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Theflowof blood through a narrow arterywith bell-shaped stenosis is investigated, treating blood asCasson fluid. Present results are
compared with the results of the Herschel-Bulkley fluidmodel obtained byMisra and Shit (2006) for the same geometry. Resistance
to flow and skin friction are normalized in two different ways such as (i) with respect to the same non-Newtonian fluid in a normal
artery which gives the effect of a stenosis and (ii) with respect to the Newtonian fluid in the stenosed artery which spells out the
non-Newtonian effects of the fluid. It is found that the resistance to flow and skin friction increase with the increase of maximum
depth of the stenosis, but these flow quantities (when normalized with non-Newtonian fluid in normal artery) decrease with the
increase of the yield stress, as obtained by Misra and Shit (2006). It is also noticed that the resistance to flow and skin friction
increase (when normalized with Newtonian fluid in stenosed artery) with the increase of the yield stress.

1. Introduction

The study of the fluid dynamical aspects of blood flow
through a stenosed artery is useful for the fundamental
understanding of circulatory disorders. Stenosis in an artery
is the narrowing of the blood flow area in the artery by the
development of arteriosclerosis plaques due to the deposits of
fats, cholesterol, and so forth on the inner wall of the artery.
This leads to an increase in the resistance to flow and asso-
ciated reduction in blood supply in the downstream which
leads to serious cardiovascular diseases such as myocardial
infarction and cerebral strokes [1–3].

Blood shows Newtonian fluid’s character when it flows
through larger diameter arteries at high shear rates, but it
exhibits a remarkable non-Newtonian behavior when it flows
through small diameter arteries at low shear rates [4, 5].
Moreover, there is an increase in viscosity of blood at low rate
s of shear as the red blood cells tend to aggregate into the
Rouleaux form [6]. Rouleaux form behaves as a semi-solid
along the center forming a plug flow region. In the plug flow
region, we have a flattened parabolic velocity profile rather

than the parabolic velocity profile of a Newtonian fluid. This
behavior can be modeled by the concept of yield stress. The
yield stress for blood depends strongly on fibrinogen concen-
tration and is also dependent on the hematocrit. The yield
stress values for normal human blood is between 0.01 and
0.06 dyn/cm2 [7].

Casson fluid model is a non-Newtonian fluid with yield
stress which is widely used formodeling blood flow in narrow
arteries. Many researchers have used the Casson fluid model
for mathematical modeling of blood flow in narrow arteries
at low shear rates. It has been demonstrated by Blair [8] and
Copley [9] that theCassonfluidmodel is adequate for the rep-
resentation of the simple shear behavior of blood in narrow
arteries. Casson [10] examined the validity of Casson fluid
model in his studies pertaining to the flow characteristics of
blood and reported that at low shear rates the yield stress
for blood is nonzero. It has been established by Merrill et al.
[11] that the Casson fluid model predicts satisfactorily the
flow behaviors of blood in tubes with the diameter of 130–
1000 𝜇m.
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Charm and Kurland [12] pointed out in their experimen-
tal findings that the Casson fluidmodel could be the best rep-
resentative of blood when it flows through narrow arteries at
low shear rates and that it could be applied to human blood at
a wide range of hematocrit and shear rates. Blair and Spanner
[13] reported that blood behaves like aCasson fluid in the case
of moderate shear rate flows, and it is appropriate to assume
blood as a Casson fluid. Aroesty and Gross [14] have devel-
oped a Casson fluid theory for pulsatile blood flow through
narrow uniform arteries. Chaturani and Samy [15] analyzed
the pulsatile flow of Casson fluid through stenosed arteries
using the perturbation method.

Herschel-Bulkley fluid is also a non-Newtonian fluidwith
yield stress which is more general in the sense that it contains
two parameters such as the yield stress and power law index,
whereas the Casson fluid has only one parameter which is the
yield stress. Herschel-Bulkley fluid’s constitutive equation can
be reduced to the constitutive equations of Newtonian, Power
law, and Bingham fluid models by taking appropriate values
to the parameters. Chaturani and Ponnalagar Samy [16] ana-
lyzed the steady flow of Herschel-Bulkley fluid for blood flow
through cosine-shaped stenosed arteries.

Misra and Shit [17] analyzed the steady flow of Herschel-
Bulkley fluid for blood flow in narrow arteries with bell-
shaped mild stenosis. The mathematical modeling of Casson
fluid model for steady flow of blood in narrow arteries with
bell-shaped mild stenosis was not studied by anyone so far,
according to the knowledge of the authors. Hence, in the
present study, a mathematical model is developed to analyze
the blood flow at low shear rates in narrow arteries with mild
bell-shaped stenosis, treating blood as Casson fluid model.
The results of the present study are compared with the results
of Misra and Shit [17], and Chaturani and Ponnalagar Samy
[16] and some possible clinical applications to the present
study are also given.

2. Formulation

Let us consider an axially symmetric, laminar, steady, and
fully developed flow of a non-Newtonian incompressible vis-
cous fluid (blood) in the axial direction (𝑧) through a circular
artery with bell-shaped mild stenosis. The non-Newtonian
behavior of the flowing blood is characterized by Casson fluid
model. The artery wall is assumed to be rigid (due to the
presence of the stenosis) and the artery is assumed to be long
enough so that the entrance and end effects can be neglected
in the arterial segment under study. A cylindrical polar coor-
dinate system (𝑟, 𝜓, 𝑧) is used to analyze the blood flow, where
𝑟 and 𝑧 are the variables taken in the radial and axial direc-
tions, respectively, and𝜓 is the azimuthal angle.Thegeometry
of the arterial segment with mild constriction is shown in
Figure 1.

Since the blood flow in narrow arteries is slow, the
magnitude of the inertial forces is negligibly small, and thus
the inertial terms in the momentum equations are neglected.
Since the considered flow is unidirectional and is in the axial
direction, the radial component of the momentum equation
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Figure 1: Geometry of the arterial segment with stenosis.

is ignored. The axial component of the momentum equation
is simplified to the following:

−
𝑑𝑝

𝑑𝑧
=
1

𝑟

𝑑 (𝑟𝜏)

𝑑𝑟
, (1)

where 𝜏 is the shear stress and 𝑝 is the pressure. The con-
stitutive equation (relationship between the shear stress and
strain rate) of Casson fluid model is defined as follows:

−
𝑑𝑢

𝑑𝑟
= 𝑓 (𝜏) =

{

{

{

1

𝑘
(√𝜏 − √𝜏𝑐)

2

, 𝜏 ≥ 𝜏
𝑐
,

0, 𝜏 ≤ 𝜏
𝑐
,

(2)

where 𝑢 is the velocity of blood in the axial direction, 𝜏
𝑐
is the

yield stress, and 𝑘 is the viscosity coefficient of Casson fluid.
The geometry of the segment of the narrow artery with

mild bell-shaped stenosis ismathematicaly defined as follows:

𝑅 (𝑧) = 𝑅
0
[1 −

𝛿

𝑅
0

𝑒
−𝑚
2
𝜖
2
𝑧
2
/𝑅
2

0] , (3)

where 𝑅
0
is the radius of the normal artery, 𝑅(𝑧) is the radius

of the artery in the stenosis region, 𝛿 is the depth of the
stenosis at its throat, 𝑚 is a parametric constant, and 𝜖 char-
acterizes the relative length of the constriction, defined as 𝜖 =
𝑅
0
/𝐿
0
.

Equation (3) can be rewritten as

𝑅 (𝑧)

𝑅
0

= 1 − 𝑎𝑒
−𝑏𝑧
2

, (4)

where 𝑎 = 𝛿/𝑅
0
and 𝑏 = 𝑚2𝜖2/𝑅2

0
. Note that 𝑎 and 𝑏 are the

parameters in the nondimensional form corresponding to the
maximum projection of the stenosis at its throat and variable
length of the stenosis in the segment of the narrow artery
under study, respectively. Equation (3) spells out that the bell-
shaped geometry has the advantage of having two parameters
such as 𝑎 and 𝑏 compared to cosine-curve shaped geometry
which has only one parameter, namely, the maximum depth
of the stenosis [15]. In the bell-shaped stenosis geometry, by
keeping 𝑏 as variable and 𝑎 as constant, one can generate
arteries with different stenosis lengths with the same maxi-
mumdepth of the stenosis 𝑎, and also by keeping 𝑎 as variable
and 𝑏 as constant one can generate arteries with different
maximum depths with the same length of the stenosis. The
different stenosis shapes obtained by varying the stenosis
height 𝑎 with 30% stenosis that is, 𝐿

0
= 1.5, are shown in
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Figure 2: Stenosis geometries for different values of stenosis height
𝑎.

Figure 2.The percentage of stenosis is given by 𝐿
0
/𝐿×100. In

the present study, we have taken 𝐿 = 5 cm and𝑚 = 2 as taken
by Misra and Shit [17].

Figure 3(a) depicts the shapes of stenoses with different
lengths by fixing 𝑎 = 0.2 and keeping 𝑏 as variable (for
different values of stenosis the length 𝐿

0
with fixed value of

𝑚 = 2). Figure 3(b) shows the shapes of stenoses with differ-
ent lengths by fixing 𝑎 = 0.2 and varying the values of 𝑏 (for
different values of 𝑚 and with a fixed value of 𝐿

0
= 1.5). It

is noticed that the width of the stenosis decreases with the
increase in the values of𝑚.

Equations (1) and (2) have to be solved with the help of
the following no slip boundary condition:

𝑢 = 0 at 𝑟 = 𝑅 (𝑧) , (5)

and the regularity condition

𝜏 is finite at 𝑟 = 0. (6)

3. Method of Solution

Integrating (1) and then using (6), we get

𝜏 = −
𝑟

2

𝑑𝑝

𝑑𝑧
. (7)

From (7), the skin friction 𝜏
𝑅
is obtained as

𝜏
𝑅
= −

𝑅

2

𝑑𝑝

𝑑𝑧
, (8)

where 𝑅 = 𝑅(𝑧).
The volumetric flow rate 𝑄 is as follows:

𝑄 =
𝜋𝑅
3

𝜏
3

𝑅

∫

𝜏
𝑅

0

𝜏
2
𝑓 (𝜏) 𝑑𝜏, (9)

where 𝜏 and 𝜏
𝑅
are given by (7) and (8), respectively.

Substituting (2) into (9), we get

𝑄 =
𝜋𝑅
3

𝜏
3

𝑅

∫

𝜏
𝑅

𝜏
𝐶

𝜏
2 1

𝑘
(√𝜏 − √𝜏𝐶)

2

𝑑𝜏. (10)

Integrating (10) and then simplifying, one can get

𝑄 =
𝜋𝑅
3

4𝑘
𝜏
𝑅
{1 −

16

7
(
𝜏
𝑐

𝜏
𝑅

)

1/2

+
4

3
(
𝜏
𝑐

𝜏
𝑅

) −
1

21
(
𝜏
𝑐

𝜏
𝑅

)

4

} .

(11)

Since 𝜏
𝑐
/𝜏
𝑅
≪ 1, neglecting the term involving (𝜏

𝑐
/𝜏
𝑅
)
4 in

(11), we get the expression for flow rate as

𝑄 =
𝜋𝑅
3

4𝑘
𝜏
𝑅
{1 −

16

7
(
𝜏
𝑐

𝜏
𝑅

)

1/2

+
4

3
(
𝜏
𝑐

𝜏
𝑅

)} . (12)

Using (8) in (12), we get

−
𝑑𝑝

𝑑𝑧
=
128𝜏
𝑐

49𝑅
+
8

𝑅
(
𝑄𝑘

𝜋𝑅3
−
𝜏
𝑐

147
) +

64

7𝑅

√
𝑘𝑄𝜏
𝑐

𝜋𝑅3
−
𝜏
2

𝑐

147
.

(13)

Neglecting the term involving 𝜏2
𝑐
in (13), we get

−
𝑑𝑝

𝑑𝑧
=
128𝜏
𝑐

49𝑅
+
8𝑄𝑘

𝜋𝑅4
+
64

7𝑅

√
𝑘𝑄𝜏
𝑐

𝜋𝑅3
. (14)

Integrating (14) along the length of the artery and using the
conditions that 𝑝 = 𝑝

1
at 𝑧 = −𝐿 and 𝑝 = 𝑝

2
at 𝑧 = 𝐿, we

obtain

𝑝
1
− 𝑝
2
=
128𝜏
𝑐

49𝑅
0

∫

𝐿

−𝐿

𝑑𝑧

(𝑅/𝑅
0
)
+
8𝑄𝑘

𝜋𝑅4
0

∫

𝐿

−𝐿

𝑑𝑧

(𝑅/𝑅
0
)
4

+
64

7
√
𝑄𝑘𝜏
𝑐

𝜋𝑅
5

0

∫

𝐿

−𝐿

𝑑𝑧

(𝑅/𝑅
0
)
5/2
.

(15)

Simplifying (15), one can obtain the following expression for
pressure drop:

𝑝
1
− 𝑝
2
=
256

49

𝜏
𝑐

𝑅
0

{(𝐿 − 𝐿
0
) + ∫

𝐿
0

0

𝑑𝑧

(𝑅/𝑅
0
)
}

+
16𝑄𝑘

𝜋𝑅4
0

{(𝐿 − 𝐿
0
) + ∫

𝐿
0

0

𝑑𝑧

(𝑅/𝑅
0
)
4
}

+
128

7
√
𝑄𝑘𝜏
𝑐

𝜋𝑅
5

0

{(𝐿 − 𝐿
0
) + ∫

𝐿
0

0

𝑑𝑧

(𝑅/𝑅
0
)
5/2
} .

(16)

3.1. Resistance to Flow. The resistance to flow 𝜆 is defined as
follows:

𝜆 =
𝑝
1
− 𝑝
2

𝑄
. (17)
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Figure 3: (a) Shapes of the arterial stenosis for different values of the stenosis length 𝐿
0
. (b) Shapes of the arterial stenosis for different values

of the stenosis shape parameter𝑚.

The resistance to flow for Casson fluid in a stenosed artery is
obtained as follows:

𝜆 =
256𝜏
𝑐

49𝑄𝑅
0

{(𝐿 − 𝐿
0
) + ∫

𝐿
0

0

𝑑𝑧

(𝑅/𝑅
0
)
}

+
16𝑘

𝜋𝑅4
0

{(𝐿 − 𝐿
0
) + ∫

𝐿
0

0

𝑑𝑧

(𝑅/𝑅
0
)
4
}

+
128

7
√

𝑘𝜏
𝑐

𝜋𝑄𝑅
5

0

{(𝐿 − 𝐿
0
) + ∫

𝐿
0

0

𝑑𝑧

(𝑅/𝑅
0
)
5/2
} .

(18)

In the absence of any constriction (𝛿 = 0 and 𝑅 = 𝑅
0
), the

resistance to flow (in the normal artery) 𝜆
𝑁
is given by the

following:

𝜆
𝑁
=
16𝐿

𝑅
0

{
𝑘

𝜋𝑅
3

0

+
16𝜏
𝑐

49𝑄
+
8

7
√

𝑘𝜏
𝑐

𝜋𝑄𝑅
3

0

} . (19)

The expression for resistance to flow in the dimensionless
form is obtained as follows:

𝜆
1
=
𝜆

𝜆
𝑁

= 1 −
𝐿
0

𝐿
+
1

𝐿
(

(16𝜏
𝑐
/49𝑄) 𝐼

1
+ (𝑘/𝜋𝑅

3

0
) 𝐼
2
+ (8/7)√(𝑘𝜏

𝑐
/𝜋𝑄𝑅

3

0
)𝐼
3

(16𝜏
𝑐
/49𝑄) + (𝑘/𝜋𝑅

3

0
) + (8/7)√𝑘𝜏

𝑐
/𝜋𝑄𝑅

3

0

), (20)

where 𝐼
1
= ∫
𝐿
0

0
(𝑑𝑧/(𝑅/𝑅

0
)), 𝐼
2
= ∫
𝐿
0

0
(𝑑𝑧/(𝑅/𝑅

0
)
4
), and 𝐼

3
=

∫
𝐿
0

0
𝑑𝑧/(𝑅/𝑅

0
)
(5/2) .

It is noted that 𝜆
1
measures the relative resistance in a

stenosed artery compared to normal artery. Substituting the
expression for 𝑅/𝑅

0
from (4), the integrals 𝐼

1
, 𝐼
2
, and 𝐼

3
are

reduced to the following:

𝐼
1
= ∫

𝐿
0

0

𝑑𝑧

(1 − 𝑎𝑒−𝑏𝑧
2

)
,

𝐼
2
= ∫

𝐿
0

0

𝑑𝑧

(1 − 𝑎𝑒−𝑏𝑧
2

)
4
,

𝐼
3
= ∫

𝐿
0

0

𝑑𝑧

(1 − 𝑎𝑒−𝑏𝑧
2

)
5/2
.

(21)

Using a two-point Gauss quadrature formula, the integrals in
(21) are evaluated as follows:

𝐼
1
=
𝐿
0

2
[

1

(1 − 𝑎𝑒−(𝑏𝐿
2

0
/12)(4+2√3))

+
1

(1 − 𝑎𝑒−(𝑏𝐿
2

0
/12)(4−2√3))

] ,

𝐼
2
=
𝐿
0

2

[

[

1

(1 − 𝑎𝑒−(𝑏𝐿
2

0
/12)(4+2√3))

4

+
1

(1 − 𝑎𝑒−(𝑏𝐿
2

0
/12)(4−2√3))

4

]

]

,
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𝐼
3
=
𝐿
0

2

[

[

1

(1 − 𝑎𝑒−(𝑏𝐿
2

0
/12)(4+2√3))

5/2

+
1

(1 − 𝑎𝑒−(𝑏𝐿
2

0
/12)(4−2√3))

5/2

]

]

.

(22)

If we want to compare the resistance to flow for different fluid
models, we have to normalize it with respect to resistance
to flow 𝜆

𝑁
𝑒

of Newtonian fluid in normal artery, and the
respective expression for Casson fluid model is obtained as
follows:

𝜆
2
=

𝜆

𝜆
𝑁
𝑒

= (1 +
16

49
(
𝜋𝜏
𝐶
𝑅
3

0

𝑄𝑘
) +

8

7

√
𝜋𝜏
𝐶
𝑅
3

0

𝑄𝑘
)

× (1 −
𝐿
0

𝐿
) +

1

𝐿
(
16

49
(
𝜋𝜏
𝐶
𝑅
3

0

𝑄𝑘
) 𝐼
1

+𝐼
2
+
8

7

√
𝜋𝜏
𝐶
𝑅
3

0

𝑄𝑘
𝐼
3
) ,

(23)

where

𝜆
𝑁
𝑒

=
16𝑘𝐿

𝜋𝑅4
0

, (24)

which is obtained from (18) with 𝛿 = 0,𝑅(𝑧) = 𝑅
0
, and 𝜏

𝑐
= 0.

3.2. Skin Friction. From (8) and (14), the expression for the
skin friction is obtained as follows:

𝜏
𝑅
= −

𝑅

2
⋅
𝑑𝑝

𝑑𝑧
=
64

49
𝜏
𝑐
+
4𝑄𝑘

𝜋𝑅3
+
32

7

√
𝑘𝑄𝜏
𝑐

𝜋𝑅3
. (25)

In the absence of any constriction when (𝑅(𝑧) = 𝑅
0
), the

expression for the skin friction becomes the following:

𝜏
𝑁
=
64

49
𝜏
𝑐
+
4𝑄𝑘

𝜋𝑅
3

0

+
32

7
√
𝑘𝑄𝜏
𝑐

𝜋𝑅
3

0

. (26)

The nondimensional form of skin friction with effects on
stenosis is defined as the ratio between the skin friction in the
stenosed artery and skin friction in the normal artery. From
(25) and (26), the skin friction with effects on stenosis is
obtained as

𝜏
1
=
𝜏
𝑅

𝜏
𝑁

=
4𝑄𝑘 + (32/7) (𝑄𝑘𝜏

𝑐
𝜋𝑅
3

0
)
1/2

(𝑅/𝑅
0
)
3/2

+ (64/49) 𝜏
𝑐
𝜋𝑅
3

0
(𝑅/𝑅
0
)
3

(𝑅/𝑅
0
)
3

{4𝑄𝑘 + (32/7) (𝑄𝑘𝜏
𝑐
𝜋𝑅
3

0
)
1/2

+ (64/49) 𝜏
𝑐
𝜋𝑅
3

0
}

. (27)

The nondimensional form of skin friction with effects on
the non-Newtonian behavior of blood is defined as the ratio
between the skin friction of the non-Newtonian fluid in the
stenosed artery and the skin friction of theNewtonian fluid in
the same stenosed artery.The expression for skin frictionwith
effects on the non-Newtonian behavior of blood is obtained
as follows:

𝜏
2
=
𝜏
𝑅

𝜏
𝑁
𝑒

=
1

(𝑅/𝑅
0
)
3
+
16

49
(
𝜋𝑅
3

0
𝜏
𝐶

𝑄𝑘
)

+
8

7

1

(𝑅/𝑅
0
)
3/2

√
𝜋𝑅
3

0
𝜏
𝐶

𝑄𝑘
,

(28)

where

𝜏
𝑁
𝑒

=
4𝑘𝑄

𝜋𝑅
3

0

. (29)

4. Numerical Simulations of the Results

The objective of this study is to discuss the effects of various
parameters on the physiologically important flow quantities

such as skin friction, resistance to flow, and flow rate. The
following parameters with their ranges mentioned as 𝑄: 0–
1, 𝑘: 2.0–7.0 (CP)𝑛/sec𝑛−1, 𝜏

𝑐
: 0.0–0.5 dyne/cm2, 𝑚 = 2, 𝐿 =

5 cm, and 𝑅
0
= 0.40 are used to evaluate the expressions of

these flow quantities and get data for plotting the graphs.

4.1. Skin-Friction

4.1.1. Effects of Stenosis on Skin-Friction. The variation of skin
friction 𝜏

1
with axial distance for different values of 𝐿

0
/𝐿 and

yield stress 𝜏
𝑐
with 𝑘 = 4 is shown in Figure 4. It is observed

that the skin friction increases considerably with the increase
in the stenosis length for a given value of yield stress 𝜏

𝑐
, but it

decreases very slightly when the yield stress increases for the
fixed value of 𝐿

0
/𝐿. The same observations were recorded by

Misra and Shit [17] for the Herschel-Bulkley fluid.
The variations of skin friction 𝜏

1
at the midpoint of the

stenosis with stenosis height 𝛿/𝑅
0
for different values of the

yield stress 𝜏
𝑐
with 𝑘 = 7 and 𝐿

0
/𝐿 = 0.3 are sketched in

Figure 5. It is noted that the skin friction decreasesmarginally
as the yield stress increases.

The estimates of skin friction 𝜏
1
for different values of

axial variable 𝑧 and viscosity coefficient 𝑘 with 𝜏
𝑐
= 0.05 and
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Figure 4: Variations of skin friction 𝜏
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Figure 5: Variations of skin friction 𝜏
1
with stenosis height 𝑎 for

different values of yield stress 𝜏
𝑐
.

30% stenosis are computed in Table 1. It is observed that the
skin friction increases very slightly with the increase of the
viscosity coefficient.

In order to compare our results with those of Misra and
Shit [17], the variations of skin friction 𝜏

1
with axial distance

for different fluids are shown in Figure 6 for 30% of stenosis
with 𝑘 = 4 and 𝜏

𝑐
= 0.05. It is observed that the plot of the

skin friction of Casson fluid model lies between those of the
Herschel-Bulkley fluid model with 𝑛 = 1 and 𝑛 = 1.05. Here,
the skin friction is normalized with respect to the normal
artery with the same fluid, as was done byMisra and Shit [17].

Themathematical form of cosine curve-shaped geometry
for stenosis given by Chaturani and Ponnalagar Samy [16] is
reproduced as follows:

𝑅 (𝑧)

𝑅
0

= 1 −
𝛿

2𝑅
0

[1 + cos 2𝜋
𝐿
0

(𝑧 − 𝑑 −
𝐿
0

2
)] ,

𝑑 ≤ 𝑧 ≤ 𝑑 + 𝐿
0
.

(30)

For computation, values of the parameters are taken as 𝐿 =
10, 𝑑 = 3.5, and 𝐿

0
= 3.

The variations of skin friction 𝜏
1
with axial distance for

Casson fluid model with cosine- and bell-shaped stenosis
geometrieswith 30% stenosis andwith 𝑘 = 4 and 𝜏

𝑐
= 0.05 are

shown in Figure 7 (the data for plotting the graph is computed
from (27)). It is found that the skin friction in cosine curve-
shaped stenosed arteries is considerably higher than that in
bell-shaped stenosed arteries.

4.1.2. Effects of Non-Newtonian Behavior on Skin-Friction.
We can study the effects of different non-Newtonian fluids
if we normalize it with respect to Newtonian fluid as done

Table 1: Variations of the skin friction 𝜏
1
with axial distance for

different values of viscosity with 𝜏
𝑐
= 0.05 and 𝐿

0
/𝐿 = 0.3.

𝑧
𝜏

𝑘 = 2 𝑘 = 4 𝑘 = 7

−1.5 1.01069 1.010799 1.010864
−1 1.104858 1.105946 1.106599
−0.5 1.490229 1.495693 1.49897
0 1.915269 1.926048 1.932516
0.5 1.490229 1.495693 1.49897
1 1.104858 1.105946 1.106599
1.5 1.01069 1.010799 1.010864
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Figure 6: Variations of skin friction 𝜏
1
with axial distance for

different fluids.
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Figure 7: Variations of skin friction 𝜏
1
for Casson fluid with axial

distance for different arterial geometries.

by [15, 16, 18–20]. In this case, the following results are in
agreement with the results given by these authors but are
opposite in nature to those given in Section 4.1.1 except for
the variations of skin friction with axial distance for different
values of stenosis length as given in Figure 8.

The variations of skin friction 𝜏
2
with axial distance for

different values of 𝐿
0
/𝐿 and for a given 𝑘 = 4 and 𝜏

𝑐
= 0.05

are illustrated in Figure 9. It is observed that the skin friction
increases considerably with the increase in the stenosis
length.

Figure 10 sketches the variations of skin friction 𝜏
2
with

axial distance for different values of yield stress with 𝑘 = 4

and 𝐿
0
/𝐿 = 0.3. It is observed that the skin friction increases

marginally with the increase in the yield stress 𝜏
𝑐
of the fluid.

The variations of skin friction 𝜏
2
at the midpoint of the

stenosis with stenosis height 𝛿/𝑅
0
for different values of the

yield stress 𝜏
𝑐
with 𝑘 = 4 and 𝐿

0
/𝐿 = 0.3 are shown in
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Figure 9: Variations of skin friction 𝜏
2
with axial distance for

different values of stenosis size 𝐿
0
/𝐿.

Figure 11. It is clear that the skin friction increases marginally
when the yield stress increases.

Figure 12 depicts the variations of skin friction 𝜏
2
with

axial distance for different values of viscosity coefficient 𝑘 for
𝜏
𝑐
= 0.05 and 30% of stenosis. One can notice that the skin

friction decreases slightly as viscosity increases.
Figure 13 shows the variations of skin friction 𝜏

2
with

axial distance for different fluid models using cosine-shaped
stenosis with 30% of stenosis, yield stress 𝜏

𝑐
= 0.05, and 𝑘 = 4.

It is observed that the skin friction of Casson fluid model
lies between those of the Herschel-Bulkley fluid model with
𝑛 = 0.95 and 𝑛 = 1.

The variations of skin friction 𝜏
2
with axial distance for

different fluid models using bell-shaped stenosis with 30%
of stenosis, yield stress 𝜏

𝑐
= 0.05, and 𝑘 = 4 are shown in

Figure 14. It is observed that the skin friction of Casson fluid
model lies between those of theHerschel-Bulkley fluidmodel
with 𝑛 = 0.95 and 𝑛 = 1.

Figure 15 shows the variations of skin friction 𝜏
2
with

axial distance for Casson fluid model with cosine- and bell-
shaped geometries with 30% stenosis, 𝑘 = 4, and 𝜏

𝑐
= 0.05

(data computed using (28)). It is seen that the cosine-shaped
stenosis has a greater width than that of bell-shaped stenosis
as depicted in Figure 8.

Misra and Shit [17] have analyzed the variations of skin
friction with axial distance for different values of power law
index and yield stress and reported that the skin friction
decreases with increase in yield stress. If normalized with
Newtonian fluid, the skin friction increases considerably
when the yield stress increases with axial distance for 30%
stenosis, 𝑘 = 4 as displayed in Figure 16.
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Figure 10: Variations of skin friction 𝜏
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with axial distance for

different values of yield stress 𝜏
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.
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Figure 11: Variations of skin friction 𝜏
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0
for

different values of yield stress 𝜏
𝐶
.

4.2. Resistance to Flow. The variations of resistance to flow 𝜆
1

with the height of the stenosis 𝛿/𝑅
0
for different values of

stenosis length 𝐿
0
/𝐿with viscosity coefficient 𝑘 = 4 and yield

stress 𝜏
𝑐
= 0.05 are shown in Figure 17. It is found that the flow

resistance increases nonlinearly with the increase in the ste-
nosis size.

Using the result (23), the variations of resistance to flow
𝜆
2
with stenosis height for different values of stenosis length,

for the given 𝑘 = 4 and 𝜏
𝐶
= 0.05 are shown in Figure 18.

It is observed that the flow resistance decreases considerably
when the length of the stenosis increases. Also, the variations
of resistance to flow 𝜆

2
with stenosis height for different

values of yield stress and for 𝑘 = 4 and 𝐿
0
/𝐿 = 0.3 is shown in

Figure 19. It is clear that the resistance to flow increases signif-
icantly with the increase in the yield stress.

4.3. Flow Rate. Figure 20 depicts the variation of flow rate
with axial distance for different values of viscosity coefficient
𝑘 and yield stress 𝜏

𝑐
with 30% of stenosis. One can notice that

the flow rate decreases significantly with the increase of either
the viscosity coefficient or the yield stress. It is also observed
that the flow rate decreases very significantly (nonlinearly) at
the throat of the stenosis for lower values of either the yield
stress or viscosity coefficient and slowly (almost linearly) for
higher values of either the yield stress or viscosity coefficient.

4.4. Physiological Application. To highlight some possible
clinical applications of the present study, the data used by
Sankar [21] (the radii of different arteries and flow rate) are
used to compute the physiologically important flow quanti-
ties such as resistance to flow and skin friction. The values
of the parameters are taken as 𝑘 = 3.5 and 𝜏

𝑐
= 0.04. The

dimensionless resistance to flow 𝜆
2
and skin friction 𝜏

2
are
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Table 2: Estimates of resistance to flow 𝜆
2
and skin friction (dimensionless) 𝜏

2
in arteries with different radii with 𝐿

0
/𝐿 = 1.

Blood vessels
𝜏
󸀠

𝑐

𝑎 = 0.10 𝑎 = 0.15

Radius 𝑅
0
(cm)

𝜆 𝜏 𝜆 𝜏
Flow rate 𝑄 (cm3 s−1)
Aorta

1.529080 × 10
−2 1.567142 1.722748 1.745439 2.008973

(1, 71.67)
Femoral

5.718029 × 10
−3 1.429659 1.581644 1.598551 1.856356

(0.5, 19.63)
Carotid

4.571948 × 10
−3 1.407374 1.558726 1.574716 1.831521

(0.4, 12.57)
Coronary

8.733753 × 10
−4 1.303768 1.451998 1.463802 1.715671

(0.15, 3.47)
Arteriole

5.629388 × 10
−3 1.428014 1.579953 1.596792 1.854524

(0.008, 0.00008)
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Figure 12: Variations of skin friction 𝜏
2
with axial distance for

different values of viscosity 𝑘.
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Figure 13: Variations of skin friction 𝜏
2
with axial distance for

different fluid models with cosine-shaped stenosis.

computed for arteries with different radii and with𝑚 = 2 and
𝐿
0
/𝐿 = 1 from (23) and (28) (normalized with Newtonian

fluid in stenosed artery) and are presented in Table 2. It is
noted that the resistance to flow increases, considerably when
the stenosis height increases and skin friction significantly
increases with the increase of stenosis height.

The percentages of increase in resistance to flow and skin
friction over that for uniform diameter tube (no stenosis)
and for arteries with different radii are computed in Table 3.
One can observe that the percentages of increase in resistance

Bingham fluid 

Casson fluid 
Herschel-Bulkley fluid with n = 0.95

Herschel-Bulkley fluid with n = 1.05
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Figure 14: Variations of skin friction 𝜏
2
with axial distance for

different fluid models with bell-shaped stenosis.
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Figure 15: Variations of skin friction 𝜏
2
of Casson fluid model with

axial distance for different geometries.

to flow and skin friction increase significantly when stenosis
height increases. Comparisons of resistance to flow (𝜆

2
) in

bell-shaped stenosed arteries and cosine curve-shaped
stenosed arteries with different values of stenosis size
parameters 𝑎, 𝐿

0
, and 𝑚 are given in Table 4. It is recorded

that the resistance to flow in bell-shaped stenosed artery
increases considerably when the length of the stenosis
increases, and also it significantly increases when stenosis
height increases. But it marginally decreases with the increase
of the stenosis length parameter 𝑚. It is also found that for
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Table 3: Estimates of the percentage of increase in resistance to flow 𝜆
2
and skin friction 𝜏

2
for arteries with different radii with 𝐿

0
/𝐿 = 1

and 𝜏
𝑐
= 0.04 dyn cm−2.

Blood vessels 𝜏
󸀠

𝑐

𝑎 = 0.10 𝑎 = 0.15

𝜆 (%) 𝜏 (%) 𝜆 (%) 𝜏 (%)
Aorta 1.529080 × 10

−2 20.31 32.25 34.00 54.23
Femoral 5.718029 × 10

−3 21.13 34.00 35.44 57.28
Carotid 4.571948 × 10

−3 21.27 34.31 35.69 57.82
Coronary 8.733753 × 10

−4 22.00 35.86 36.97 60.53
Arteriole 5.629388 × 10

−3 21.14 34.03 35.45 57.32

Table 4: Estimates of percentage of increase in resistance to flow 𝜆
2
for arteries with different radii and with (i) bell-shaped stenosis (ii) cosine

curve-shaped stenosis.

Blood vessels

Bell-shaped stenosis Cosine curve-shaped stenosis
𝜆
2
(%) 𝜆

2
(%)

𝑎 = 0.1 𝑎 = 0.1 𝑎 = 0.1 𝑎 = 0.2 𝑎 = 0.2 𝑎 = 0.1 𝑎 = 0.2

𝑚 = 2 𝑚 = 2 𝑚 = 3 𝑚 = 3 𝑚 = 2

𝐿
0
= 1.0 𝐿

0
= 1.5 𝐿

0
= 1.5 𝐿

0
= 1.5 𝐿

0
= 1.5 𝐿

0
= 1.0 𝐿

0
= 1.5

Aorta 4.06 6.09 4.33 10.42 15.31 4.28 15.79
Femoral 4.23 6.34 4.50 10.87 15.99 4.45 16.78
Carotid 4.25 6.38 4.53 10.95 16.11 4.50 16.96
Coronary 4.40 6.60 4.68 11.35 16.72 4.71 17.86
Arteriole 4.23 6.34 4.50 10.88 16.00 4.47 16.79
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Figure 16: Variations of skin frictionwith axial distance for different
values of power index and yield stress 𝜏

𝐻
.

a given set of values of the parameters, the percentage of
increase in resistance to flow in the case of bell-shaped ste-
nosed artery is slightly lower than that of cosine curve-shaped
stenosed artery. This is physically verified with the depth of
the stenosis for cosine-shaped stenosis (shown in Figure 8)
being more; the resistance to flow is higher in this type
of stenosis geometry compared to the bell-shaped stenosis
geometry.

5. Conclusion

The present study analyzed the steady flow of blood in a nar-
row artery with bell-shaped mild stenosis, treating blood as
Casson fluid, and the results are compared with the results of
Misra and Shit for, Herschel-Bulkley fluidmodel [17] and also
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Figure 17: Variations of flow resistance 𝜆
1
with stenosis height 𝛿/𝑅
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Figure 18: Variations of flow resistance 𝜆
2
with stenosis height 𝛿/𝑅

0

for different values of stenosis length 𝐿
0
/𝐿.

with the results of Chaturani and Ponnalagar Samy [16] (for
blood flow in cosine curve-shaped stenosed arteries, treating
blood as Herschel-Bulkley fluidmodel).Themain findings of
the present mathematical analysis are as follows:
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(i) Whether normalized with respect to non-Newtonian
orNewtonian fluid in normal artery (i.e., in both cases
of the effect of stenosis and the effect of non-Newto-
nian fluid) we notice the following.

(1) Skin friction increaseswith the increase of depth
and length of the stenosis.

(2) Skin friction of Casson fluid model is signifi-
cantly lower than that of the Herschel-Bulkley
fluid model.

(3) Skin friction in bell-shaped stenosed artery
is considerably lower than that in the cosine
curve-shaped stenosed artery.

(ii) The effect of stenosis on blood flow is that the resis-
tance to flow increases when either the stenosis length
or depth increases.

(iii) The effect of non-Newtonian fluid on blood flow is
that the resistance to flow increases significantly with
the increase of yield stress, but it decreases when
either the stenosis length or depth increases.

(iv) The percentage of increase in resistance to flow in the
case of bell-shaped stenosed artery is slightly lower
than that of the cosine curve-shaped stenosed artery
in the case of normalization with respect to Newto-
nian fluid.

(v) Flow rate decreases with the increase of the yield
stress and viscosity coefficient.

Hence, in view of the results obtained, we conclude that
the present study may be considered as an improvement in

the studies of the mathematical modeling of blood flow in
narrow arteries with mild stenosis.

Nomenclature

𝜏: Shear stress
𝜏
𝑐
: Yield stress for Casson fluid

𝜏
𝑅
: Skin friction in stenosed artery

𝜏
1
: Nondimensional skin friction normalized with

non-Newtonian fluid
𝜏
2
: Nondimensional skin friction normalized with

Newtonian fluid
𝜏
𝑁
: Skin friction in normal artery normalized with

non-Newtonian fluid
𝜏
𝑁
𝑒

: Skin friction in normal artery normalized with
Newtonian fluid

𝛿: Stenosis height
𝜆: Flow resistance
𝜆
1
: Nondimensional flow resistance normalized with

non-Newtonian fluid
𝜆
2
: Nondimensional flow resistance normalized with

Newtonian fluid
𝜆
𝑁
: Flow resistance in normal artery normalized with

non-Newtonian fluid
𝜆
𝑁
𝑒

: Flow resistance in normal artery normalized with
Newtonian fluid

𝑄: Volumetric flow rate
𝑟: Radial coordinate
𝑧: Axial coordinate
𝑢: Radial velocity
𝑅
0
: Radius of the normal artery

𝑅(𝑧): Radius of the artery in the stenosed portion
𝐿: Half-length of segment of the narrow artery
𝐿
0
: Half-length of the stenosis

𝑝: Pressure
𝑘: Viscosity coefficient.
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