𝑗
𝜕𝑞
0

+

𝜕𝜑
𝑗,𝑘

𝜕𝑞
0

= −

𝜕
2
𝜔
0

𝜕𝑞
𝑗
𝜕𝑞
𝑘

+

𝜕𝜑
𝑗,0

𝜕𝑞
𝑘

,

𝜕
2
𝜔
𝑗

𝜕𝑞
𝑙
𝜕𝑞
𝑘

−

𝜕𝜑
𝑗,𝑙

𝜕𝑞
𝑘

=

𝜕
2
𝜔
𝑘

𝜕𝑞
𝑗
𝜕𝑞
𝑙

−

𝜕𝜑
𝑘,𝑙

𝜕𝑞
𝑗

.

(30)

From (29), we have

𝜕

𝜕𝑞
𝑗

(−

𝜕𝜔
0

𝜕𝑞
𝑘

+ 𝜑
𝑘,0
) +

𝜕𝜑
𝑗,𝑘

𝜕𝑞
0

= −

𝜕
2
𝜔
0

𝜕𝑞
𝑗
𝜕𝑞
𝑘

+

𝜕𝜑
𝑗,0

𝜕𝑞
𝑘

,

𝜕

𝜕𝑞
𝑙

(

𝜕𝜔
𝑘

𝜕𝑞
𝑗

+ 𝜑
𝑗,𝑘
) −

𝜕𝜑
𝑗,𝑙

𝜕𝑞
𝑘

=

𝜕
2
𝜔
𝑘

𝜕𝑞
𝑗
𝜕𝑞
𝑙

−

𝜕𝜑
𝑘,𝑙

𝜕𝑞
𝑗

.

(31)

Thus, we can have the system

𝜕𝜑
𝑘,0

𝜕𝑞
𝑗

+

𝜕𝜑
𝑗,𝑘

𝜕𝑞
0

=

𝜕𝜑
𝑗,0

𝜕𝑞
𝑘

,

𝜕𝜑
𝑗,𝑘

𝜕𝑞
𝑙

−

𝜕𝜑
𝑗,𝑙

𝜕𝑞
𝑘

= −

𝜕𝜑
𝑘,𝑙

𝜕𝑞
𝑗

. (32)

We let

𝜔̃ =

𝑛−2

∑

𝑗=0

𝑒
𝑗
𝜔
𝑗
, 𝑧̃ =

𝑛−2

∑

𝑗=0

𝑒
𝑗
𝜉
𝑗
. (33)

The system (29) has the form

𝐷𝜔̃ = 𝐹 (𝑧̃, 𝜉
𝑛−1
) ,

𝜕𝜔
0

𝜕𝑞
𝑘

+

𝜕𝜔
𝑘

𝜕𝑞
0

= 𝜑
𝑘,0
, (34)

𝜕𝜔
𝑗

𝜕𝑞
𝑙

−

𝜕𝜔
𝑙

𝜕𝑞
𝑗

= 𝜑
𝑗,𝑙
,

𝜕𝜔
𝑘

𝜕𝑞
𝑙

−

𝜕𝜔
𝑙

𝜕𝑞
𝑘

= 𝜑
𝑘,𝑙
, (35)

where

𝐹 (𝑧̃, 𝜉
𝑛−1
) = 𝜑 +

𝑛−2

∑

𝑗=1

𝑒
𝑗
𝜑
𝑗,0

+ (

𝑛

2

− 1)

𝑛−2

∑

𝛼=1

𝑛−2

∑

𝑗,𝑘=1

𝑗,𝑘 ̸= 𝛼

𝑒
𝛼
𝜑
𝑗,𝑘
.

(36)

We put

𝐹
1
:= 𝜑 +

𝑛−2

∑

𝑗=1

𝑒
𝑗
𝜑
𝑗,0
,

𝐹
2
:= (

𝑛

2

− 1)

𝑛−2

∑

𝛼=1

𝑛−2

∑

𝑗,𝑘=1

𝑗,𝑘 ̸= 𝛼

𝑒
𝛼
𝜑
𝑗,𝑘
.

(37)

From the system (28), we have

𝜔
0
= ∫(𝜑 +

𝜕𝜔
1

𝜕𝑞
1

+

𝜕𝜔
2

𝜕𝑞
2

+ ⋅ ⋅ ⋅ +

𝜕𝜔
𝑛−2

𝜕𝑞
𝑛−2

)𝑑𝑞
0
,

𝜔
𝑘
= ∫(𝜑

𝑘,0
−

𝜕𝜔
0

𝜕𝑞
𝑘

)𝑑𝑞
0
(𝑘 = 1, . . . , 𝑛 − 2) .

(38)

By the systems (29) and (38), we get

𝜔̃ = ∫𝐹𝑑𝑞
0
+ ∫

𝑛−2

∑

𝑗=1

𝜕𝜔
𝑗

𝜕𝑞
𝑗

𝑑𝑞
0

− ∫

𝑛−2

∑

𝑗=1

𝑒
𝑗

𝜕𝜔
0

𝜕𝑞
𝑗

𝑑𝑞
0
− ∫𝐹
2
𝑑𝑞
0

= ∫𝐹𝑑𝑞
0
− ∫

𝑛−2

∑

𝑗=1

𝑒
𝑗

𝜕𝜔̃

𝜕𝑞
𝑗

𝑑𝑞
0
.

(39)

By Cauchy Integral Formula,

𝐹 (𝑍, 𝜉
𝑛−1
) =

1

(2𝜋𝑖)
𝑛
∫

𝐹 (𝑍, 𝜉
𝑛−1
)

𝑍 − 𝜁

𝑑𝑍, (40)

where 𝑍 = ∑𝑛−2
𝑘=0
𝑒
𝑘
𝑍
𝑘
. Thus we have

𝜔̃ =

1

(2𝜋𝑖)
𝑛
∬

𝐹(𝑍, 𝜉
𝑛−1
)

𝑍 − 𝜁

𝑑𝑍
0
𝑑𝑍, (41)

and 𝜔̃ = 0 when |𝜉
𝑛−1
| is large enough. Also, {𝜔̃, 0} =

{𝜔
0
, 𝜔
1
, . . . , 𝜔

𝑛−2
, 0} is a solution of the system (22) outside

a compact set 𝐾 of Ω. FromTheorem 5, it follows that 𝜔̃ = 0
is outside the compact set 𝐾 of Ω or 𝜔 ∈ C∞(Ω). That is,
𝜔
0
, 𝜔
1
, . . . , 𝜔

𝑛−2
∈ C∞(Ω). It follows from the system (35)

that

𝜔
𝑛−1
= ∫(

𝜕𝜔
𝑚−1

𝜕𝑞
𝑛−1

− 𝜑
𝑚−1,𝑛−1

)𝑑𝑞
𝑚−1
. (42)

Since 𝜔
𝑚−1

∈ C∞(Ω), we get 𝜕𝜔
𝑚−1
/𝜕𝑞
𝑛−1
∈ C∞(Ω). We can

choose 𝜔
𝑛−1

∈ C∞(Ω) which satisfy the system (35). From
(42), we find that
𝜕𝜔
𝑛−1

𝜕𝑞
𝑃

= ∫(

𝜕
2
𝜔
𝑚−1

𝜕𝑞
𝑃
𝜕𝑞
𝑛−1

−

𝜕𝜑
𝑚−1,𝑛−1

𝜕𝑞
𝑃

)𝑑𝑞
𝑚−1

= ∫(

𝜕

𝜕𝑞
𝑛−1

(

𝜕𝜔
𝑃

𝜕𝑞
𝑚−1

) +

𝜕𝜑
𝑚−1,𝑃

𝜕𝑞
𝑛−1

−

𝜕𝜑
𝑚−1,𝑛−1

𝜕𝑞
𝑃

)𝑑𝑞
𝑚−1

= ∫(

𝜕

𝜕𝑞
𝑛−1

(

𝜕𝜔
𝑃

𝜕𝑞
𝑚−1

) −

𝜕𝜑
𝑃,𝑛−1

𝜕𝑞
𝑚−1

)𝑑𝑞
𝑚−1

=

𝜕𝜔
𝑃

𝜕𝑞
𝑛−1

− 𝜑
𝑃,𝑛−1

.

(43)

Hence, 𝜔
𝑛−1

satisfies the system (29). This means that the
function 𝜔 = (𝜔̃, 𝜔

𝑛−1
) = (𝜔

0
, . . . , 𝜔

𝑛−1
) is a solution of the

system (29) and 𝜔 ∈ C∞(Ω).
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[17] R. Rocha-Chávez, M. Shapiro, and F. Sommen, Integral the-
orems for functions and differential forms in C𝑚, vol. 428 of

Research Notes in Mathematics, Chapman & Hall/CRC, Boca
Raton, Fla, USA, 2002.
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