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A viscosity method for hierarchical fixed point problems is presented to solve variational inequalities, where the involvedmappings
are nonexpansive nonself-mappings. Solutions are sought in the set of the commonfixed points of an infinite family of nonexpansive
nonself-mappings. The results generalize and improve the recent results announced by many other authors.

1. Introduction and Preliminaries

Let 𝑋 a real Banach space and 𝐽 be the normalized duality
mapping from𝑋 into 2𝑋

∗

given by

𝐽 (𝑥) = {𝑥
∗
∈ 𝑋
∗
: ⟨𝑥, 𝑥

∗
⟩ = ‖𝑥‖

𝑥
∗ , ‖𝑥‖ =

𝑥
∗} (1)

for all 𝑥 ∈ 𝑋, where𝑋∗ denotes the dual space of𝑋 and ⟨⋅, ⋅⟩
the generalized duality pairing between 𝑋 and 𝑋∗. If 𝑋 = 𝐻

is a Hilbert space, then 𝐽 becomes the identitymapping on𝐻.
A point 𝑥 ∈ 𝐶 is a fixed point of 𝑇 : 𝐶 ⊂ 𝑋 → 𝑋 provided
𝑇𝑥 = 𝑥. Denote by 𝐹(𝑇) the set of fixed points of 𝑇; that is,
𝐹(𝑇) = {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥}.

Let 𝑋 be a normed linear space with dim 𝑋 ≥ 2. The
modulus of smoothness of𝑋 is the function 𝜌

𝑋
: [0, +∞) →

[0, +∞) defined by

𝜌
𝑋 (𝜏) := sup{

𝑥 + 𝑦
 +

𝑥 − 𝑦


2
− 1 : ‖𝑥‖ = 1,

𝑦
 = 𝜏} .

(2)

The space 𝑋 is said to be smooth if 𝜌
𝑋
(𝜏) > 0, for all 𝜏 > 0.

It is well known that if𝑋 is smooth then 𝐽 is single valued. A
Banach space 𝑋 is said to be strictly convex if ‖𝑥‖ = ‖𝑦‖ =

1, 𝑥 ̸= 𝑦, implies ‖𝑥 + 𝑦‖/2 < 1.
Let𝐶 be a nonempty closed convex subset of a real Banach

space𝑋. Recall the following concepts.

Definition 1. (i) A mapping 𝑓 : 𝐶 → 𝐶 is a 𝜌-contraction if
𝜌 ∈ [0, 1) and if the following property is satisfied

𝑓 (𝑥) − 𝑓 (𝑦)
 ≤ 𝜌

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝐶. (3)

(ii) A mapping 𝑇 : 𝐶 → 𝐸 is nonexpansive provided
𝑇𝑥 − 𝑇𝑦

 ≤
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ 𝐶. (4)

(iii) A mapping 𝑆 : 𝐶 → 𝑋 is

(a) accretive if for any𝑥, 𝑦 ∈ 𝐶 there exists 𝑗(𝑥−𝑦) ∈
𝐽(𝑥 − 𝑦) such that

⟨𝑆𝑥 − 𝑆𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 0; (5)

(b) 𝛽-strongly accretive if for any 𝑥, 𝑦 ∈ 𝐶 there
exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝑆𝑥 − 𝑆𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 𝛽
𝑥 − 𝑦



2
, (6)

for some real constant 𝛽 > 0.

Noting that if 𝑆 : 𝐶 → 𝑋 is nonexpansive, then 𝐼 − 𝑆

is accretive; if 𝑓 : 𝐶 → 𝐶 is a 𝜌-contraction, then 𝐼 − 𝑓 is
(1 − 𝜌)-strongly accretive. particulary, if 𝑋 = 𝐻 is a Hilbert
space, then (strongly) accretive mappings become (strongly)
monotone mappings.
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Definition 2. Let 𝐶 and 𝐷 be nonempty subsets of a Banach
space𝑋 such that 𝐶 is nonempty closed convex and𝐷 ⊂ 𝐶.

(i) A mapping 𝑄 : 𝐶 → 𝐷 is called sunny, if 𝑄(𝑄𝑥 +
𝑡(𝑥 − 𝑄𝑥)) = 𝑄𝑥 for each 𝑥 ∈ 𝐶 and 𝑡 ≥ 0 with
𝑄(𝑄𝑥 + 𝑡(𝑥 − 𝑄𝑥)) ∈ 𝐶.

(ii) A mapping 𝑄 : 𝐶 → 𝐷 is called a retraction from 𝐶

to𝐷 if 𝑄 is continuous and 𝐹(𝑄) = 𝐷.
(iii) A subset 𝐷 of 𝐶 ⊂ 𝐸 is said to be a sunny

nonexpansive retract of 𝐶 if there exists a sunny
nonexpansive retraction 𝑄 of 𝐶 onto 𝐷. For details,
see [1–3].

Note that if 𝑋 = 𝐻 is a Hilbert space, 𝑄 becomes the
projection on 𝐶, denoted by 𝑃

𝐶
.

Let 𝑃 : 𝐶 → 𝐶 a nonexpansive self-mapping on 𝐶

and {𝑇
𝑛
} be a countable family of nonexpansive nonself-

mappings of 𝐶 into 𝑋 such that F = ⋂
∞

𝑛=1
𝐹(𝑇
𝑛
) ̸= 0. Then

we consider the following problem: find hierarchically a
common fixed point of the infinite family {𝑇

𝑛
} with respect

to a nonexpansive mapping 𝑃; namely, find 𝑥
∗
∈ F, such

that

⟨𝑥
∗
− 𝑃𝑥
∗
, 𝐽 (𝑥 − 𝑥

∗
)⟩ ≥ 0, ∀𝑥 ∈ F. (7)

Particularly, if {𝑇
𝑛
} is a finite family of nonexpansive

nonself-mappings, problem (7) has been studied by Ceng
and Petruşel [4]. If 𝑋 = 𝐻 and {𝑇

𝑛
} is an infinite family

of nonexpansive self-mappings, Problem (7) reduces to the
following problem: find hierarchically a common fixed point
of {𝑇
𝑛
} with respect to a nonexpansive mapping 𝑃, namely,

find 𝑥∗ ∈ F, such that

⟨𝑥
∗
− 𝑃𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ F, (8)

which was studied by Zhang et al. [5]. If 𝑋 = 𝐻 is a Hilbert
space and 𝑇

𝑛
= 𝑇, for all 𝑛 ≥ 1, where 𝑇 is a nonexpansive

mapping on 𝐶, then problem (7) reduces to the following
problem: finding hierarchically a fixed point of𝑇with respect
to another nonexpansive mapping 𝑃; namely, find 𝑥∗ ∈ 𝐹(𝑇)
such that

⟨𝑥
∗
− 𝑃𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐹 (𝑇) . (9)

Problem (7) includes many problems as special cases, so
it is very important in the area of optimization and related
fields, such as signal processing and image reconstruction
(see [6–9]).

In 2007, Moudafi [10] introduced the following Krasnos-
elski-Mann’s algorithm in Hilbert spaces:

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
(𝜎
𝑛
𝑃𝑥
𝑛
+ (1 − 𝜎

𝑛
) 𝑇𝑥
𝑛
) ,

∀𝑛 ≥ 0,

(10)

where {𝛼
𝑛
} and {𝜎

𝑛
} are two real sequences in (0,1) and

𝑇 and 𝑃 are two nonexpansive mappings of 𝐶 into itself.
Furthermore, he established a weak convergence result for
Algorithm (10) for solving problem (9).

Subsequently, Yao and Liou [11] derived a weak con-
vergence result of algorithm (10) under the restrictions on
parameters weaker than those in [10, Theorem 2.1].

Recently, Marino and Xu [12] introduced the following
explicit hierarchical fixed point algorithm in Hilbert spaces:

𝑥
𝑛+1

= 𝜆
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝜆

𝑛
) (𝛼
𝑛
𝑉𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
) ,

∀𝑛 ≥ 0,

(11)

where𝑓 is a contraction on𝐶 and𝑉, 𝑇 are two nonexpansive
mappings of 𝐶 into itself and proved that the sequence {𝑥

𝑛
}

generated by (11) converges strongly to a solution of problem
(9).

Very recently, Zhang et al. [5] introduced the following
iterative algorithm in order to find hierarchically a fixed point
of Problem (8):

𝑥
0
∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑦
𝑛
,

𝑦
𝑛
= 𝛽
𝑛
𝑃 (𝑥
𝑛
) + (1 − 𝛽

𝑛
) 𝑇𝑥
𝑛
,

(12)

where 𝑓 : 𝐶 → 𝐶 is a contraction, 𝑃 : 𝐶 → 𝐶 is a
nonexpansive mapping, {𝑇

𝑛
} : 𝐶 → 𝐶 is a countable family

of nonexpansive mappings, and 𝑇 : 𝐶 → 𝐶 is a mapping
defined by

𝑇 =

∞

∑

𝑛=1

𝜆
𝑛
𝑇
𝑛
, 𝜆
𝑛
≥ 0 (𝑛 = 1, 2, . . .) with

∞

∑

𝑛=1

𝜆
𝑛
= 1. (13)

Under suitable conditions on parameters {𝛼
𝑛
} and {𝛽

𝑛
}, they

established some strong and weak convergence theorems.
Note that, in [5], {𝑇

𝑛
} is an infinite family of self-mappings

and 𝑃 is also a self-mapping. And they obtained the results in
the setting of Hilbert spaces.

Motivated and inspired by the above researches, in a
reflexive Banach space which admits a weakly sequentially
continuous duality mapping 𝐽, we propose and analyze an
iteration process for a countable family of nonexpansive
nonself-mappings {𝑇

𝑛
} : 𝐶 → 𝑋 and 𝑆 : 𝐶 → 𝑋 is a

nonexpansive nonself-mapping as follows:

𝑥
0
∈ 𝐶,

𝑥
𝑛+1

= 𝑄 (𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑦
𝑛
) ,

𝑦
𝑛
= 𝛽
𝑛
𝑆𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇𝑥
𝑛
, 𝑛 ≥ 0,

(14)

where 𝑄 is a sunny nonexpansive retraction of𝑋 onto 𝐶 and
establishes a convergence theorem. particularly, if𝑋 = 𝐻 is a
Hilbert space, we obtain some convergence results.

To prove the main results, we need the following lemmas.

Lemma3 (see [1]). Let𝐶 be a nonempty and convex subset of a
smooth Banach space 𝑋, 𝐷 ⊂ 𝐶, 𝐽 : 𝑋 → 𝑋

∗ the normalized
duality mapping of 𝑋, and 𝑄 : 𝐶 → 𝐷 a retraction. Then the
following conditions are equivalent:

(i) ⟨𝑥 − 𝑄𝑥, 𝐽(𝑦 − 𝑄𝑥)⟩ ≤ 0, for all 𝑥 ∈ 𝐶 and 𝑦 ∈ 𝐷;
(ii) 𝑄 is both sunny and nonexpansive.

Lemma 4 (see [13, Lemma 3.1, 3.3]). Let 𝑋 be a real smooth
and strictly convex Banach space and𝐶 a nonempty closed and
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convex subset of 𝑋 which is also a sunny nonexpansive retract
of 𝑋. Assuming that 𝑇 : 𝐶 → 𝑋 is a nonexpansive mapping
and 𝑄 is a sunny nonexpansive retraction of 𝑋 onto 𝐶, then
𝐹(𝑇) = 𝐹(𝑄𝑇).

Lemma 5 (see [1]). Let𝑋 be a real Banach space and 𝐽 : 𝑋 →

2
𝑋
∗

the normalized duality mapping. Then for any 𝑥, 𝑦 ∈ 𝑋,
the following hold:

(i) ‖𝑥 + 𝑦‖2 ≤ ‖𝑥‖
2
+ 2⟨𝑦, 𝑗(𝑥 + 𝑦)⟩, for all 𝑗(𝑥 + 𝑦) ∈

𝐽(𝑥 + 𝑦);

(ii) ‖𝑥‖2 + 2⟨𝑦, 𝑗(𝑥)⟩ ≤ ‖𝑥 + 𝑦‖2, for all 𝑗(𝑥) ∈ 𝐽(𝑥).

Lemma 6 (see [14]). Let {𝑎
𝑛
} and {𝑏

𝑛
} be two sequences of

nonnegative real numbers satisfying

∞

∑

𝑛=0

𝑏
𝑛
< ∞,

𝑎
𝑛+1

≤ 𝑎
𝑛
+ 𝑏
𝑛
, 𝑛 = 0, 1, 2, . . . .

(15)

Then lim
𝑛→∞

𝑎
𝑛
exists.

Lemma 7 (see [15]). Let {𝑎
𝑛
} be a sequence of nonnegative real

numbers satisfying

𝑎
𝑛+1

≤ (1 − 𝜆
𝑛
) 𝑎
𝑛
+ 𝜆
𝑛
𝑏
𝑛
+ 𝑐
𝑛
, ∀𝑛 ≥ 0, (16)

where {𝜆
𝑛
}, {𝑏
𝑛
} and {𝑐

𝑛
} satisfy the following conditions:

(i) {𝜆
𝑛
} ⊂ [0, 1], ∑

∞

𝑛=0
𝜆
𝑛
= ∞ or, equivalently, Π∞

𝑛=0
(1 −

𝜆
𝑛
) = 0;

(ii) lim sup
𝑛→∞

𝑏
𝑛
≤ 0;

(iii) 𝑐
𝑛
≥ 0 (𝑛 ≥ 0), ∑

∞

𝑛=0
𝑐
𝑛
< ∞.

Then lim
𝑛→∞

𝑎
𝑛
= 0.

If Banach space𝑋 admits sequentially continuous duality
mapping 𝐽 from weak topology to weak ∗ topology, then
by [16, Lemma 1] we get that duality mapping 𝐽 is single-
valued. In this case, dualitymapping 𝐽 is also said to beweakly
sequentially continuous, that is, for each {𝑥

𝑛
} ⊂ 𝑋 with 𝑥

𝑛
⇀

𝑥, then 𝐽(𝑥
𝑛
) ⇁ 𝐽𝑥 [16, 17].

Recall that a Banach space𝑋 is said to be satisfyingOpial’s
condition if for any sequence {𝑥

𝑛
} in 𝐸, 𝑥

𝑛
⇀ 𝑥 (𝑛 → ∞)

implies that

lim sup
𝑛→∞

𝑥𝑛 − 𝑥
 < lim sup
𝑛→∞

𝑥𝑛 − 𝑦
 , ∀𝑦 ∈ 𝐸, with 𝑦 ̸= 𝑥.

(17)

By [16, Lemma 1], we know that if 𝑋 admits a weakly
sequentially continuous duality mapping, then 𝑋 satisfies
Opial’s condition.

In the sequel, we also need the following lemmas.

Lemma 8 (see [17]). Let 𝐶 be a nonempty, closed and convex
subset of a reflexive Banach space 𝑋 which satisfies Opial’s

condition and 𝑇 : 𝐶 → 𝑋 a nonexpansive mapping. Then
the mapping 𝐼 − 𝑇 is demiclosed at zero, that is,

𝑥
𝑛
⇀ 𝑥

𝑥
𝑛
− 𝑇𝑥
𝑛
→ 0

imply𝑥 = 𝑇𝑥.

(18)

Let 𝐶 be a nonempty and convex subset of a Banach space
𝑋. Then for 𝑥 ∈ 𝐶, one defines the inward set 𝐼

𝐶
(𝑥) as follows

[2, 3]:

𝐼
𝐶 (𝑥) = {𝑦 ∈ 𝑋 : 𝑦 = 𝑥 + 𝜆 (𝑧 − 𝑥) , 𝑧 ∈ 𝐶, 𝜆 ≥ 0} . (19)

A mapping 𝑇 : 𝐶 → 𝑋 is said to satisfy the inward condition
if 𝑇𝑥 ∈ 𝐼

𝐶
(𝑥) for all 𝑥 ∈ 𝐶. 𝑇 is also said to satisfy the weakly

inward condition if for each 𝑥 ∈ 𝐶, 𝑇𝑥 ∈ 𝐼
𝐶
(𝑥)(𝐼
𝐶
(𝑥) is the

closure of 𝐼
𝐶
(𝑥)). Clearly 𝐶 ⊂ 𝐼

𝐶
(𝑥) and it is not hard to show

that 𝐼
𝐶
(𝑥) is a convex set if 𝐶 does.

Lemma9 (see [18,Theorem 2.4]). Let𝑋 be a reflexive Banach
space which admits a weakly sequentially continuous duality
mapping 𝐽 from 𝑋 to 𝑋∗. Suppose 𝐶 is a nonempty closed
convex subset of 𝑋 which is also a sunny nonexpansive retract
of 𝑋, and 𝑇 : 𝐶 → 𝑋 is a nonexpansive mapping satisfying
the weakly inward condition and 𝐹(𝑇) ̸= 0. Let {𝑢

𝑛
} be defined

by

𝑢
0
∈ 𝐶,

𝑢
𝑛+1

= 𝑄 (𝛼
𝑛
𝑓 (𝑢
𝑛
) + (1 − 𝛼

𝑛
) 𝑇𝑢
𝑛
) ,

(20)

where𝑄 is a sunny nonexpansive retract of𝑋 onto 𝐶 and 𝛼
𝑛
∈

(0, 1) satisfy the following conditions:

(i) 𝛼
𝑛
→ 0, as 𝑛 → ∞;

(ii) ∑∞
𝑛=0

𝛼
𝑛
= ∞;

(iii) either∑∞
𝑛=0

|𝛼
𝑛+1

−𝛼
𝑛
| < ∞ or lim

𝑛→∞
(𝛼
𝑛
/𝛼
𝑛+1

) = 1.

Then {𝑥
𝑛
} converges strongly to a fixed point 𝑝 of 𝑇 such that

𝑝 is the unique solution in 𝐹(𝑇) to the following variational
inequality:

⟨(𝐼 − 𝑓) 𝑝, 𝑗 (𝑝 − 𝑢)⟩ ≤ 0, ∀𝑢 ∈ 𝐹 (𝑇) . (21)

Remark 10. If a Banach space 𝑋 admits a sequentially con-
tinuous duality mapping 𝐽 from weak topology to weak star
topology, from Lemma 1 of [16] it follows that 𝑋 is smooth.
So for Lemma 9, if𝑋 is a reflexive and strictly convex Banach
space which admits a weakly sequentially continuous duality
mapping 𝐽, by Lemma 4, the weakly inward condition of 𝑇
can be removed.

2. Main Results

Theorem 11. Let 𝑋 be a reflexive and strictly convex Banach
space which admits a weakly sequentially continuous duality
mapping 𝐽 : 𝑋 → 𝑋

∗ and 𝐶 a nonempty, closed and convex
subset of𝑋which is also a sunny nonexpansive retract of𝑋. Let
𝑆 : 𝐶 → 𝑋 be a nonexpansive nonself-mapping, 𝑓 : 𝐶 → 𝐶
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a contractive mapping with a contractive constant 𝜌 ∈ (0, 1)

and 𝑇
𝑖
: 𝐶 → 𝑋 (𝑖 = {1, 2, . . .}) an infinite family of

nonexpansive nonself-mappings such that ⋂∞
𝑖=1

𝐹(𝑇
𝑖
) ̸= 0. Let

𝑇 : 𝐶 → 𝑋 be defined by (13) and 𝑄 a sunny nonexpansive
retraction of 𝑋 onto 𝐶. Let {𝑥

𝑛
} be the sequence generated by

(14), and {𝛼
𝑛
} and {𝛽

𝑛
} the sequences in (0,1) satisfying the

following conditions:

(i) 𝛼
𝑛
→ 0 (𝑛 → ∞), ∑

∞

𝑛=0
𝛼
𝑛
= ∞;

(ii) lim
𝑛→∞

(𝛽
𝑛
/𝛼
𝑛
) = 0;

(iii) ∑∞
𝑛=0

|𝛼
𝑛+1

− 𝛼
𝑛
| < ∞.

Then {𝑥
𝑛
} converges strongly to some point 𝑥∗ ∈ 𝐹(𝑇) =

⋂
∞

𝑖=1
𝐹(𝑇
𝑖
), which is the unique solution to the following

variational inequality:

⟨(𝐼 − 𝑓) 𝑥
∗
, 𝐽 (𝑥 − 𝑥

∗
)⟩ ≥ 0, ∀𝑥 ∈ 𝐹 (𝑇) . (22)

Proof. From condition (ii), without loss of generality, we can
assume that 𝛽

𝑛
≤ 𝛼
𝑛
, for all 𝑛 ≥ 0.

First we prove that the sequence {𝑥
𝑛
} is bounded.

In fact, for any 𝑢 ∈ 𝐹(𝑇), we have
𝑥𝑛+1 − 𝑢



=
𝑄 (𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑦
𝑛
) − 𝑄𝑢



≤ 𝛼
𝑛

𝑓 (𝑥𝑛) − 𝑢
 + (1 − 𝛼𝑛)

𝛽𝑛𝑆𝑥𝑛 + (1 − 𝛽𝑛) 𝑇𝑥𝑛 − 𝑢


≤ 𝛼
𝑛
(𝜌
𝑥𝑛 − 𝑢

 +
𝑓 (𝑢) − 𝑢

)

+ (1 − 𝛼
𝑛
) (𝛽
𝑛

𝑆𝑥𝑛 − 𝑢
 + (1 − 𝛽𝑛)

𝑇𝑥𝑛 − 𝑢
)

≤ (1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑢
 + 𝛼𝑛

𝑓 (𝑢) − 𝑢


+ (1 − 𝛼
𝑛
) 𝛽
𝑛 ‖𝑆𝑢 − 𝑢‖

≤ (1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑢


+ 𝛼
𝑛
(
𝑓 (𝑢) − 𝑢

 + ‖𝑆𝑢 − 𝑢‖)

≤ max{𝑥𝑛 − 𝑢
 ,

𝑓 (𝑢) − 𝑢
 + ‖𝑆𝑢 − 𝑢‖

1 − 𝜌
} .

(23)

By induction,

𝑥𝑛+1 − 𝑢
 ≤ max{𝑥0 − 𝑢

 ,

𝑓 (𝑢) − 𝑢
 + ‖𝑆𝑢 − 𝑢‖

1 − 𝜌
} .

(24)

Thus {𝑥
𝑛
} is bounded, so {𝑆𝑥

𝑛
} and {𝑇𝑥

𝑛
} are also bounded.

Next we prove that ‖𝑥
𝑛
− 𝑢
𝑛
‖ → 0, as 𝑛 → ∞, where

the sequence {𝑢
𝑛
} is defined by

𝑢
0
= 𝑥
0
∈ 𝐶,

𝑢
𝑛+1

= 𝑄 (𝛼
𝑛
𝑓 (𝑢
𝑛
) + (1 − 𝛼

𝑛
) 𝑇𝑢
𝑛
) .

(25)

By Lemma 9 and Remark 10, {𝑢
𝑛
} converges strongly to

some point 𝑥∗ ∈ 𝐹(𝑇), which is the unique solution to the
following variational inequality:

⟨(𝐼 − 𝑓) 𝑥
∗
, 𝑗 (𝑥
∗
− 𝑥)⟩ ≤ 0, ∀𝑥 ∈ 𝐹 (𝑇) . (26)

Furthermore, we obtain
𝑥𝑛+1 − 𝑢𝑛+1



≤
𝑄 (𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑦
𝑛
)

−𝑄 (𝛼
𝑛
𝑓 (𝑢
𝑛
) + (1 − 𝛼

𝑛
) 𝑇𝑢
𝑛
)


≤
𝛼𝑛 (𝑓 (𝑥𝑛) − 𝑓 (𝑢𝑛)) + (1 − 𝛼𝑛) (𝑦𝑛 − 𝑇𝑢𝑛)



≤ 𝛼
𝑛
𝜌
𝑥𝑛 − 𝑢𝑛

 + (1 − 𝛼𝑛)

× (𝛽
𝑛

𝑆𝑥𝑛 − 𝑇𝑢𝑛
 + (1 − 𝛽𝑛)

𝑇𝑥𝑛 − 𝑇𝑢𝑛
)

≤ (1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑢𝑛
 + (1 − 𝛼𝑛) 𝛽𝑛𝑀

≤ (1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑢𝑛
 + 𝛽𝑛𝑀,

(27)

where𝑀 = sup
𝑛≥0

‖𝑆𝑥
𝑛
−𝑇𝑢
𝑛
‖. It follows from conditions (i)-

(ii) and Lemma 7we have lim
𝑛→∞

‖𝑥
𝑛
−𝑢
𝑛
‖ = 0. Since as 𝑛 →

∞, 𝑢
𝑛
→ 𝑥
∗
∈ 𝐹(𝑇), we get 𝑥

𝑛
→ 𝑥
∗
(𝑛 → ∞), which is

the unique solution to the variational inequality (22).

Remark 12. Theorem 11 extends Theorem 2.1 in [5] from the
following aspects: (i) from Hilbert spaces to reflexive and
strictly convex Banach spaces which admits a weakly sequen-
tially continuous duality mapping; (ii) for the infinite family
ofmappings {𝑇

𝑖
} from self-mappings to nonself-mappings. In

addition, the existence of the sunny nonexpansive retraction
has been proved in [19, Theorem 3.10].

Remark 13. If we take

𝛼
𝑛
=

1

(1 + 𝑛)
𝛼
,

𝛽
𝑛
=

1

(1 + 𝑛)
𝛽
,

0 < 𝛼 < 𝛽 < 1,

(28)

then since |𝛼
𝑛+1

− 𝛼
𝑛
| ≈ 1/𝑛

𝛼+1 and |𝛽
𝑛+1

− 𝛽
𝑛
| ≈ 1/𝑛

𝛽+1 (as
𝑛 → ∞), it is not hard to find that the conditions (i)–(iii) are
satisfied. For details, see [12, Remark 3.2].

In the sequel, we consider the result in the setting of
Hilbert spaces.

Theorem 14. Let 𝐻 be a Hilbert space and 𝐶 a nonempty,
closed and convex subset of 𝐻. Let 𝑆 : 𝐶 → 𝐻 be a
nonexpansive nonself-mapping, 𝑓 : 𝐶 → 𝐶 a contractive
mapping with a contractive constant 𝜌 ∈ (0, 1), and 𝑇

𝑖
: 𝐶 →

𝐻 (𝑖 = {1, 2, . . .}) an infinite family of nonexpansive nonself-
mappings such that 𝐹(𝑇) = ⋂

∞

𝑖=1
𝐹(𝑇
𝑖
) ̸= 0. Let {𝑥

𝑛
} be the

sequence generated by (14) and {𝛼
𝑛
} and {𝛽

𝑛
} the sequences in

(0, 1) satisfying the following conditions:

(i) 𝛼
𝑛
→ 0, ∑

∞

𝑛=0
𝛼
𝑛
= ∞;

(ii) lim
𝑛→∞

(𝛽
𝑛
/𝛼
𝑛
) = 𝜏 ∈ (0, +∞);

(iii) lim
𝑛→∞

((|𝛽
𝑛
− 𝛽
𝑛−1

| + |𝛼
𝑛
− 𝛼
𝑛−1

|)/𝛼
𝑛
𝛽
𝑛
) = 0;

(iv) there exists a constant𝐾 > 0 such that 1/𝛼
𝑛
|(1/𝛽
𝑛
) −

(1/𝛽
𝑛−1

) | ≤ 𝐾 for all 𝑛 > 0.
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Then {𝑥
𝑛
} converges strongly to some point 𝑥∗ ∈ 𝐹(𝑇), which

is the unique solution to the following variational inequality:

⟨
1

𝜏
(𝐼 − 𝑓) 𝑥

∗
+ (𝐼 − 𝑆) 𝑥

∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝐹 (𝑇) .

(29)

Proof. By condition (ii), without loss of generality, we can
assume that 𝛽

𝑛
≤ (𝜏+1)𝛼

𝑛
, for all 𝑛 ≥ 0. Similar to the proof

of (24), for any 𝑢 ∈ 𝐹(𝑇), we have
𝑥𝑛+1 − 𝑢



≤ max{𝑥0 − 𝑢
 ,
(𝜏 + 1) (

𝑓 (𝑢) − 𝑢
 + ‖𝑆𝑢 − 𝑢‖)

1 − 𝜌
} .

(30)

Thus {𝑥
𝑛
} is bounded. Furthermore, {𝑓(𝑥

𝑛
)}, {𝑇𝑥

𝑛
}, {𝑦
𝑛
},

{𝑆𝑥
𝑛
} are all bounded. Put 𝑢

𝑛
= 𝛼
𝑛
𝑓(𝑥
𝑛
) + (1 − 𝛼

𝑛
)𝑦
𝑛
and

𝑀 = sup
𝑛≥0

{‖𝑓(𝑥
𝑛
)‖ + ‖𝑦

𝑛
‖, ‖𝑇𝑥

𝑛
‖ + ‖𝑆𝑥

𝑛
‖}. So {𝑢

𝑛
} and

{𝑃
𝐶
(𝑢
𝑛
)} are also bounded.

Step 1. We prove that ‖𝑥
𝑛+1

− 𝑥
𝑛
‖ → 0 (𝑛 → ∞).

From (14), we obtain
𝑥𝑛+1 − 𝑥𝑛



=
𝑃𝐶 (𝑢𝑛) − 𝑃𝐶 (𝑢𝑛−1)

 ≤
𝑢𝑛 − 𝑢𝑛−1



≤ 𝛼
𝑛

𝑓 (𝑥𝑛) − 𝑓 (𝑥𝑛−1)
 + (1 − 𝛼𝑛)

𝑦𝑛 − 𝑦𝑛−1


+
𝛼𝑛 − 𝛼𝑛−1

 (
𝑓 (𝑥𝑛−1)

 +
𝑦𝑛−1

)

≤ 𝛼
𝑛
𝜌
𝑥𝑛 − 𝑥𝑛−1

 + (1 − 𝛼𝑛)

×
𝑦𝑛 − 𝑦𝑛−1

 +
𝛼𝑛 − 𝛼𝑛−1

𝑀,

(31)

𝑦𝑛 − 𝑦𝑛−1


≤ 𝛽
𝑛

𝑆𝑥𝑛 − 𝑆𝑥𝑛−1
 + (1 − 𝛽𝑛)

𝑇𝑥𝑛 − 𝑇𝑥𝑛−1


+
𝛽𝑛 − 𝛽𝑛−1

 (
𝑆𝑥𝑛−1

 +
𝑇𝑥𝑛−1

)

≤
𝑥𝑛 − 𝑥𝑛−1

 +
𝛽𝑛 − 𝛽𝑛−1

𝑀.

(32)

Substituting (32) into (31), we have
𝑥𝑛+1 − 𝑥𝑛

 ≤ (1 − 𝛼𝑛 (1 − 𝜌))
𝑥𝑛 − 𝑥𝑛−1



+ 𝛼
𝑛

(
𝛼𝑛 − 𝛼𝑛−1

 +
𝛽𝑛 − 𝛽𝑛−1

)𝑀

𝛼
𝑛

.

(33)

By conditions (i), (iii), and Lemma 7, we have ‖𝑥
𝑛+1

−𝑥
𝑛
‖ →

0 (𝑛 → ∞).

Step 2. We prove that 𝜔
𝑤
(𝑥
𝑛
) ⊂ 𝐹(𝑇), where 𝜔

𝑤
(𝑥
𝑛
) is the

𝜔-limit point set of {𝑥
𝑛
} in the weak topology:

𝑥𝑛+1 − 𝑄𝑇𝑥𝑛


≤ 𝛼
𝑛

𝑓 (𝑥𝑛)
 + 𝛽𝑛

𝑆𝑥𝑛
 + (𝛼𝑛 + 𝛽𝑛 + 𝛼𝑛𝛽𝑛)

𝑇𝑥𝑛
 .

(34)

Noting that 𝛼
𝑛
→ 0 and 𝛽

𝑛
→ 0, we have ‖𝑥

𝑛+1
−𝑄𝑇𝑥

𝑛
‖ →

0 (𝑛 → ∞). Then from Step 1 we have ‖𝑥
𝑛
− 𝑄𝑇𝑥

𝑛
‖ →

0 (𝑛 → ∞). Furthermore, it follows from Lemmas 4 and
8 that 𝜔

𝑤
(𝑥
𝑛
) ⊂ 𝐹(𝑄𝑇) = 𝐹(𝑇), where 𝑄 = 𝑃

𝐶
.

Step 3. We show that ‖𝑥
𝑛+1

− 𝑥
𝑛
‖/𝛽
𝑛
→ 0 (𝑛 → ∞).

It follows from (31) and (33) that

𝑥𝑛+1 − 𝑥𝑛


𝛽
𝑛

≤

𝑢𝑛 − 𝑢𝑛−1


𝛽
𝑛

≤ (1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑥𝑛−1


𝛽
𝑛−1

+ (1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑥𝑛−1




1

𝛽
𝑛

−
1

𝛽
𝑛−1



+
(
𝛼𝑛 − 𝛼𝑛−1

 +
𝛽𝑛 − 𝛽𝑛−1

)𝑀

𝛽
𝑛

≤ (1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑥𝑛−1


𝛽
𝑛−1

+ 𝛼
𝑛

𝑥𝑛 − 𝑥𝑛−1
𝐾

+
(
𝛼𝑛 − 𝛼𝑛−1

 +
𝛽𝑛 − 𝛽𝑛−1

)𝑀

𝛼
𝑛
𝛽
𝑛

𝛼
𝑛
.

(35)

By conditions (i) and (iii), ‖𝑥
𝑛
− 𝑥
𝑛−1

‖ → 0 (𝑛 → ∞), and
Lemma 7, we have

𝑥𝑛+1 − 𝑥𝑛


𝛽
𝑛

→ 0 (𝑛 → ∞) . (36)

Thus from (35), we get

𝑢𝑛 − 𝑢𝑛−1


𝛽
𝑛

→ 0 (𝑛 → ∞) . (37)

Step 4. We show that {𝑥
𝑛
} converges strongly to some point

𝑥

∈ 𝐹(𝑇), which is the unique solution of (29).
Setting𝑊

𝑛
= 𝛽
𝑛
𝑆 + (1 − 𝛽

𝑛
)𝑇, we have

𝑥
𝑛+1

= 𝑃
𝐶
(𝑢
𝑛
) − 𝑢
𝑛
+ 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
)𝑊
𝑛
𝑥
𝑛
. (38)

Then

𝑥
𝑛
− 𝑥
𝑛+1

= 𝑢
𝑛
− 𝑃
𝐶
(𝑢
𝑛
) + 𝛼
𝑛
(𝐼 − 𝑓) 𝑥

𝑛
+ (1 − 𝛼

𝑛
) (𝐼 − 𝑊

𝑛
) 𝑥
𝑛
.

(39)

Letting V
𝑛
= (𝑥
𝑛
− 𝑥
𝑛+1

)/(1 − 𝛼
𝑛
)𝛽
𝑛
, from condition (i) and

(36), we have V
𝑛
→ 0 (𝑛 → ∞). Noting that 𝐼 − 𝑊

𝑛
is
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monotone and 𝐼 − 𝑓 is (1 − 𝜌)-strongly monotone, for any
𝑥
∗
∈ 𝐹(𝑇), from Lemma 3 we obtain

⟨V
𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩

=
1

(1 − 𝛼
𝑛
) 𝛽
𝑛

⟨𝑢
𝑛
− 𝑃
𝐶
(𝑢
𝑛
) , 𝑥
𝑛
− 𝑥
∗
⟩

+
𝛼
𝑛

(1 − 𝛼
𝑛
) 𝛽
𝑛

⟨(𝐼 − 𝑓) 𝑥
𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩

+
1

𝛽
𝑛

⟨(𝐼 − 𝑊
𝑛
) 𝑥
𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩

=
1

(1 − 𝛼
𝑛
) 𝛽
𝑛

⟨𝑢
𝑛
− 𝑃
𝐶
(𝑢
𝑛
) , 𝑥
𝑛
− 𝑥
∗
⟩

+
𝛼
𝑛

(1 − 𝛼
𝑛
) 𝛽
𝑛

⟨(𝐼 − 𝑓) 𝑥
𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩

+
1

𝛽
𝑛

⟨(𝐼 − 𝑊
𝑛
) 𝑥
𝑛
− (𝐼 −𝑊

𝑛
) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

+
1

𝛽
𝑛

⟨(𝐼 − 𝑊
𝑛
) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

=
1

(1 − 𝛼
𝑛
) 𝛽
𝑛

⟨𝑢
𝑛
− 𝑃
𝐶
(𝑢
𝑛
) , 𝑃
𝐶
(𝑢
𝑛
) − 𝑥
∗
⟩

+
1

(1 − 𝛼
𝑛
) 𝛽
𝑛

× ⟨𝑢
𝑛
− 𝑃
𝐶
(𝑢
𝑛
) , − (𝑃

𝐶
(𝑢
𝑛
) − 𝑥
∗
) + (𝑃

𝐶
(𝑢
𝑛−1

) − 𝑥
∗
)⟩

+
𝛼
𝑛

(1 − 𝛼
𝑛
) 𝛽
𝑛

⟨(𝐼 − 𝑓) 𝑥
𝑛
− (𝐼 − 𝑓) 𝑥

∗
, 𝑥
𝑛
− 𝑥
∗
⟩

+
𝛼
𝑛

(1 − 𝛼
𝑛
) 𝛽
𝑛

⟨(𝐼 − 𝑓) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

+
1

𝛽
𝑛

⟨(𝐼 − 𝑊
𝑛
) 𝑥
𝑛
− (𝐼 −𝑊

𝑛
) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

+
1

𝛽
𝑛

⟨(𝐼 − 𝑊
𝑛
) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

≥
1

(1 − 𝛼
𝑛
) 𝛽
𝑛

⟨𝑢
𝑛
− 𝑃
𝐶
(𝑢
𝑛
) , 𝑃
𝐶
(𝑢
𝑛−1

) − 𝑃
𝐶
(𝑢
𝑛
)⟩

+
𝛼
𝑛
(1 − 𝜌)

(1 − 𝛼
𝑛
) 𝛽
𝑛

𝑥𝑛 − 𝑥
∗

2

+
𝛼
𝑛

(1 − 𝛼
𝑛
) 𝛽
𝑛

⟨(𝐼 − 𝑓) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

+ ⟨(𝐼 − 𝑆) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩ .

(40)

Thus we have
𝑥𝑛 − 𝑥

∗

2

≤
(1 − 𝛼

𝑛
) 𝛽
𝑛

𝛼
𝑛
(1 − 𝜌)

⟨V
𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩

−
(1 − 𝛼

𝑛
) 𝛽
𝑛

𝛼
𝑛
(1 − 𝜌)

⟨(𝐼 − 𝑆) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

−
1

𝛼
𝑛
(1 − 𝜌)

⟨𝑢
𝑛
− 𝑃
𝐶
(𝑢
𝑛
) , 𝑃
𝐶
(𝑢
𝑛−1

) − 𝑃
𝐶
(𝑢
𝑛
)⟩

−
1

(1 − 𝜌)
⟨(𝐼 − 𝑓) 𝑥

∗
, 𝑥
𝑛
− 𝑥
∗
⟩

≤
(1 − 𝛼

𝑛
) 𝛽
𝑛

𝛼
𝑛
(1 − 𝜌)

V𝑛


𝑥𝑛 − 𝑥
∗

−
(1 − 𝛼

𝑛
) 𝛽
𝑛

𝛼
𝑛
(1 − 𝜌)

⟨(𝐼 − 𝑆) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

+
1

(1 − 𝜌)

𝑢𝑛 − 𝑃𝐶 (𝑢𝑛)




𝑢
𝑛−1

− 𝑢
𝑛

𝛼
𝑛



−
1

(1 − 𝜌)
⟨(𝐼 − 𝑓) 𝑥

∗
, 𝑥
𝑛
− 𝑥
∗
⟩ .

(41)

Since 𝛽
𝑛
≤ (𝜏 + 1)𝛼

𝑛
, by (37) we have

𝑢𝑛 − 𝑢𝑛−1


𝛼
𝑛

→ 0 (𝑛 → ∞) . (42)

Combining condition (ii), V
𝑛
→ 0 (𝑛 → ∞), (41), and (42),

every weak cluster point of {𝑥
𝑛
} is also a strong cluster point.

From (40), we obtain

⟨(𝐼 − 𝑓) 𝑥
𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩

=
(1 − 𝛼

𝑛
) 𝛽
𝑛

𝛼
𝑛

⟨V
𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩

−
1

𝛼
𝑛

⟨𝑢
𝑛
− 𝑃
𝐶
(𝑢
𝑛
) , 𝑥
𝑛
− 𝑥
∗
⟩

−
(1 − 𝛼

𝑛
)

𝛼
𝑛

⟨(𝐼 − 𝑊
𝑛
) 𝑥
𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩

=
(1 − 𝛼

𝑛
) 𝛽
𝑛

𝛼
𝑛

⟨V
𝑛
, 𝑥
𝑛
− 𝑥
∗
⟩

−
1

𝛼
𝑛

⟨𝑢
𝑛
− 𝑃
𝐶
(𝑢
𝑛
) , 𝑃
𝐶
(𝑢
𝑛
) − 𝑥
∗
⟩

−
1

𝛼
𝑛

⟨𝑢
𝑛
− 𝑃
𝐶
(𝑢
𝑛
) , 𝑃
𝐶
(𝑢
𝑛−1

)

− 𝑃
𝐶
(𝑢
𝑛
)⟩ −

(1 − 𝛼
𝑛
)

𝛼
𝑛

× ⟨(𝐼 −𝑊
𝑛
) 𝑥
𝑛
− (𝐼 −𝑊

𝑛
) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

−
(1 − 𝛼

𝑛
)

𝛼
𝑛

⟨(𝐼 − 𝑊
𝑛
) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩
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≤
(1 − 𝛼

𝑛
) 𝛽
𝑛

𝛼
𝑛

V𝑛


𝑥𝑛 − 𝑥
∗

+
1

𝛼
𝑛

𝑢𝑛 − 𝑃𝐶 (𝑢𝑛)
 𝑃𝐶 (𝑢𝑛−1) − 𝑃𝐶 (𝑢𝑛)



−
(1 − 𝛼

𝑛
) 𝛽
𝑛

𝛼
𝑛

⟨(𝐼 − 𝑆) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩

≤
(1 − 𝛼

𝑛
) 𝛽
𝑛

𝛼
𝑛

V𝑛


𝑥𝑛 − 𝑥
∗

+

𝑢𝑛−1 − 𝑢𝑛


𝛼
𝑛

𝑢𝑛 − 𝑃𝐶 (𝑢𝑛)


−
(1 − 𝛼

𝑛
) 𝛽
𝑛

𝛼
𝑛

⟨(𝐼 − 𝑆) 𝑥
∗
, 𝑥
𝑛
− 𝑥
∗
⟩.

(43)

Note that the sequence {𝑥
𝑛
} is bounded; thus there exists a

subsequence {𝑥
𝑛
𝑗

} converging to a point 𝑥 ∈ 𝐻. From Step 2,
we have 𝑥 ∈ 𝐹(𝑇). Then it follows from the above inequality,
(42), and V

𝑛
→ 0 (𝑛 → ∞) that

⟨(𝐼 − 𝑓) 𝑥

, 𝑥

− 𝑥
∗
⟩

≤ −𝜏 ⟨(𝐼 − 𝑆) 𝑥
∗
, 𝑥

− 𝑥
∗
⟩ , ∀𝑥

∗
∈ 𝐹 (𝑇) .

(44)

Replacing 𝑥∗ with 𝑥 + 𝜇(𝑥∗ − 𝑥), where 𝜇 ∈ (0, 1) and 𝑥∗ ∈
𝐹(𝑇), we have

⟨(𝐼 − 𝑓) 𝑥

, 𝑥

− 𝑥
∗
⟩

≤ −𝜏⟨(𝐼 − 𝑆) (𝑥

+ 𝜇 (𝑥

∗
− 𝑥

)) , 𝑥

− 𝑥
∗
⟩,

∀𝑥
∗
∈ 𝐹 (𝑇) .

(45)

Letting 𝜇 → 0, we have

⟨(𝐼 − 𝑓) 𝑥

, 𝑥

− 𝑥
∗
⟩

≤ −𝜏 ⟨(𝐼 − 𝑆) 𝑥

, 𝑥

− 𝑥
∗
⟩ , ∀𝑥

∗
∈ 𝐹 (𝑇) .

(46)

If there exists another subsequence {𝑥
𝑛
𝑗

} of {𝑥
𝑛
} converging

to a point 𝑥 ∈ 𝐻. From Step 2, we also have 𝑥 ∈ 𝐹(𝑇).Then
from (46) we obtain

⟨(𝐼 − 𝑓) 𝑥

, 𝑥

− 𝑥

⟩ ≤ −𝜏 ⟨(𝐼 − 𝑆) 𝑥


, 𝑥

− 𝑥

⟩ (47)

and, via interchanging 𝑥 and 𝑥,

⟨(𝐼 − 𝑓) 𝑥

, 𝑥

− 𝑥

⟩ ≤ −𝜏 ⟨(𝐼 − 𝑆) 𝑥


, 𝑥

− 𝑥

⟩ . (48)

Adding up these two inequalities yields

(1 − 𝜌)

𝑥

− 𝑥


2

≤ ⟨(𝐼 − 𝑓) 𝑥

− (𝐼 − 𝑓) 𝑥


, 𝑥

− 𝑥

⟩ ≤ 0,

(49)

which implies 𝑥 = 𝑥
. Then {𝑥

𝑛
} converges strongly to

𝑥

∈ 𝐹(𝑇), which is the solution to the following variational

inequality:

⟨
1

𝜏
(𝐼 − 𝑓) 𝑥


+ (𝐼 − 𝑆) 𝑥


, 𝑥 − 𝑥


⟩ ≥ 0, ∀𝑥 ∈ 𝐹 (𝑇) .

(50)

Since 𝐼−𝑓 is (1−𝜌)-stronglymonotone and 𝐼−𝑆 is monotone,
it is easy to see that the above variational inequality has a
unique solution.

Remark 15. Theorem 14 extendsTheorem 3.2 in [12] from the
following aspects: (i) from a nonexpansive mapping 𝑇 to an
infinite family of nonexpansive mappings {𝑇

𝑖
}; (ii) from self-

mappings to nonself-mappings.
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