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We establish the general solution of the functional inequality ‖𝑓(𝑥−𝑦)+𝑓(𝑦−𝑧)+𝑓(𝑥−𝑧)−3𝑓(𝑥)−3𝑓(𝑦)−3𝑓(𝑧)‖ ≤ ‖𝑓(𝑥+𝑦+𝑧)‖ and
then investigate the generalized Hyers-Ulam stability of this inequality in Banach spaces and in non-Archimedean Banach spaces.

1. Introduction

The stability problem of functional equations originated from
a question of Ulam [1] in 1940, concerning the stability of
group homomorphisms.

We are given a group𝐺 and ametric group𝐺 withmetric
𝜌(⋅, ⋅). Given 𝜖 > 0, does there exist a number 𝛿 > 0 such
that if 𝑓 : 𝐺 → 𝐺

 satisfies 𝜌(𝑓(𝑥𝑦), 𝑓(𝑥)𝑓(𝑦)) < 𝛿 for all
𝑥, 𝑦 ∈ 𝐺, then a homomorphism ℎ : 𝐺 → 𝐺

 exists with
𝜌(𝑓(𝑥), ℎ(𝑥)) < 𝜖 for all 𝑥 ∈ 𝐺?

Hyers [2] gave a first affirmative partial answer to the
question of Ulam for Banach spaces by using, so called, direct
method. Hyers’ theorem was generalized by Aoki [3] for
additive mappings and by Rassias [4] for linear mappings
by considering an unbounded Cauchy difference. A general-
ization of the Rassias’ theorem was obtained by Găvruta [5]
by replacing the unbounded Cauchy difference by a general
control function in the spirit of the Rassias’ approach.

Let 𝐸
1
and 𝐸

2
be vector spaces. A mapping 𝑓 : 𝐸

1
→ 𝐸
2

is called quadratic if and only if it is a solution of the quadratic
functional equation:

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) = 2𝑓 (𝑥) + 2𝑓 (𝑦) (1)

for all𝑥, 𝑦 ∈ 𝑋. It is well known that a function𝑓between real
vector spaces is quadratic if and only if there exists a unique
symmetric biadditive function 𝐵 such that 𝑓(𝑥) = 𝐵(𝑥, 𝑥) for
all 𝑥, where the mapping 𝐵 is given by 𝐵(𝑥, 𝑦) = (1/4)[𝑓(𝑥 +

𝑦) − 𝑓(𝑥 − 𝑦)] ([6, 7]). The Hyers-Ulam stability of the

quadratic functional equation (1) was first proved by Skof [8]
for functions 𝑓 : 𝐸

1
→ 𝐸
2
, where 𝐸

1
is a normed space and

𝐸
2
is a Banach space. Cholewa [9] noticed that Skof ’s theorem

is also valid if 𝐸
1
is replaced by an abelian group. In 1992,

Czerwik [10] proved the generalized Hyers-Ulam stability
of quadratic functional equation (1) in the spirit of Rassias
approach by using direct method [11].

The generalized Hyers-Ulam stability of the above quad-
ratic functional equation and of two functional equations of
quadratic type was obtained by Cădariu and Radu [12, 13] by
using fixed point method (see also [14, 15]).

Gilányi [16] and Rätz [17] proved that for a function 𝑓 :

𝐺 → 𝐸mapping from an abelian group 𝐺 divisible by 2 into
an inner product space 𝐸, the functional inequality

2𝑓 (𝑥) + 2𝑓 (𝑦) − 𝑓 (𝑥𝑦

−1
)

≤
𝑓 (𝑥𝑦)

 (𝑥, 𝑦 ∈ 𝐺)

(2)

implies the Jordan-von Neumann functional equation

2𝑓 (𝑥) + 2𝑓 (𝑦) = 𝑓 (𝑥𝑦) + 𝑓 (𝑥𝑦
−1
) (𝑥, 𝑦 ∈ 𝐺) . (3)

Fechner [18] and Gilányi [19] have proved the generalized
Hyers-Ulam stability of the functional inequality (2). Park
et al. [20] have investigated the generalized Hyers-Ulam
stability of functional inequalities associated with Jordan-
von Neumann type additive functional equations, and Kim
et al. [21] have proved the generalizedHyers-Ulam stability of
Jensen functional inequality in𝑝-Banach spaces.The stability
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problems of several functional equations and inequalities
have been extensively investigated by a number of authors
and there aremany interesting results concerning the stability
of various functional equations and inequalities [6, 22].

In 2001, Bae and Kim [23] investigated the Hyers-Ulam
stability of the quadratic functional equation

𝑓 (𝑥 + 𝑦 + 𝑧) + 𝑓 (𝑥 − 𝑦) + 𝑓 (𝑦 − 𝑧)

+𝑓 (𝑥 − 𝑧) = 3𝑓 (𝑥) + 3𝑓 (𝑦) + 3𝑓 (𝑧)
(4)

which is equivalent to the original quadratic functional equa-
tion (1).Now, let us turn our attention to investigate the gener-
alized stability problem of the following quadratic functional
inequality:
𝑓(𝑥 − 𝑦) + 𝑓(𝑦 − 𝑧) + 𝑓(𝑥 − 𝑧) − 3𝑓 (𝑥) − 3𝑓(𝑦) − 3𝑓(𝑧)



≤
𝑓 (𝑥 + 𝑦 + 𝑧)

 .

(5)

In this paper, we make an attempt to establish the
generalized Hyers-Ulam stability of a new quadratic func-
tional inequality (5) by using fixed point method and direct
method. In Section 2, we establish the general solution of the
functional inequality (5). And then we prove the generalized
Hyers-Ulam stability of the functional inequality (5) in
Banach spaces by using fixed point method. In Section 3, we
verify the generalized Hyers-Ulam stability of the functional
inequality (5) in Banach spaces by using direct method.
In Section 4, we investigate the generalized Hyers-Ulam
stability of the functional inequality (5) in non-Archimedean
Banach spaces by using fixed point method. In Section 5, we
prove the generalized Hyers-Ulam stability of the functional
inequality (5) in non-Archimedean Banach spaces by using
direct method.

2. Stability of (5) by Fixed Point Method

In [24], Rassias introduced the following equality:

𝑛

∑
𝑖,𝑗=1


𝑥
𝑖
− 𝑥
𝑗



2

= 2𝑛

𝑛

∑
𝑖=1

𝑥𝑖

2

,

𝑛

∑
𝑖=1

𝑥
𝑖
= 0 (6)

for a fixed integer 𝑛 ≥ 3. Let 𝑉,𝑊 be real vector space. It has
been proved that if a mapping 𝑓 : 𝑉 → 𝑊 satisfies

𝑛

∑
𝑖,𝑗=1

𝑓 (𝑥
𝑖
− 𝑥
𝑗
) = 2𝑛

𝑛

∑
𝑖=1

𝑓 (𝑥
𝑖
) , (7)

for all 𝑥
1
, . . . , 𝑥

𝑛
∈ 𝑉 with ∑𝑛

𝑖=1
𝑥
𝑖
= 0, then the mapping 𝑓

is realized as the sum of an additive mapping and a quadratic
mapping [25]. Park [25] and Jang et al. [26] have proved the
generalized Hyers-Ulam stability of the functional equation
(7). In particular, if 𝑛 = 3 and even function 𝑓 satisfies (7),
then it is easy to see that 𝑓 satisfies the equation

𝑓 (𝑥 − 𝑦) + 𝑓 (2𝑥 + 𝑦) + 𝑓 (𝑥 + 2𝑦)

= 3𝑓 (𝑥) + 3𝑓 (𝑦) + 3𝑓 (𝑥 + 𝑦)
(8)

for all 𝑥, 𝑦 ∈ 𝑋.Thus, we first consider the general solution of
functional equation (8) to verify the general solution of func-
tional inequality (5).

Lemma 1. Let both 𝑋 and 𝑌 be vector spaces. A function 𝑓 :

𝑋 → 𝑌 satisfies (8) if and only if 𝑓 is quadratic.

Proof. If we put 𝑥 = 𝑦 = 0 in (8), then we have 𝑓(0) = 0.
Letting 𝑦 = 0 in (8), we have 𝑓(2𝑥) = 4𝑓(𝑥) for all 𝑥 ∈ 𝑋.
Similarly, we can easily show that𝑓(3𝑥) = 9𝑓(𝑥) and𝑓(5𝑥) =
25𝑓(𝑥) for all𝑥 ∈ 𝑋. Replacing𝑦 by−𝑥 in (8), we get𝑓(−𝑥) =
𝑓(𝑥) for all 𝑥 ∈ 𝑋. Substituting 𝑥 + 𝑦 for 𝑦 in (8), we obtain

𝑓 (𝑦) + 𝑓 (3𝑥 + 𝑦) + 𝑓 (3𝑥 + 2𝑦)

= 3𝑓 (𝑥) + 3𝑓 (𝑥 + 𝑦) + 3𝑓 (2𝑥 + 𝑦)
(9)

for all 𝑥, 𝑦 ∈ 𝑋. Switching 𝑥 with 𝑦 in (9) yields

𝑓 (𝑥) + 𝑓 (𝑥 + 3𝑦) + 𝑓 (2𝑥 + 3𝑦)

= 3𝑓 (𝑦) + 3𝑓 (𝑥 + 𝑦) + 3𝑓 (𝑥 + 2𝑦)
(10)

for all 𝑥, 𝑦 ∈ 𝑋. Adding (9) to (10) and using (8), we arrive at

𝑓 (3𝑥 + 2𝑦) + 𝑓 (2𝑥 + 3𝑦) + 𝑓 (3𝑥 + 𝑦) + 𝑓 (𝑥 + 3𝑦)

= 11𝑓 (𝑥) + 11𝑓 (𝑦) + 15𝑓 (𝑥 + 𝑦) − 3𝑓 (𝑥 − 𝑦)

(11)

for all 𝑥, 𝑦 ∈ 𝑋. Letting 𝑦 := 2𝑦 in (8), we obtain

𝑓 (𝑥 − 2𝑦) + 4𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 + 4𝑦)

= 3𝑓 (𝑥) + 12𝑓 (𝑦) + 3𝑓 (𝑥 + 2𝑦)
(12)

for all 𝑥, 𝑦 ∈ 𝑋. Switching 𝑥 with 𝑦 in (12) and using the
evenness of 𝑓, one gets

𝑓 (2𝑥 − 𝑦) + 4𝑓 (𝑥 + 𝑦) + 𝑓 (4𝑥 + 𝑦)

= 12𝑓 (𝑥) + 3𝑓 (𝑦) + 3𝑓 (2𝑥 + 𝑦)
(13)

for all 𝑥, 𝑦 ∈ 𝑋. Adding (12) to (13) and using (8), we have

𝑓 (𝑥 + 4𝑦) + 𝑓 (4𝑥 + 𝑦)

= 21𝑓 (𝑥) + 21𝑓 (𝑦) + 2𝑓 (𝑥 + 𝑦) − 6𝑓 (𝑥 − 𝑦)
(14)

for all 𝑥, 𝑦 ∈ 𝑋. Putting 𝑥 := 𝑥 − 𝑦 and 𝑦 := 2𝑥 + 3𝑦 in (8),
we get

𝑓 (𝑥 + 4𝑦) + 𝑓 (4𝑥 + 𝑦)

= 3𝑓 (𝑥 − 𝑦) + 3𝑓 (2𝑥 + 3𝑦)

+ 3𝑓 (3𝑥 + 2𝑦) − 25𝑓 (𝑥 + 𝑦)

(15)

for all 𝑥, 𝑦 ∈ 𝑋. From (14) and (15), it follows that

𝑓 (3𝑥 + 2𝑦) + 𝑓 (2𝑥 + 3𝑦)

= 9𝑓 (𝑥 + 𝑦) + 7𝑓 (𝑥) + 7𝑓 (𝑦) − 3𝑓 (𝑥 − 𝑦)

(16)
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for all 𝑥, 𝑦 ∈ 𝑋. By (11) and (16), we obtain

𝑓 (3𝑥 + 𝑦) + 𝑓 (𝑥 + 3𝑦) = 6𝑓 (𝑥 + 𝑦) + 4𝑓 (𝑥) + 4𝑓 (𝑦)

(17)

for all 𝑥, 𝑦 ∈ 𝑋. Letting 𝑥 := (𝑥 + 𝑦)/2 and 𝑦 := (𝑥 − 𝑦)/2 in
(17), we have

𝑓 (2𝑥 + 𝑦) + 𝑓 (2𝑥 − 𝑦) = 6𝑓 (𝑥) + 𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)

(18)

for all 𝑥, 𝑦 ∈ 𝑋. Interchanging 𝑥 for 𝑦 in (18) and using the
evenness of 𝑓, one gets

𝑓 (𝑥 + 2𝑦) + 𝑓 (𝑥 − 2𝑦) = 6𝑓 (𝑦) + 𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦)

(19)

for all 𝑥, 𝑦 ∈ 𝑋. Substituting 2𝑦 for 𝑦 in (18), we get by virtue
of (19)

4𝑓 (𝑥 + 𝑦) + 4𝑓 (𝑥 − 𝑦)

= 6𝑓 (𝑥) + 𝑓 (𝑥 + 2𝑦) + 𝑓 (𝑥 − 2𝑦)

= 6𝑓 (𝑥) + 6𝑓 (𝑦) + 𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) ,

(20)

which yields

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) = 2𝑓 (𝑥) + 2𝑓 (𝑦) (21)

for all 𝑥, 𝑦 ∈ 𝑋. Thus, the mapping 𝑓 is quadratic.
The proof of the converse is trivial.

Now, we present the general solution of the functional
inequality (5) by using Lemma 1.

Lemma 2. Let both 𝑋 and 𝑌 be vector spaces. A mapping 𝑓 :

𝑋 → 𝑌 satisfies the functional inequality (5) for all𝑥, 𝑦, 𝑧 ∈ 𝑋
if and only if 𝑓 is quadratic.

Proof. Let𝑓 satisfy the functional inequality (5). If we replace
𝑥, 𝑦, and 𝑧 in (5) by 0, then we have 𝑓(0) = 0. Replacing 𝑧 by
−𝑥 − 𝑦 in (5), we obtain

𝑓 (𝑥 − 𝑦) + 𝑓 (𝑥 + 2𝑦) + 𝑓 (2𝑥 + 𝑦)

− 3𝑓 (𝑥) − 3𝑓 (𝑦) − 3𝑓 (−𝑥 − 𝑦) = 0
(22)

for all 𝑥, 𝑦 ∈ 𝑋. Letting 𝑦 := −𝑥 and 𝑧 := 0 in (5), we get

𝑓 (2𝑥) − 2𝑓 (𝑥) − 2𝑓 (−𝑥) = 0 (23)

for all 𝑥 ∈ 𝑋. Putting 𝑦 := 0 in (22) yields

𝑓 (2𝑥) − 𝑓 (𝑥) − 3𝑓 (−𝑥) = 0 (24)

for all 𝑥 ∈ 𝑋. From (23) and (24), we have 𝑓(−𝑥) = 𝑓(𝑥) for
all 𝑥 ∈ 𝑋. Thus, it follows from (22) that

𝑓 (𝑥 − 𝑦) + 𝑓 (𝑥 + 2𝑦) + 𝑓 (2𝑥 + 𝑦)

= 3𝑓 (𝑥) + 3𝑓 (𝑦) + 3𝑓 (𝑥 + 𝑦)
(25)

for all 𝑥, 𝑦 ∈ 𝑋. So 𝑓 is quadratic by Lemma 1.
The proof of the converse is trivial.

Let 𝑋 be a set. A function 𝑑 : 𝑋 × 𝑋 → [0,∞] is called
a generalized metric on𝑋 if 𝑑 satisfies the following:

(1) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;
(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋;
(3) 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Before taking up the main subject, we recall the fixed
point theorem from [14].

Theorem 3 (see [14]). Let (𝑋, 𝑑) be a complete generalized
metric space and let 𝐽 : 𝑋 → 𝑋 be a strictly contractive
mapping with Lipschitz constant 𝐿 < 1. Then for each given
element 𝑥 ∈ 𝑋, either

𝑑 (𝐽
𝑛
𝑥, 𝐽
𝑛+1

𝑥) = ∞ (26)

for all nonnegative integers 𝑛 or there exists a positive integer
𝑛
0
such that

(1) 𝑑(𝐽𝑛𝑥, 𝐽𝑛+1𝑥) < ∞, for all 𝑛 ≥ 𝑛
0
;

(2) the sequence {𝐽𝑛𝑥} converges to a fixed point 𝑦∗ of 𝐽;
(3) 𝑦∗ is the unique fixed point of 𝐽 in the set 𝑌 = {𝑦 ∈ 𝑋 |

𝑑(𝐽
𝑛0𝑥, 𝑦) < ∞};

(4) 𝑑(𝑦, 𝑦∗) ≤ (1/(1 − 𝐿))𝑑(𝑦, 𝐽𝑦) for all 𝑦 ∈ 𝑌.

In this part, let 𝑋 be a normed space and 𝑌 a Banach
space.

Theorem 4. Suppose that a mapping 𝑓 : 𝑋 → 𝑌 with 𝑓(0) =
0 satisfies the functional inequality
𝑓 (𝑥 − 𝑦) + 𝑓(𝑦 − 𝑧) + 𝑓(𝑥 − 𝑧) − 3𝑓(𝑥) − 3𝑓(𝑦) − 3𝑓(𝑧)



≤
𝑓 (𝑥 + 𝑦 + 𝑧)

 + 𝜑 (𝑥, 𝑦, 𝑧)

(27)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and that there exists a constant 𝐿 with 0 <

𝐿 < 1 for which the perturbing function 𝜑 : 𝑋
3
→ [0,∞)

satisfies

𝜑 (2𝑥, 2𝑦, 2𝑧) ≤ 4𝐿𝜑 (𝑥, 𝑦, 𝑧) ,

(𝜑 (
𝑥

2
,
𝑦

2
,
𝑧

2
) ≤

𝐿

4
𝜑 (𝑥, 𝑦, 𝑧) , resp.)

(28)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Then, there exists a unique quadratic map-
ping 𝑄 : 𝑋 → 𝑌 given by 𝑄(𝑥) = lim

𝑚→∞
(1/4
𝑚
)𝑓(2
𝑚
𝑥)

(𝑄(𝑥) = lim
𝑚→∞

4
𝑚
𝑓(𝑥/2

𝑚
), resp.) such that

𝑓 (𝑥) − 𝑄 (𝑥)
 ≤

1

4 − 4𝐿
{3𝜑 (𝑥, −𝑥, 0) + 2𝜑 (𝑥, 0, −𝑥)} ,

(
𝑓 (𝑥) − 𝑄 (𝑥)



≤
𝐿

4 − 4𝐿
{3𝜑 (𝑥, −𝑥, 0) + 2𝜑 (𝑥, 0, −𝑥)} , resp.)

(29)

for all 𝑥 ∈ 𝑋.
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Proof. Replacing 𝑧 by −𝑥 − 𝑦 in (27), we obtain

𝑓 (𝑥 − 𝑦) + 𝑓 (𝑥 + 2𝑦) + 𝑓 (2𝑥 + 𝑦)

−3𝑓 (𝑥) − 3𝑓 (𝑦) − 3𝑓 (−𝑥 − 𝑦)
 ≤ 𝜑 (𝑥, 𝑦, −𝑥 − 𝑦)

(30)

for all 𝑥, 𝑦 ∈ 𝑋. Letting 𝑦 = −𝑥 and 𝑧 = 0 in (27), we get
𝑓 (2𝑥) − 2𝑓 (𝑥) − 2𝑓 (−𝑥)

 ≤ 𝜑 (𝑥, −𝑥, 0) (31)

for all 𝑥 ∈ 𝑋. Putting 𝑦 = 0 in (30) yields
𝑓 (2𝑥) − 𝑓 (𝑥) − 3𝑓 (−𝑥)

 ≤ 𝜑 (𝑥, 0, −𝑥) (32)

for all 𝑥 ∈ 𝑋. From (31) and (32), it follows that
𝑓 (2𝑥) − 4𝑓 (𝑥)

 ≤ 3𝜑 (𝑥, −𝑥, 0) + 2𝜑 (𝑥, 0, −𝑥) :≡ Φ (𝑥)

(33)

and so

𝑓 (𝑥) −

1

4
𝑓 (2𝑥)


≤
1

4
Φ (𝑥) (34)

for all 𝑥 ∈ 𝑋.
Consider the set of mappings

𝑆 := {ℎ : 𝑋 → 𝑌 | ℎ (0) = 0} (35)

and introduce the generalized metric on 𝑆:

𝑑 (𝑔, ℎ)

= inf {𝜇 ∈ [0,∞) :
𝑔 (𝑥) − ℎ (𝑥)

 ≤ 𝜇Φ (𝑥) , ∀𝑥 ∈ 𝑋} ,

(36)

where, as usual, inf 0 = +∞. It is easy to show that (𝑆, 𝑑) is a
complete generalized metric space (see the proof ofTheorem
3.1 of [27]).

Now we consider a linear mapping 𝐽 : 𝑆 → 𝑆 such that

𝐽𝑔 (𝑥) :=
1

4
𝑔 (2𝑥) (37)

for all 𝑥 ∈ 𝑋.Then it is well-known that 𝐽 is a strictly contrac-
tive mapping with Lipschitz constant 𝐿, and it follows from
(34) that𝑑(𝑓, 𝐽𝑓) ≤ 1/4. ByTheorem 3, there exists amapping
𝑄 : 𝑋 → 𝑌 satisfying the following.

(1) 𝑄 is a fixed point of 𝐽, that is, 𝑄(2𝑥) = 4𝑄(𝑥) for all
𝑥 ∈ 𝑋. The mapping 𝑄 is a unique fixed point of 𝐽 in
the set𝑀 = {𝑔 ∈ 𝑆 : 𝑑(𝑓, 𝑔) < ∞}. This implies that
𝑄 is a unique fixed point of 𝐽 such that there exists a
𝜇 ∈ (0,∞) satisfying

𝑓 (𝑥) − 𝑄 (𝑥)
 ≤ 𝜇Φ (𝑥) , (38)

for all 𝑥 ∈ 𝑋.
(2) 𝑑(𝐽𝑚𝑓,𝑄) → 0 as𝑚 → ∞.This implies the equality

𝑄(𝑥) = lim
𝑚→∞

(1/4
𝑚
)𝑓(2
𝑚
𝑥) for all 𝑥 ∈ 𝑋.

(3) 𝑑(𝑓, 𝑄) ≤ (1/(1 − 𝐿))𝑑(𝑓, 𝐽𝑓) ≤ 1/(4 − 4𝐿), which
implies that the inequality (29) holds.

Now, we show that the mapping𝑄 is quadratic. It follows
from (27) and (28) that

𝑄 (𝑥 − 𝑦)+𝑄 (𝑦 − 𝑧)+ 𝑄 (𝑥 − 𝑧)−3𝑄 (𝑥) − 3𝑄 (𝑦)−3𝑄 (𝑧)


−
𝑄 (𝑥 + 𝑦 + 𝑧)

 ≤ lim
𝑚→∞

1

4𝑚
𝜑 (2
𝑚
𝑥, 2
𝑚
𝑦, 2
𝑚
𝑧)

≤ lim
𝑚→∞

𝐿
𝑚
𝜑 (𝑥, 𝑦, 𝑧) = 0

(39)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Thus, it follows from Lemma 2 that the
mapping 𝑄 : 𝑋 → 𝑌 is quadratic, as desired.

We obtain the following corollary concerning the stability
for approximate mappings controlled by a sum of powers of
norms.

Corollary 5. Let 𝜃 ≥ 0 be a real number and 𝑝 a positive real
number with 𝑝 ̸= 2. If a mapping 𝑓 : 𝑋 → 𝑌 with 𝑓(0) = 0

satisfies the inequality

𝑓(𝑥 − 𝑦) + 𝑓(𝑦 − 𝑧) + 𝑓(𝑥 − 𝑧) − 3𝑓(𝑥) − 3𝑓(𝑦) − 3𝑓(𝑧)


≤
𝑓 (𝑥 + 𝑦 + 𝑧)

 + 𝜃 (‖𝑥‖
𝑝
+
𝑦

𝑝

+ ‖𝑧‖
𝑝
)

(40)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, then we can find a unique quadratic
mapping 𝑄 : 𝑋 → 𝑌 satisfying the inequality

𝑓 (𝑥) − 𝑄 (𝑥)
 ≤

10𝜃

|4 − 2𝑝|
‖𝑥‖
𝑝 (41)

for all 𝑥 ∈ 𝑋.

3. Stability of (5) by Direct Method

We now investigate stability problem of the quadratic func-
tional inequality (5) with perturbed control function 𝜑. In
this section, let𝑋 be a normed space and 𝑌 a Banach space.

Theorem 6. Suppose that a mapping 𝑓 : 𝑋 → 𝑌 with 𝑓(0) =
0 satisfies the functional inequality (27) and that the perturbing
function 𝜑 : 𝑋

3
→ [0,∞) satisfies

∞

∑
𝑖=0

1

4𝑖
𝜑 (2
𝑖
𝑥, 2
𝑖
𝑦, 2
𝑖
𝑧) < ∞,

(

∞

∑
𝑖=1

4
𝑖
𝜑(

𝑥

2𝑖
,
𝑦

2𝑖
,
𝑧

2𝑖
) < ∞, resp.)

(42)
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for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Then, there exists a unique quadratic map-
ping 𝑄 : 𝑋 → 𝑌 defined by 𝑄(𝑥) = lim

𝑚→∞
(1/4
𝑚
)𝑓(2
𝑚
𝑥)

(𝑄(𝑥) = lim
𝑚→∞

4
𝑚
𝑓(𝑥/2

𝑚
), resp.) such that

𝑓 (𝑥) − 𝑄 (𝑥)


≤
1

4

∞

∑
𝑖=0

1

4𝑖
{3𝜑 (2

𝑖
𝑥, −2
𝑖
𝑥, 0) + 2𝜑 (2

𝑖
𝑥, 0, −2

𝑖
𝑥)} ,

(
𝑓 (𝑥) − 𝑄 (𝑥)

 ≤
1

4

∞

∑
𝑖=1

4
𝑖
{3𝜑 (

𝑥

2𝑖
,
−𝑥

2𝑖
, 0)

+ 2𝜑 (
𝑥

2𝑖
, 0,

−𝑥

2𝑖
)} , resp.)

(43)

for all 𝑥 ∈ 𝑋.

Proof. It follows from (33) that


𝑓 (𝑥) −

1

4
𝑓 (2𝑥)


≤
1

4
{3𝜑 (𝑥, −𝑥, 0) + 2𝜑 (𝑥, 0, −𝑥)}

(44)

for all𝑥 ∈ 𝑋.Therefore, we prove from inequality (44) that for
any integers𝑚 and 𝑙 with𝑚 > 𝑙 ≥ 0



𝑓 (2
𝑙
𝑥)

4𝑙
−
𝑓 (2
𝑚
𝑥)

4𝑚



≤

𝑚−1

∑
𝑖=𝑙

1

4𝑖


𝑓 (2
𝑖
𝑥) −

1

4
𝑓 (2
𝑖+1
𝑥)


≤
1

4

𝑚−1

∑
𝑖=𝑙

1

4𝑖
{3𝜑 (2

𝑖
𝑥, −2
𝑖
𝑥, 0) + 2𝜑 (2

𝑖
𝑥, 0, −2

𝑖
𝑥)}

(45)

for all 𝑥 ∈ 𝑋. Since the right-hand side of (45) tends to zero as
𝑙 → ∞, we obtain that the sequence {𝑓(2𝑚𝑥)/4𝑚} is Cauchy
for all 𝑥 ∈ 𝑋. Because of the fact that 𝑌 is complete, it follows
that the sequence {𝑓(2𝑚𝑥)/4𝑚} converges in 𝑌. Therefore, we
can define a mapping 𝑄 : 𝑋 → 𝑌 as

𝑄 (𝑥) = lim
𝑚→∞

𝑓 (2
𝑚
𝑥)

4𝑚
, 𝑥 ∈ 𝑋. (46)

Moreover, letting 𝑙 = 0 and taking 𝑚 → ∞ in (45), we
get the desired inequality (43).

It follows from (27) and (42) that

𝑄 (𝑥 −𝑦) + 𝑄 (𝑦 − 𝑧) + 𝑄 (𝑥 −𝑧)−3𝑄 (𝑥)−3𝑄 (𝑦)−3𝑄 (𝑧)


−
𝑄 (𝑥 + 𝑦 + 𝑧)

 ≤ lim
𝑚→∞

1

4𝑚
𝜑 (2
𝑚
𝑥, 2
𝑚
𝑦, 2
𝑚
𝑧) = 0

(47)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. So the mapping 𝑄 is quadratic.

Next, let 𝑄 : 𝑋 → 𝑌 be another quadratic mapping
satisfying (43). Then, we have


𝑄 (𝑥) − 𝑄



(𝑥)


=


1

4𝑘
𝑄(2
𝑘
𝑥) −

1

4𝑘
𝑄

(2
𝑘
𝑥)


≤
1

4𝑘
{

𝑄 (2
𝑘
𝑥) − 𝑓 (2

𝑘
𝑥)


+

𝑓 (2
𝑘
𝑥) − 𝑄


(2
𝑘
𝑥)

}

≤
1

2

∞

∑
𝑖=0

1

4𝑖+𝑘
{3𝜑 (2

𝑖+𝑘
𝑥, −2
𝑖+𝑘
𝑥, 0)

+2𝜑 (2
𝑖+𝑘
𝑥, 0, −2

𝑖+𝑘
𝑥)}

=
1

2

∞

∑
𝑖=𝑘

1

4𝑖
{3𝜑 (2

𝑖
𝑥, −2
𝑖
𝑥, 0) + 2𝜑 (2

𝑖
𝑥, 0, −2

𝑖
𝑥)}

(48)

for all 𝑘 ∈ N and all 𝑥 ∈ 𝑋. Taking the limit as 𝑘 → ∞, we
conclude that 𝑄(𝑥) = 𝑄


(𝑥) for all 𝑥 ∈ 𝑋. This completes the

proof.

We obtain the following corollary concerning the stability
for approximate mappings controlled by a sum of powers of
norms.

Corollary 7. Let 𝜃
𝑖
≥ 0 be a real number and 𝑝

𝑖
a positive real

number with 𝑝
𝑖
< 2 or 𝑝

𝑖
> 2 for all 𝑖 = 1, 2, 3. If a mapping

𝑓 : 𝑋 → 𝑌 with 𝑓(0) = 0 satisfies the inequality

𝑓 (𝑥 −𝑦) + 𝑓 (𝑦 − 𝑧)+𝑓 (𝑥 − 𝑧) − 3𝑓 (𝑥) − 3𝑓(𝑦) − 3𝑓(𝑧)


≤
𝑓 (𝑥 + 𝑦 + 𝑧)

 + 𝜃1‖𝑥‖
𝑝1 + 𝜃

2

𝑦

𝑝2 + 𝜃

3
‖𝑧‖
𝑝3

(49)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, then we can find a unique quadratic map-
ping 𝑄 : 𝑋 → 𝑌 satisfying the inequality

𝑓 (𝑥) − 𝑄 (𝑥)
 ≤

5𝜃
1

|4 − 2𝑝1 |
‖𝑥‖
𝑝1

+
3𝜃
2

|4 − 2𝑝2 |
‖𝑥‖
𝑝2 +

2𝜃
3

|4 − 2𝑝3 |
‖𝑥‖
𝑝3

(50)

for all 𝑥 ∈ 𝑋.

4. Stability of (5) in Non-Archimedean Spaces
by Fixed Point Method

A non-Archimedean valuation in a field K is a function | ⋅ |:
K → [0,∞) with the following:

(i) |𝑟| = 0 if and only if 𝑟 = 0;
(ii) |𝑟𝑠| = |𝑟||𝑠| for all 𝑟, 𝑠 ∈ K;
(iii) |𝑟 + 𝑠| ≤ max{|𝑟|, |𝑠|} for all 𝑟, 𝑠 ∈ K.



6 Abstract and Applied Analysis

Any field endowed with a non-Archimedean valuation is
said to be a non-Archimedean field; in any such field we have
|1| = | − 1| = 1 and |𝑛| ≤ 1 for all 𝑛 ∈ N.

Definition 8. Let X be a linear space over a fieldKwith a non-
Archimedean nontrivial valuation | ⋅ |. A function ‖ ⋅ ‖: 𝑋 →

[0,∞) is said to be a non-Archimedean norm if it satisfies the
following conditions:

(i) ‖𝑥‖ = 0 if and only if 𝑥 = 0;

(ii) ‖𝑟𝑥‖ = |𝑟|‖𝑥‖, for all 𝑟 ∈ K and 𝑥 ∈ 𝑋;

(iii) ‖𝑥 + 𝑦‖ ≤ max{‖𝑥‖, ‖𝑦‖}, for all 𝑥, 𝑦 ∈ 𝑋.

Then (𝑋, ‖ ⋅ ‖) is called a non-Archimedean normed space.

Definition 9. Let {𝑥
𝑛
} be a sequence in a non-Archimedean

normed space𝑋.

(1) A sequence {𝑥
𝑛
}
∞

𝑛=1
in a non-Archimedean space is

a Cauchy sequence if the sequence {𝑥
𝑛+1

− 𝑥
𝑛
}
∞

𝑛=1

converges to zero.

(2) The sequence {𝑥
𝑛
} is said to be convergent if, for any

𝜀 > 0, there are a positive integer 𝑁 and 𝑥 ∈ 𝑋 such
that

𝑥𝑛 − 𝑥
 < 𝜀, ∀𝑛 ≥ 𝑁. (51)

Then the point 𝑥 ∈ 𝑋 is called the limit of the
sequence {𝑥

𝑛
}, which is denoted by lim

𝑛→∞
𝑥
𝑛
= 𝑥.

(3) If every Cauchy sequence in 𝑋 converges, then the
non-Archimedean normed space 𝑋 is called a non-
Archimedean Banach space.

In 2007, Moslehian and Rassias [28] proved the gen-
eralized Hyers-Ulam stability of the Cauchy and quadratic
functional equations in non-Archimedean normed spaces.
Some papers [29, 30] on the stability of various functional
equations in non-Archimedean normed spaces have been
published after their stability results.

In this section, assume that 𝑋 is a non-Archimedean
normed space and that 𝑌 is a non-Archimedean Banach
space. Now, we are going to investigate the stability of the
functional inequality (5) in non-Archimedean Banach space
by using fixed point method.

Theorem10. Suppose that amapping𝑓 : 𝑋 → 𝑌with𝑓(0) =
0 satisfies the functional inequality (27) and that there exists a
constant 𝐿 with 0 < 𝐿 < 1 for which the perturbing function
𝜑 : 𝑋
3
→ [0,∞) satisfies

𝜑 (2𝑥, 2𝑦, 2𝑧) ≤ |4| 𝐿𝜑 (𝑥, 𝑦, 𝑧) ,

(𝜑 (
𝑥

2
,
𝑦

2
,
𝑧

2
) ≤

𝐿

|4|
𝜑 (𝑥, 𝑦, 𝑧) , resp.)

(52)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Then, there exists a unique quadratic map-
ping 𝑄 : 𝑋 → 𝑌 given by 𝑄(𝑥) = lim

𝑚→∞
(1/4
𝑚
)𝑓(2
𝑚
𝑥)

(𝑄(𝑥) = lim
𝑚→∞

4
𝑚
𝑓(𝑥/2

𝑚
), resp.) such that

𝑓 (𝑥) − 𝑄 (𝑥)
 ≤

1

|4| (1 − 𝐿)
Φ (𝑥) ,

(
𝑓 (𝑥) − 𝑄 (𝑥)

 ≤
𝐿

|4| (1 − 𝐿)
Φ (𝑥) , resp.)

(53)

for all 𝑥 ∈ 𝑋, where Φ(𝑥) := max{|3|𝜑(𝑥, −𝑥, 0), |2|𝜑(𝑥,
0, −𝑥)} for all 𝑥 ∈ 𝑋.

Proof. From (31) and (32), we get by using the non-Archime-
dean norm
𝑓 (2𝑥) − 4𝑓 (𝑥)

 ≤ max {|3| 𝑓 (2𝑥) − 2𝑓 (𝑥) − 2𝑓 (−𝑥)
 ,

|2|
𝑓 (2𝑥) − 𝑓 (𝑥) − 3𝑓 (−𝑥)

}

≤ max {|3| 𝜑 (𝑥, −𝑥, 0) , |2| 𝜑 (𝑥, 0, −𝑥)}

:≡ Φ (𝑥)

(54)

and so

𝑓 (𝑥) −

1

4
𝑓 (2𝑥)


≤

1

|4|
Φ (𝑥) (55)

for all 𝑥 ∈ 𝑋. Applying the similar argument to the corre-
sponding proof of Theorem 4 on the complete generalized
metric space (𝑆, 𝑑), we get the desired result.

We obtain the following corollary concerning the stability
for approximate mappings controlled by a sum of powers of
norms.

Corollary 11. Let 𝜃 ≥ 0 be a real number and 𝑝 a positive real
number with 𝑝 ̸= 2. If a mapping 𝑓 : 𝑋 → 𝑌 with 𝑓(0) = 0

satisfies the inequality
𝑓(𝑥 − 𝑦) + 𝑓(𝑦 − 𝑧) + 𝑓(𝑥 − 𝑧) − 3𝑓(𝑥) − 3𝑓(𝑦) − 3𝑓 (𝑧)



≤
𝑓 (𝑥 + 𝑦 + 𝑧)

 + 𝜃 (‖𝑥‖
𝑝
+
𝑦

𝑝

+ ‖𝑧‖
𝑝
)

(56)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, then we can find a unique quadratic map-
ping 𝑄 : 𝑋 → 𝑌 satisfying the inequality

𝑓 (𝑥) − 𝑄 (𝑥)
 ≤

max {|3| , |2|}

|2|
2
− |2|
𝑝


2𝜃‖𝑥‖
𝑝

(57)

for all 𝑥 ∈ 𝑋.

5. Stability of (5) in Non-Archimedean
Spaces by Direct Method

Now, we are going to investigate the stability of the functional
inequality (5) in non-Archimedean Banach space by direct
method. In this section, assume that𝑋 is a non-Archimedean
normed space and that 𝑌 is a non-Archimedean Banach
space.
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Theorem 12. Suppose that amapping𝑓 : 𝑋 → 𝑌with𝑓(0) =
0 satisfies the functional inequality (27) and that 𝜑 : 𝑋

3
→

[0,∞) is a function such that

lim
𝑚→∞

1

|4|
𝑚
𝜑 (2
𝑚
𝑥, 2
𝑚
𝑦, 2
𝑚
𝑧) = 0,

( lim
𝑚→∞

|4|
𝑚
𝜑(

𝑥

2𝑚
,
𝑦

2𝑚
,
𝑧

2𝑚
) = 0, resp.)

(58)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and

𝜑 (𝑥) = lim
𝑚→∞

max{ 1

|4|
𝑘
Φ(2
𝑘
𝑥) : 0 ≤ 𝑘 < 𝑚}

(𝜑 (𝑥) = lim
𝑚→∞

max {|4|𝑘Φ(
𝑥

2𝑘
) : 1 ≤ 𝑘 < 𝑚 + 1} , resp.)

(59)

exists for all 𝑥 ∈ 𝑋, where

Φ (𝑥) := max {|3| 𝜑 (𝑥, −𝑥, 0) , |2| 𝜑 (𝑥, 0, −𝑥)} (60)

for all 𝑥 ∈ 𝑋. Then there exists a quadratic mapping 𝑄 :

𝑋 → 𝑌 defined by 𝑄(𝑥) = lim
𝑚→∞

(1/4
𝑚
)𝑓(2
𝑚
𝑥), (𝑄(𝑥) =

lim
𝑚→∞

4
𝑚
𝑓(𝑥/2

𝑚
), resp.) such that

𝑓 (𝑥) − 𝑄 (𝑥)
 ≤

1

|4|
𝜑 (𝑥) (61)

for all 𝑥 ∈ 𝑋. Moreover, if

lim
𝑙→∞

lim
𝑚→∞

max{ 1

|4|
𝑘
Φ(2
𝑘
𝑥) : 𝑙 ≤ 𝑘 < 𝑚 + 𝑙} = 0,

( lim
𝑙→∞

lim
𝑚→∞

max {|4|𝑘Φ(
𝑥

2𝑘
) : 𝑙 + 1 ≤ 𝑘 < 𝑚 + 𝑙 + 1}

= 0, resp.)
(62)

for all 𝑥 ∈ 𝑋, then 𝑄 is a unique quadratic mapping satisfying
(61).

Proof. Replacing 𝑥 by 2𝑚−1𝑥 and dividing by |4|𝑚−1 in (55),
we have



𝑓 (2
𝑚−1

𝑥)

4𝑚−1
−
𝑓 (2
𝑚
𝑥)

4𝑚



≤
1

|4|

1

|4|
𝑚−1

Φ(2
𝑚−1

𝑥) (63)

for all 𝑥 ∈ 𝑋. It follows from (58) and (63) that the sequence
{𝑓(2
𝑚
𝑥)/4
𝑚
} is Cauchy for all 𝑥 ∈ 𝑋, and the sequence

{𝑓(2
𝑚
𝑥)/4
𝑚
} converges in the non-Archimedean Banach

space 𝑌. Therefore, we can define a mapping 𝑄 : 𝑋 → 𝑌

as

𝑄 (𝑥) = lim
𝑚→∞

𝑓 (2
𝑚
𝑥)

4𝑚
, 𝑥 ∈ 𝑋. (64)

Applying the similar argument to the corresponding proof of
Theorem 6, we get the required result.

Corollary 13. Let 𝜌 : [0,∞) → [0,∞) be a function satisfy-
ing (i) 𝜌(|2|𝑡) ≤ 𝜌(|2|)𝜌(𝑡) for all 𝑡 ≥ 0 and (ii) 𝜌(|2|) < |2|

2.
Suppose that 𝑓 : 𝑋 → 𝑌 with 𝑓(0) = 0 satisfies the

inequality

𝑓(𝑥 − 𝑦) + 𝑓(𝑦 − 𝑧) + 𝑓(𝑥 − 𝑧) − 3𝑓(𝑥) − 3𝑓(𝑦) − 3𝑓 (𝑧)


≤
𝑓 (𝑥 + 𝑦 + 𝑧)

 + 𝜀 {𝜌 (‖𝑥‖) + 𝜌 (
𝑦
) + 𝜌 (‖𝑧‖)}

(65)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and for some 𝜀 > 0. Then there exists a
unique quadratic mapping 𝑄 : 𝑋 → 𝑌 such that

𝑓 (𝑥) − 𝑄 (𝑥)
 ≤

1

|4|
max {|3| , |2|} 2𝜀𝜌 (‖𝑥‖) (66)

for all 𝑥 ∈ 𝑋.

Proof. Letting 𝜑(𝑥, 𝑦, 𝑧) = 𝜀{𝜌(‖𝑥‖) + 𝜌(‖𝑦‖) + 𝜌(‖𝑧‖)}, we
obtain

lim
𝑚→∞

1

|4|
𝑚
𝜑 (2
𝑚
𝑥, 2
𝑚
𝑦, 2
𝑚
𝑧) ≤ (

𝜌 (|2|)

|4|
)

𝑚

𝜑 (𝑥, 𝑦, 𝑧) = 0

(67)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. It follows from (60) that

Φ (𝑥) := max {|3| 𝜑 (𝑥, −𝑥, 0) , |2| 𝜑 (𝑥, 0, −𝑥)}

= max {|3| 2𝜀𝜌 (‖𝑥‖) , |2| 2𝜀𝜌 (‖𝑥‖)}

= max {|3| , |2|} 2𝜀𝜌 (‖𝑥‖) , 𝑥 ∈ 𝑋.

(68)

By direct calculation,

𝜑 (𝑥) = lim
𝑚→∞

max{ 1

|4|
𝑘
Φ(2
𝑘
𝑥) : 0 ≤ 𝑘 < 𝑚} = Φ (𝑥)

(69)

exists and

lim
𝑙→∞

lim
𝑚→∞

max{ 1

|4|
𝑘
Φ(2
𝑘
𝑥) : 𝑙 ≤ 𝑘 < 𝑚 + 𝑙}

= lim
𝑙→∞

1

|4|
𝑙
Φ(2
𝑙
𝑥) = 0

(70)

holds for all 𝑥 ∈ 𝑋. ApplyingTheorem 12, we conclude that

𝑓 (𝑥) − 𝑄 (𝑥)
 ≤

1

|4|
𝜑 (𝑥) =

1

|4|
Φ (𝑥)

=
1

|4|
max {|3| , |2|} 2𝜀𝜌 (‖𝑥‖)

(71)

for all 𝑥 ∈ 𝑋.

Corollary 14. Let 𝜌 : [0,∞) → [0,∞) be a function satisfy-
ing (i) 𝜌(𝑡/|2|) ≤ 𝜌(1/|2|)𝜌(𝑡) for all 𝑡 ≥ 0 and (ii) 𝜌(1/|2|) <
|2|
−2.
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Suppose that amapping𝑓 : 𝑋 → 𝑌with𝑓(0) = 0 satisfies
the inequality

𝑓 (𝑥 − 𝑦) + 𝑓 (𝑦 − 𝑧) + 𝑓 (𝑥 − 𝑧)

−3𝑓 (𝑥) − 3𝑓 (𝑦) − 3𝑓 (𝑧)


≤
𝑓 (𝑥 + 𝑦 + 𝑧)

 + 𝜀 {𝜌 (‖𝑥‖) + 𝜌 (
𝑦
) + 𝜌 (‖𝑧‖)}

(72)

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and for some 𝜀 > 0. Then there exists a
unique quadratic mapping 𝑄 : 𝑋 → 𝑌 such that

𝑓 (𝑥) − 𝑄 (𝑥)
 ≤ max {|3| , |2|} 2𝜀𝜌 (‖𝑥‖) 𝜌 ( 1

|2|
)

≤
1

|4|
max {|3| , |2|} 2𝜀𝜌 (‖𝑥‖)

(73)

for all 𝑥 ∈ 𝑋.
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