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The motions of the airflow induced by the movement of an automatic guided vehicle (AGV) in a cleanroom are numerically
studied by large-scale simulation. For this purpose, numerical experiments scheme based on domain decomposition method is
designed. Compared with the related past research, the high Reynolds number is treated by large-scale computation in this work.
A domain decomposition Lagrange-Galerkin method is employed to approximate the Navier-Stokes equations and the convection
diffusion equation; the stiffnessmatrix is symmetric and an incomplete balancing preconditioned conjugate gradient (PCG)method
is employed to solve the linear algebra system iteratively. The end wall effects are readily viewed, and the necessity of the extension
to 3 dimensions is confirmed. The effect of the high efficiency particular air (HEPA) filter on contamination control is studied and
the proper setting of the speed of the clean air flow is also investigated. More details of the recirculation zones are revealed by the
3D large-scale simulation.

1. Introduction

Automatic guided vehicles (AGVs) play a more and more
important role in the material handling system of modern
computer integrated manufacturing systems (CIMS). Based
on the demands of just-in-time delivery, AGVs are now used
more and more widely in modern hospitals, medical centers,
port logistics, airports, and semiconductor industry.With the
increase in both size and weight of the wafers, AGVs are used
to carry the wafers instead of operators to save labor and to
decrease wafer damage and contamination.

Cleanrooms are commonly used to provide a contam-
ination control environment to produce high quality and
precision products in modern semiconductor industry. The
external clean airflow in the cleanroom plays a role of remov-
ing microcontaminants and hazardous gas, which are usually
generated in manufacturing and transportation process. A
vertical external airflow is usually necessary and efficient
to keep the cleanness of the cleanroom; however, some
microcontaminants that circulate within recirculation zones
and deposit on the products and equipment are extremely

difficult to be removed. Therefore, simulation of the motion
of the airflow in the cleanroom shows its importance.

However, existing techniques available in the literature
show a variety of concerns about the characteristics [1–
6], system control [7–10], and path planning [11–14] of
AGVs; there are few reports devoted to the simulation of
the motion of the airflow in the cleanroom; see [15–21]. By
using an upwind scheme, Kanayama et al. analyzed a two-
dimensional flow around an AGV in a cleanroom [18]. The
results indicated that the wafer might not be contaminated
by the particles from the floor. But unfortunately, the airflow
looks rather different from what actually occurs because of
the limitation of dimensions and mesh size in computation
model; Suh-Jenq Yang proposed a two-dimensional model;
without the grating zones to simulation of an AGVmoving in
cleanroom, only the recirculation zones in a two-dimensional
plane were displayed, and the end wall effects were totally
neglected.

The current study is to improve the simulation of air-
flow in the cleanroom and to investigate the contaminant
control inside. It is expected to have a better view about the
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recirculation zones by using large-scale computation based
on a domain decomposition method. To handle the problem
caused by the nonlinear convective terms of flow problems,
which result in the nonsymmetry of the stiffness matrix, an
adapted Lagrange-Galerkin method for the domain decom-
position method is used. Compared with the classical meth-
ods, which employ product-type methods such as GPBiCG
or BiCGSTAB as the iteration solver [22], the symmetry of
the matrix enables preconditioned conjugate gradient (PCG)
method to be employed to solve the interface problem of
the domain decomposition system. By using an incomplete
balancing domain decomposition preconditioner, problems
with up to 30 million degrees of freedom (DOF) can be
solved [23] on a cluster with 20 Intel(R) Core(TM) i7 920
processors. In order to investigate the effects of end walls, two
types of boundary conditions are considered. The necessity
of the vertical external airflow, which plays an important role
in removing the microcontaminants, is also to be proved by
numerical experiments in this work.

The remaining sections are arranged as follows. Section 2
gives a brief description about the physical model. Section 3
describes the formulations, scheme, and the domain decom-
position implementation. Numerical results and discussions
are present in Section 4, and finally, Section 5 gives conclud-
ing remarks in this research and points out the directions
for the future study of airflows around a moving AGV in
cleanrooms.

2. Modeling

To maintain the cleanliness of the cleanroom, the external
airflow entering the cleanroom should be filtered by the high
efficiency particular air (HEPA) filter.The clean airflowplays a
role of removingmicrocontaminants and hazardous gas from
the cleanroom. A grating zone at the bottom is to let out the
airflow and keep a normal pressure. To facilitate the analysis,
the moving AGVs (from right to left) are supposed to be still
while the flow around the AGV is set to be moving from left
to right, as is shown in Figure 1.

The height and width of the cleanroom are set to 2.1m
and 9.2m, respectively, and a wafer cassette is above the top
surface of the AGV, which is consistent with the experiment
in [18].The airflow enters the cleanroom from the ceilingwith
a uniform velocity. Initially, the flow around is stationary, and
the velocities of flow at the left side and right side are set
to be the same. As the computation starts, the effects of the
boundary setting on two sides appear, simulating the AGV
moves toward the right side with a constant velocity. To avoid
the drawbacks of such a simulation, the pressure conditions
on both sides are set to be free.

In order to investigate the distribution of micro contam-
inant, the tyres are assumed to be the source of the micro
containments and the concentration at the bottom of AGV
is set as constant.

3. Formulation and Implementation

3.1. Governing Equations. Let 𝜕Ω be the boundary of a three-
dimensional polyhedral domain Ω. 𝐻1(Ω) is the Sobolev

space of the first order and 𝐿2
0
(Ω) is the subspace of 𝐿2(Ω)

functions with zero mean value. Under the assumption that
the flow field is incompressible, viscous, and laminar, solving
the model can be summarized as finding (𝑢, 𝑝) ∈ 𝐻1(Ω)3 ×
𝐿
2
(Ω) such that for any 𝑡 ∈ (0, 𝑇), the following set of

equations hold:

𝜕𝑢

𝜕𝑡
+ (𝑢 ⋅ ∇) 𝑢 −

1

𝜌
∇ ⋅ 𝜎 (𝑢, 𝑝) =

1

𝜌
𝑓 in Ω × (0, 𝑇) ,

∇ ⋅ 𝑢 = 0 in Ω × (0, 𝑇) ,

𝑢 = �̂� on Γ
1
× (0, 𝑇) ,

3

∑

𝑗=0

𝜎
𝑖𝑗
𝑛
𝑗
= 0 on 𝜕Ω \ Γ

1
× (0, 𝑇) ,

𝑢 = 𝑢
0

in Ω, at 𝑡 = 0,

(1)

where

Γ
1
⊂ 𝜕Ω, (2)

𝑢 = (𝑢
1
, 𝑢
2
, 𝑢
3
) is the velocity [m/s]; 𝑝 is the pressure [N/m2];

𝜌 is the density (const.) [kg/m3]; 𝑓 = (𝑓
1
, 𝑓
2
, 𝑓
3
) is the body

force [N/m3]; �̂� = (�̂�
1
, �̂�
2
, �̂�
3
) is the boundary velocity [m/s],

and 𝜎(𝑢, 𝑝) is the stress tensor [N/m2] defined by

𝜎
𝑖𝑗
(𝑢, 𝑝) ≡ −𝑝𝛿

𝑖𝑗
+ 2𝜇𝐷

𝑖𝑗
(𝑢) ,

𝐷
𝑖𝑗
(𝑢) ≡

1

2
(
𝜕𝑢
𝑖

𝜕𝑥
𝑗

+
𝜕𝑢
𝑗

𝜕𝑥
𝑖

) , 𝑖, 𝑗 = 1, 2, 3,

(3)

with the Kronecker delta 𝛿
𝑖𝑗
and the viscosity 𝜇 [kg/ms].

Let Γ
2
⊂ 𝜕Ω; the governing equation of microcontami-

nants diffusion is to find 𝐶 ∈ 𝐻1(Ω) such that

𝜕𝐶

𝜕𝑡
+ 𝑢 ⋅ ∇𝐶 − 𝑎Δ𝐶 = 𝑆 in Ω × [0, Τ] ,

𝐶 = �̂� on Γ
2
× [0, Τ] ,

𝑎
𝜕𝐶

𝜕𝑛
= 0 on 𝜕Ω \ Γ

2
× [0, Τ] ,

𝐶 = 𝐶
0

in Ω, at 𝑡 = 0,

(4)

where 𝐶 is the concentration; 𝑎 is the diffusion coefficient
[m2/s], and 𝑆 is the source term [K/s].

An adapted Lagrange-Galerkin method is applied to the
nonlinear terms in (1) and (4), which works as follows: let
Δ𝑡 be the time increment and 𝑁

𝑇
≡ [𝑇/Δ𝑡] be the total step

number, thus 𝑡𝑛 ≡ 𝑛Δ𝑡, where 𝑛 is an integer. The trajectory
of fluid particle is defined by

𝑋

(𝑡) = 𝑢 (𝑋, 𝑡) , in (𝑡

𝑛−1
, 𝑡
𝑛
) ,

𝑋 (𝑡
𝑛
) = 𝑥,

(5)

where 𝑢(𝑋, 𝑡) : Ω × (0, 𝑇) → R3 is a smooth function
denoting the velocity and 𝑋(𝑡) : (0, 𝑇) → R3 is a solution
of this ODE, representing the particle’s position at 𝑡.
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Figure 1: A moving AGV in a cleanroom.

With definition in (5), a particle’s position at 𝑡𝑛−1 can be
approximated by𝑋

1
(𝑢(𝑋, 𝑡), Δ𝑡) : Ω → R3 with the formula

𝑋(𝑡
𝑛−1
) = 𝑋

1
(𝑢 (𝑋, 𝑡

𝑛−1
) , Δ𝑡) + 𝑂 (Δ𝑡

2
) , (6)

where

𝑋
1
(𝑢 (𝑋, 𝑡

𝑛−1
) , Δ𝑡) ≡ 𝑥 − 𝑢 (𝑋, 𝑡

𝑛−1
) Δ𝑡 (7)

denotes a first-order approximation; see [24]; therefore, the
material derivative term in (1) can be written as follows:

𝜕𝑢

𝜕𝑡
+ (𝑢 ⋅ ∇) 𝑢 =

𝑢
𝑛
− 𝑢
𝑛−1

∘ 𝑋
1
(𝑢
𝑛−1
, Δ𝑡)

Δ𝑡
(𝑥) + 𝑂 (Δ𝑡) .

(8)

Here, the notation ∘ designates the composition of func-
tions. Similarly, (4) can also be replaced in an analogy way.

3.2. Stabilized FEM Scheme. Let the subscript ℎ be the
representative length of the triangulation, a triangulationI

ℎ

ofΩ consisting of tetrahedral elements, where

Ω = ⋃

𝐾∈Ih

𝐾. (9)

The finite element spaces used in this work are as follows:

𝑋
ℎ
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ℎ
∈ 𝐶
0
(Ω)
3
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ℎ
|
𝐾
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3
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ℎ
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0
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ℎ
|
𝐾
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1
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ℎ
} ,

𝑉
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ℎ
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ℎ
; V
ℎ
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1
} ,

Θ
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ℎ
∈ 𝑀
ℎ
; 𝜃
ℎ
(𝑃) = 𝑏 (𝑃) , ∀𝑃 ∈ Γ

2
} ,

𝑉
ℎ
≡ 𝑉
ℎ
(0) , Θ

ℎ
≡ Θ
ℎ
(0) , 𝑄

ℎ
= 𝑀
ℎ
.

(10)

The weak form of the Navier-Stokes equations (1) after
finite element discretization can thus be written in one-
equation as follows:

find {(𝑢𝑛
ℎ
, 𝑝
𝑛

ℎ
)}
𝑁𝑇

𝑛=1
∈𝑉
ℎ
(�̂�) × 𝑄

ℎ
, such that for 𝑛 = 1, . . . , 𝑁

𝑇
,

(
𝑢
𝑛

ℎ
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ℎ
∘ 𝑋
1
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)

+ 𝑎 (𝑢
𝑛

ℎ
, V
ℎ
) + 𝑏 (V

ℎ
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𝑛
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𝑛
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1

𝜌
𝑓
𝑛
, V
ℎ
) , ∀ (V

ℎ
, 𝑞
ℎ
) ∈ 𝑉
ℎ
× 𝑄
ℎ
,

(11)

where (⋅, ⋅) means the inner product and the bilinear forms
𝑎(⋅, ⋅) and 𝑏(⋅, ⋅) are given by

𝑎 (𝑢, V) ≡ ∫
Ω

2𝜇

𝜌
𝐷 (𝑢) : 𝐷 (V) 𝑑𝑥, (12)

𝑏 (V, 𝑞) ≡ −∫
Ω

1

𝜌
𝑞∇ ⋅ V𝑑𝑥, (13)

respectively.
As is shown in (10) and (11), 𝑃1 element is used for both

velocity and pressure, which does not satisfy the so-called
LBB compatibility condition [25], a penalty stabilization
method [25] is employed, and a stabilization term

∑

𝐾∈𝑇ℎ

𝜏
𝐾
(
1

𝜌
∇𝑝
𝑛

ℎ
, −

1

𝜌
∇𝑞
ℎ
)

𝐾

(14)

is added to the left hand side of (11), where 𝜏
𝐾

=

min{Δ𝑡/2, 𝜌ℎ2
𝑘
/24 𝜇} is the stabilization parameter.

The scheme is as follows:

for 𝑛 = 1, . . . 𝑁
𝑇
, ∀𝜃
ℎ
∈ Θ
ℎ
and ∀(V

ℎ
, 𝑞
ℎ
) ∈ 𝑉
ℎ
× 𝑄
ℎ
,
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ℎ
∈ Θ
ℎ
(�̂�) by

(
𝐶
𝑛

ℎ
− 𝐶
𝑛−1

ℎ
∘ 𝑋
1
(𝑢
𝑛−1

ℎ
, Δ𝑡)

Δ𝑡
, 𝜃
ℎ
) + (𝑎∇𝐶

𝑛

ℎ
, ∇𝜃
ℎ
) = (𝑆, 𝜃

ℎ
) .

(15)
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STEP 2: find (𝑢𝑛
ℎ
, 𝑝
𝑛

ℎ
) ∈ 𝑉(�̂�) × 𝑄 by

(
𝑢
𝑛

ℎ
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ℎ
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1
(𝑢
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ℎ
, Δ𝑡)

Δ𝑡
, V
ℎ
)

+ 𝑎
0
(𝑢
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ℎ
, V
ℎ
) + 𝑏 (V

ℎ
, 𝑝
𝑛

ℎ
) + 𝑏 (𝑢

𝑛

ℎ
, 𝑞
ℎ
)

+ ∑

𝐾∈Iℎ

𝜏
𝐾
(∇𝑝
𝑛

ℎ
, −∇𝑞

ℎ
)
𝐾
= (

1

𝜌
𝑓
𝑛
, V
ℎ
) .

(16)

It should be noted that the element information term
𝑋(𝑡
𝑛−1
)may cause some difficulty in solving governing equa-

tions (1) and (4), especially in this work when all the elements
information is distributed on different processor elements
(PEs) and the searching is done in parallel. Fortunately, in
scheme of (15) and (16), the same 𝑢𝑛−1

ℎ
is used for both

equations; therefore, the searching results can be shared by
them in one nonstationary step.

3.3. Boundary Conditions. The model is extended to three
dimensions in this work and the width in 𝑥

2
direction is set

to 0.5m, while the AGV’s width in 𝑥
2
direction is 0.4m. A

diagram of the three-dimensional AGV model is given by
Figure 2

𝑢
1
= 𝑢
2
= 𝑢
3
= 0 on ΓAGV,

𝑢
1
= −𝑈
1

𝑢
2
= 0 on Γup + Γdown + Γgrating ,

𝑢
1
= −𝑈
1

𝑢
2
= 0 𝑢

3
= −0.264 on ΓHEPA,

𝑢
2
= 0 on Γside.

(17)

To compare the numerical results with numerical results
and experimental results obtained by Kanayama et al. [18],

in which the AGV was moving at a constant speed, a similar
boundary setting was used in this research.The first aim is to
compare the results with [18] to verify the consistence and to
reduce the effects of the end walls; the velocity in 𝑥

2
direction

is set to be zero (𝑢
2
= 0), as is shown in (17).

In order to investigate the end wall effects produced by
the three-dimensional model, the restriction in 𝑥

2
direction

is removed and the boundary conditions are given as follows:

𝑢
1
= 𝑢
2
= 𝑢
3
= 0 on ΓAGV + Γside,

𝑢
1
= −𝑈
1

𝑢
2
= 0 on Γgrating ,

𝑢
1
= −𝑈
1

𝑢
2
= 0 𝑢

3
= −0.264 on ΓHEPA,

𝑢
1
= −𝑈
1

on Γup + Γdown.

(18)

In this simulation, the tyres are assumed to be the source
of the micro containments and the concentration is set to be
0.01mg/L at the bottom of AGV.

3.4. Parallel Implementation and Preconditioning. In the
domain decomposition system used in this work, compu-
tation models are firstly divided into several parts before
the domain decomposition computation; parts are further
decomposed into subdomains, and for each parts, domain
decomposition is performed by the current processor ele-
ment (PE), see Figure 3.

During the computation of PCG loop, PEs work inde-
pendently almost all the time and only the information of
the elements that belong to the current parts is available;
however, when computing the residual, the PEs need to work
synchronously and the collection of local residuals from all
the PEs is performed.

As a hybrid Schwarz type preconditioner, the classical
balancing domain decomposition (BDD) preconditioner [26]
shows good efficiency in solving the interface problem of
domain decomposition system. It can be written as

𝑀
−1

BDD = 𝑄𝐶 + (𝐼 − 𝑄𝐶𝑆)𝑄𝐿 (𝐼 − 𝑄𝐶𝑆) , (19)

where 𝑄
𝐶
and 𝑄

𝐿
are the coarse level preconditioner and

the local level preconditioner, respectively, and 𝑆 is the Schur
complement of the linear system. In order to obtain 𝑄

𝐶
, the

inverse of the coarsematrix is required [26]. As the dimension
of coarse matrix is usually very small, a parallel Cholesky
factorization is performed; the coarse matrix is distributed to
each PE and thus the computation cost is reduced. During the
update of one row of the coarse matrix, each processor is idle
until the final updated elements of the same row belonging to
the previous processor have been completed. It is clear that in
the row-oriented factorization of such sparse coarse matrix,
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fill-in occurs in the position of some zero elements due to the
presence of any previous nonzero element in the same row.
As a result, the factors of the coarsematrix become less sparse
than the original coarse matrix and these make the solution

𝑦

𝑧𝑥

𝑦

𝑧𝑥

Frame rate: 0.080000 seconds

Figure 7: The domain decomposed 3D AGV model.

expensive. A similar phenomena in structural analysis was
reported by Ogino et al. [27].

A strategy to neglect the fill-in at the beginning of each
distributed portion of the row in some PEs is adopted. The
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(a) (b)

Figure 8: Velocity vectors around the AGV (a) current 3D results; (b) Kanayama et al.’s 2D results.

Figure 9: Kanayama et al.’s experimental visualization.

coarse matrix is modified to keep the sparsity, and thus the
preconditioner is changed to

𝑀
−1

IBDD = 𝑄𝐶 + (𝐼 − 𝑄𝐶𝑆)𝑄𝐿 (𝐼 − 𝑆𝑄𝐶) . (20)

4. Numerical Results

The criteria of the stationary stage is set by an element based
𝐻
1
(Ω
3
) × 𝐿
2
(Ω) × 𝐻

1
(Ω) norm,

diff =

(𝑢
𝑛
, 𝑝
𝑛
, 𝐶
𝑛
) − (𝑢

𝑛−1
, 𝑝
𝑛−1
, 𝐶
𝑛−1
)
𝐻1(Ω3)×𝐿2(Ω)×𝐻1(Ω)

(𝑢
𝑛−1, 𝑝𝑛−1, 𝐶𝑛−1)

𝐻1(Ω3)×𝐿2(Ω)×𝐻1(Ω)

≤ 𝜀
1
,

(21)

where

(𝑢, 𝑝, 𝐶)
𝐻1(Ω3)×𝐿2(Ω)×𝐻1(Ω)

≡
1

√Re
‖𝑢‖
𝐻
1
(Ω)
3 +

𝑝
𝐿2(Ω) + ‖𝐶‖𝐻1(Ω).

(22)

The convergence judgment of each CG loop is made by the
Euclidean norm,


𝑔
(𝑖)2

𝑔
(0)2

≤ 𝜀
2
, (23)

and in this work, 𝜀
1
= 1.0 × 10

−4 and 𝜀
2
= 1.0 × 10

−6.

4.1. Validation and Efficiency. The solver is tested by a 3D
lid-driven cavity problem. The current results of Re = 400
(Figure 4(a)) and Re = 1,000 (Figure 4(b)) are also compared
with some available 3-dimensional benchmarks. The current
results show a better agreement with Tabata et al. and Kato
et al., which use finite element method; Ku et al. used
quasispectral method and the flow looks more diffusive than
others; they all show good agreements within the tendency
of flows [28], which convince us the success of the current
scheme.

The efficiency of the incomplete balancing domain
decomposition preconditioner is also tested by comparing it
with other preconditioners and results are shown in Figure 5.

Figure 5(a) shows that comparing with BDD precondi-
tioner and no domain decomposition preconditioners, the
IBDD preconditioner is also as fast as the BDD precondi-
tioner, except the fact that the inverse of the coarse matrix
is modified, and therefore 𝑄

𝐶
is changed to 𝑄

𝐶
. Figure 5(b)

demonstrates the time elapsed in solving the coarse problem
(indicated by “ Coarse Prob.”) and the total time elapsed
in a CG loop (indicated by “ Total”). With the increase in
interface DOF, the IBBD preconditioner uses less time, and
this convinces us its capability in large-scale simulations.

4.2. Contamination Control in a Cleaning Room. The
ADVENTURE CAD and ADVENTURE Metis [29] were
used to create the geometry and mesh, and the local density
of mesh around the AGV was increased to have a better
simulation about the flow field around the AGV. In order to
have a clear image of the meshing, a coarse mesh is displayed
in Figure 6.
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Figure 10: Velocity vectors around 3D AGV model.
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Figure 11: Contaminants distribution.

As is mentioned in Section 3.1, the three-dimensional
model is decomposed in several parts by domain decompo-
sition method. By using 9 single-core CPUs (9 PEs in total),
a nonoverlapped domain decomposition result of the three-
dimensional AGV model is demonstrated by Figure 7.

A finer mesh of 920 × 210 × 50 divisions was then created
for large-scale computation to improve the accuracy of the
simulation and to overcome the numerical difficulty caused
by high Reynolds number. A comparison of the velocity
vectors around the AGV got by the current solution and
Kanayama et al.’s 2D results is shown in Figure 8.

Aiming at getting a stationary stage of the ADV at a
constant speed, 𝑈

1
was fixed in this research. Using the

boundary setting in (18), pseudo 2D results in Figure 8(a) give
an image about the velocity vectors around the AGV after the
coordinate transformation, which agrees with the numerical
results of a constant speed AGV reported by Kanayama et al.
[18] in Figure 8(b) very well; the upflow from the grating zone
does not reach the wafer cassettes. Compared with numerical
results reported byKanayama et al. [18] andYang et al. [15, 16],
more details of the flow pattern around the AGV are given by

the current large-scale simulation: the eddy behind the wafer
cassettes and theAGV is displayedmore clearly by Figure 8(a)
and the eddy in front of the wafer cassettes, which is caused
by the angular pediment of the AGV, is also demonstrated by
Figure 8(a).

The experiment in [18] was done in three dimensions,
as is shown in Figure 9, where the flow pattern around the
AGV when deceleration is displayed, the frog shows three-
dimensional characters although the nozzles are arranged
in one line. However, the numerical simulations were done
in two dimensions. This surprising phenomenon motived
us to simulate the 3D model and make the comparison of
results in different dimensions. With the essential boundary
conditions given in (18), true 3D model results are illustrated
by Figure 10, which shows the velocity vectors of two planes:
𝑥
2
= 0.2 (a front plane) and 𝑥

2
= 0.3 (the central plane).

Compared with the pseudo 2D results in Figure 8(a),
it is not difficult to confirm the necessity of using three-
dimensional modeling in simulations to an AGV moving in
a cleanroom.

(1) The eddy behind the AGV and the wafer cassette
becomes smaller, which reflects the end-wall effects
of Γside.

(2) Similarly, the eddy in the plane 𝑥
2
= 0.2 is smaller

than that of the plane 𝑥
2
= 0.3, as it is closer to

Γside and more influence is received from the three-
dimensional boundary settings.

It is worth pointing out that in spite of the fact that the
computation domain is not simply-connected, the Lagrange-
Galerkin does not encounter any difficulties at these “holes”;
both Figures 9 and 10 show good continuity at the corners,
convincing us of the solvability of complex problems.

To compare the numerical results of Kanayama et al.,
the space between the grating zone and the bottom of the
AGV is supposed to be the source of pollution first, which
generates 1 contaminant per second. The comparison of the
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Figure 12: Isolines of contaminants concentration. (a) Without vertical external air; (b) with vertical external air.
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Figure 14: Isolines of vorticity.

amount concentration on the upper face of AGV is illustrated
in Figure 11. By changing the velocity of external air entering
the cleaning room, the distributions are compared and both
the current results and Kanayama et al.’s agree quite well on
the effect of the external air. Due to the improvement in
accuracy, the current results look to be more smooth than
Kanayama et al.’s.

The necessity of the vertical external airflow was further
proved by numerical experiments with boundaries described
in Section 2.3. As is shown in Figure 12, when no external
clean air exists, the cassette is polluted by the microcontami-
nants surrounding the AGV; while with the external vertical
clean air, the concentration of micro contaminates on the
surface of the cassette is close to zero.

In this work, the concern about the proper setting of the
speed of external vertical clean air under boundary condi-
tions described in Section 2.3 had been throughly studied.
A series of concentration values of microcontaminants on
surface of the cassette were obtained under various settings

of 𝑢
3
, and the relationship between them is displayed in

Figure 13.
FromFigure 11, it is easy to see that with the increase of 𝑢

3
,

the decreasing speed of contaminant concentration is slowing
down; at 𝑢

3
= 0.7, the concentration is below 1 × 10−4mg/L

and the trend is turning to be stable; therefore, it can be
regarded as a suitable setting of the speed of the external clean
air.

The Raynolds number in this model is about 33,000. In
this work, by using domain decomposition, an AGV model
of over 30 million DOF is solved. Isolines of the vorticity
are illustrated in Figure 14. As can be seen, by large-scale
computation,more details of the flow induced by theAGVare
revealed.The recirculation zones can be more clearly viewed,
which will provide more accurate information to remove the
microcontaminants.

The model was divided into 920 × 210 × 50 elements
(mesh size ℎ = 0.01) and analyzed parallelly by the scheme
described in Section 2.2. The total DOF was 39,643,524 and
IBDD [23] was employed as the preconditioner to accelerate
the CG iteration. A Linux PC cluster with 20 PCs was
utilized to carry out the computation, and for each PC the
configuration of hardware was as follows:

CPU: Intel(R) Core(TM) i7 920@2.67GHz,
Memory: 12 [GB].
Due to the unconditional stability of the adapted

Lagrange-Galerkin method, Δ𝑡 was set to 0.1 s. The compu-
tation took about 20 hours on this small PC cluster.

5. Conclusions

A moving AGV in a cleanroom is numerically simulated in
three dimensions by large-scale computation in this work.
The main conclusions can be summarized as follows.

(1) By using large-scale simulation, the results are con-
sistent with the conventional simulations; more-
over, more details of the computational models are
revealed, which is important for contaminant control
in practice.

(2) To use three-dimensional modeling is necessary to
improve the numerical simulation of moving AGVs
in cleanrooms.

(3) The proper setting of the speed of external vertical
clean air is found, which can be applied to the design
and optimization of cleaning room.
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(4) The adapted Lagrange-Galerkin method shows good
computation accuracy in solving complex problems.

(5) By using incomplete balanced domain decomposition
preconditioner, the scheme has the solvability for
large-scale problems with up to 30 million of DOF.

The information of recirculation zones is extremely valu-
able for modern health centers and semiconductor industry
to optimize and improve the facilities and to make a clearer
cleanroom. In spite of the pervasive applications of AGV
systems, the simulation of airflows induced byAGVs still calls
for much attention in the future.
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