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A finite difference method for the approximate solution of the inverse problem for the multidimensional elliptic equation with
overdetermination is applied. Stability and coercive stability estimates of the first and second orders of accuracy difference schemes
for this problem are established. The algorithm for approximate solution is tested in a two-dimensional inverse problem.

1. Introduction

It is well known that inverse problems arise in various
branches of science (see [1, 2]). The theory and applications
of well-posedness of inverse problems for partial differential
equations have been studied extensively by many researchers
(see, e.g., [3–17] and the references therein). One of the
effective approaches for solving inverse problem is reduction
to nonlocal boundary value problem (see, e.g., [6, 8, 11]).
Well-posedness of the nonlocal boundary value problems of
elliptic type equations was investigated in [18–25] (see also
the references therein).

In [4], Orlovsky proved existence and uniqueness the-
orems for the inverse problem of finding a function 𝑢 and
an element 𝑝 for the elliptic equation in an arbitrary Hilbert
space𝐻 with the self-adjoint positive definite operator A:

−𝑢
𝑡𝑡
(𝑡) + 𝐴𝑢 (𝑡) = 𝑓 (𝑡) + 𝑝, 0 < 𝑡 < 𝑇,

𝑢 (0) = 𝜑, 𝑢 (𝑇) = 𝜓, 𝑢 (𝜆) = 𝜉, 0 < 𝜆 < 𝑇.

(1)

In [11], the authors established stability estimates for this
problem and studied inverse problem for multidimensional
elliptic equationwith overdetermination inwhich theDirich-
let condition is required on the boundary.

In present work, we study inverse problem for multidi-
mensional elliptic equation with Dirichlet-Neumann bound-
ary conditions.

Let Ω = (0, ℓ) × ⋅ ⋅ ⋅ × (0, ℓ) be the open cube in the 𝑛-
dimensional Euclidean space with boundary 𝑆 and Ω = Ω ∪
𝑆. In [0, 𝑇] × Ω, we consider the inverse problem of finding
functions 𝑢(𝑡, 𝑥) and 𝑝(𝑥) for the multidimensional elliptic
equation

−𝑢
𝑡𝑡
(𝑡, 𝑥) −

𝑛

∑

𝑟=1

(𝑎
𝑟
(𝑥) 𝑢
𝑥
𝑟

)
𝑥
𝑟

+ 𝛿𝑢 (𝑡, 𝑥) = 𝑓 (𝑡, 𝑥) + 𝑝 (𝑥) ,

𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
) ∈ Ω, 0 < 𝑡 < 𝑇,

𝑢 (0, 𝑥) = 𝜑 (𝑥) , 𝑢 (𝑇, 𝑥) = 𝜓 (𝑥) , 𝑢 (𝜆, 𝑥) = 𝜉 (𝑥) ,

𝑥 ∈ Ω,

𝜕𝑢 (𝑡, 𝑥)

𝜕 ⃗𝑛

= 0, 𝑥 ∈ 𝑆, 0 ≤ 𝑡 ≤ 𝑇.

(2)

Here, 0 < 𝜆 < 𝑇 and 𝛿 > 0 are known numbers,
𝑎
𝑟
(𝑥) (𝑥 ∈ Ω), 𝜑(𝑥), 𝜓(𝑥), 𝜉(𝑥) (𝑥 ∈ Ω), and 𝑓(𝑡, 𝑥) (𝑡 ∈

(0, 𝑇), 𝑥 ∈ Ω) are given smooth functions, and also 𝑎
𝑟
(𝑥) ≥

𝑎 > 0 (𝑥 ∈ Ω).
The aim of this paper is to investigate inverse problem

(2) for multidimensional elliptic equation with Dirichlet-
Neumann boundary conditions. We obtain well-posedness
of problem (2). For the approximate solution of problem
(2), we construct first and second order of accuracy in
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𝑡 and difference schemes with second order of accuracy in
space variables. Stability and coercive stability estimates for
these difference schemes are established by applying operator
approach.Themodified Gauss eliminationmethod is applied
for solving these difference schemes in a two-dimensional
case.

The remainder of this paper is organized as follows.
In Section 2, we obtain stability and coercive stability esti-
mates for problem (2). In Section 3, we construct the differ-
ence schemes for (2) and establish their well-posedness. In
Section 4, the numerical results in a two-dimensional case are
presented. Section 5 is conclusion.

2. Well-Posedness of Inverse Problem
with Overdetermination

It is known that the differential expression [26]

𝐴
𝑥
𝑢 (𝑥) = −

𝑛

∑

𝑟=1

(𝑎
𝑟
(𝑥) 𝑢
𝑥
𝑟

)
𝑥
𝑟

+ 𝛿𝑢 (𝑥) (3)

defines a self-adjoint positive definite operator 𝐴𝑥 acting on
𝐿
2
(Ω) with the domain 𝐷(𝐴𝑥) = {𝑢(𝑥) ∈ 𝑊2

2
(Ω), 𝜕𝑢/𝜕 ⃗𝑛 =

0 on 𝑆}.
Let 𝐻 be the Hilbert space 𝐿

2
(Ω). By using abstract

Theorems 2.1 and 2.2 of paper [11], we get the following
theorems about well-posedness of problem (2).

Theorem1. Assume that𝐴𝑥 is defined by formula (3),𝜑, 𝜉, 𝜓 ∈
𝐷(𝐴
𝑥
). Then, for the solutions (𝑢, 𝑝) of inverse boundary value

problem (2), the stability estimates are satisfied:

‖𝑢‖
𝐶(𝐿
2
(Ω))

≤ [𝑀




𝜑



𝐿
2
(Ω)
+




𝜓



𝐿
2
(Ω)
+




𝜉



𝐿
2
(Ω)
+




𝑓



𝐶(𝐿
2
(Ω))
] ,






(𝐴
𝑥
)
−1

𝑝





𝐿
2
(Ω)
≤ 𝑀[





𝜑



𝐿
2
(Ω)

+




𝜉



𝐿
2
(Ω)
+




𝑓



𝐶(𝐿
2
(Ω))
] ,





𝑝



𝐿
2
(Ω)
≤ 𝑀[





𝐴
𝑥
𝜑



𝐿
2
(Ω)
+




𝐴
𝑥
𝜓



 𝐿
2
(Ω)

+




𝐴
𝑥
𝜉



𝐿
2
(Ω)
+

1

𝛼 (1 − 𝛼)





𝑓



C𝛼,𝛼
0𝑇
(𝐿
2
(Ω))
] ,

(4)

where𝑀 is independent of 𝛼, 𝜑(𝑥), 𝜉(𝑥), 𝜓(𝑥), and 𝑓(𝑡, 𝑥).
Here, C𝛼,𝛼

0𝑇
(𝐿
2
(Ω)) is the space obtained by completion of

the space of all smooth 𝐿
2
(Ω)-valued functions 𝜌 on [0, 𝑇]with

the norm




𝜌



C𝛼,𝛼
0𝑇
(𝐿
2
(Ω))

=




𝜌



C(𝐿

2
(Ω))

+ sup
0≤𝑡<𝑡+𝜏≤𝑇

(𝑡 + 𝜏)
𝛼
(𝑇 − 𝑡)

𝛼


𝜌 (𝑡 + 𝜏) − 𝜌 (𝑡)




𝐿
2
(Ω)

𝜏
𝛼

.

(5)

Theorem 2. Assume that 𝐴𝑥 is defined by formula (3),
𝜑, 𝜓, 𝜉 ∈ 𝐷(𝐴

𝑥
). Then, for the solution of inverse boundary

value problem (2), coercive stability estimate






𝑢



C𝛼,𝛼
0𝑇
(𝐿
2
(Ω))
+ ‖𝑢‖C𝛼,𝛼

0𝑇
(𝑊
2

2
(Ω))
+




𝑝



𝐿
2
(Ω)

≤ 𝑀[

1

𝛼 (1 − 𝛼)





𝑓



C𝛼,𝛼
0𝑇
(𝐿
2
(Ω))
+




𝜑



𝑊
2

2
(Ω)

+




𝜓



𝑊
2

2
(Ω)
+




𝜉



𝑊
2

2
(Ω)
]

(6)

holds, where 𝑀 is independent of 𝛼, 𝜑(𝑥), 𝜉(𝑥), 𝜓(𝑥), and
𝑓(𝑡, 𝑥).

3. Difference Schemes and Their
Well-Posedness

Suppose that 𝐴𝑥 is defined by formula (3). Then (see [26]),
𝐶 = (1/2)(𝜏𝐴

𝑥
+ √4𝐴

𝑥
+ 𝜏
2
(𝐴
𝑥
)
2
) is a self-adjoint positive

definite operator and 𝑅 = (𝐼 + 𝜏𝐶)−1 which is defined on the
whole space𝐻 = 𝐿

2
(Ω) is a bounded operator. Here, 𝐼 is the

identity operator.
Nowwe present the following lemmas, which will be used

later.

Lemma 3. The following estimates are satisfied (see [27]):






𝑅
𝑘


𝐻→𝐻

≤ 𝑀(1 + 𝛿
1/2
𝜏)

−𝑘

, 𝛿 > 0,






𝐶𝑅
𝑘


𝐻→𝐻

≤

𝑀

𝑘𝜏

, 𝑘 ≥ 1,








(𝐼 − 𝑅
2𝑁
)

−1



𝐻→𝐻

≤ 𝑀.

(7)

Lemma 4. For 1 ≤ 𝑙 ≤ 𝑁 − 1 and for the operator 𝑆 = 𝑅2𝑁 +
𝑅
𝑙
− 𝑅
2𝑁−𝑙
+ 𝑅
𝑁−𝑙
− 𝑅
𝑁+𝑙, the operator 𝐼 − 𝑆 has an inverse

𝐺 = (𝐼 − 𝑆)
−1 and the estimate

‖𝐺‖
𝐻→𝐻

≤ 𝑀 (8)

is satisfied, where𝑀 does not depend on 𝜏.
Proof of Lemma 4 is based on Lemma 3 and representation

𝑄 = 𝐼 − 𝑅
2𝑁
− 𝑅
𝑙
+ 𝑅
2𝑁−𝑙
− 𝑅
𝑁−𝑙
+ 𝑅
𝑁+𝑙

= (𝐼 − 𝑅
𝑁−𝑙
) (𝐼 − 𝑅

𝑁
) (𝐼 − 𝑅

𝑙
) .

(9)

Lemma 5. For 1 ≤ 𝑙 ≤ 𝑁 − 1 and for the operator

𝑆
1
= 𝑅
2𝑁
− (

𝜆

𝜏

− 𝑙 − 1) (𝑅
𝑙
− 𝑅
2𝑁−𝑙
+ 𝑅
𝑁−𝑙
− 𝑅
𝑁+𝑙
)

+ (

𝜆

𝜏

− 𝑙) (𝑅
𝑙+1
− 𝑅
2𝑁−𝑙−1

+ 𝑅
𝑁−𝑙−1

− 𝑅
𝑁+𝑙+1

) ,

(10)
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the operator 𝐼 − 𝑆
1
has an inverse

𝐺
1
= (𝐼 − 𝑅

2𝑁
+ (

𝜆

𝜏

− 𝑙 − 1)

× (𝑅
𝑙
− 𝑅
2𝑁−𝑙
+ 𝑅
𝑁−𝑙
− 𝑅
𝑁+𝑙
)

−(

𝜆

𝜏

− 𝑙) (𝑅
𝑙+1
−𝑅
2𝑁−𝑙−1

+𝑅
𝑁−𝑙−1

−𝑅
𝑁+𝑙+1

))

−1

,

(11)

and the estimate





𝐺
1




𝐻→𝐻

≤ 𝑀 (12)

is valid, where𝑀 is independent of 𝜏.

Proof. We have that

𝐺
1
− 𝐺 = 𝐺

1
𝐺𝐾, (13)

where

𝐾 = −(

𝜆

𝜏

− 𝑙) (𝑅
𝑙
− 𝑅
2𝑁−𝑙
+ 𝑅
𝑁−𝑙
− 𝑅
𝑁+𝑙
)

+ (

𝜆

𝜏

− 𝑙) (𝑅
𝑙+1
− 𝑅
2𝑁−𝑙−1

+ 𝑅
𝑁−𝑙−1

− 𝑅
𝑁+𝑙+1

) .

(14)

By using estimates of Lemma 3, we have that

‖𝐾‖
𝐻→𝐻

=










−(

𝜆

𝜏

− 𝑙) (𝑅
𝑙
− 𝑅
2𝑁−𝑙
+ 𝑅
𝑁−𝑙
− 𝑅
𝑁+𝑙
)

+ (

𝜆

𝜏

− 𝑙) (𝑅
𝑙+1
− 𝑅
2𝑁−𝑙−1

+ 𝑅
𝑁−𝑙−1

−𝑅
𝑁+𝑙+1

)








𝐻→𝐻

≤ 𝑀
1
𝜏,

(15)

where𝑀
1
is independent of 𝜏. Using the triangle inequality,

formula (13), and estimates (8) and (15), we obtain





𝐺
1




𝐻→𝐻

= ‖𝐺‖
𝐻→𝐻

+




𝐺
1




𝐻→𝐻

‖𝐺‖
𝐻→𝐻

≤ 𝑀 +




𝐺
1




𝐻→𝐻

𝑀𝑀
1
𝜏

(16)

for sufficiently small positive 𝜏. From that it follows estimate
(11). Lemma 5 is proved.

Further, we discretize problem (2) in two steps. In the first
step, we define the grid spaces

Ω̃
ℎ
= {𝑥=𝑥

𝑚
=(ℎ
1
𝑚
1
, . . . , ℎ

𝑛
𝑚
𝑛
) ; 𝑚=(𝑚

1
, . . . , 𝑚

𝑛
) ,

𝑚
𝑟
= 0, . . . ,𝑀

𝑟
, ℎ
𝑟
𝑀
𝑟
= ℓ, 𝑟 = 1, . . . , 𝑛} ,

Ω
ℎ
= Ω̃
ℎ
∩ Ω, 𝑆

ℎ
= Ω̃
ℎ
∩ 𝑆.

(17)

Introduce the Hilbert space 𝐿
2ℎ
= 𝐿
2
(Ω̃
ℎ
) and 𝑊2

2ℎ
=

𝑊
2

2
(Ω̃
ℎ
) of grid functions 𝜌ℎ(𝑥) = {𝜌(ℎ

1
𝑚
1
, . . . , ℎ

𝑛
𝑚
𝑛
)},

defined on Ω̃
ℎ
, equipped with the norms






𝜌
ℎ


𝐿
2ℎ

= ( ∑

𝑥∈Ω̃
ℎ






𝜌
ℎ
(𝑥)







2

ℎ
1
, . . . , ℎ

𝑛
)

1/2

,






𝜌
ℎ


𝑊
2

2ℎ

=






𝜌
ℎ


𝐿
2ℎ

+ ( ∑

𝑥∈Ω̃
ℎ

𝑛

∑

𝑟=1






(𝜌
ℎ
)
𝑥
𝑟







2

ℎ
1
, . . . , ℎ

𝑛
)

1/2

+ ( ∑

𝑥∈Ω̃
ℎ

𝑛

∑

𝑟=1






(𝜌
ℎ
(𝑥))
𝑥
𝑟
𝑥
𝑟
,𝑚
𝑟







2

ℎ
1
, . . . , ℎ

𝑛
)

1/2

,

(18)

respectively.
To the differential operator 𝐴𝑥 generated by problem (2)

we assign the difference operator 𝐴𝑥
ℎ
defined by formula (3),

acting in the space of grid functions 𝑢ℎ(𝑥), satisfying the
condition 𝐷ℎ𝑢ℎ(𝑥) = 0 for all 𝑥 ∈ 𝑆

ℎ
. Here, 𝐷ℎ𝑢ℎ(𝑥) is an

approximation of 𝜕𝑢/𝜕 ⃗𝑛.
By using𝐴𝑥

ℎ
, for obtaining 𝑢ℎ(𝑡, 𝑥) functions, we arrive at

problem

−

𝑑
2
𝑢
ℎ
(𝑡, 𝑥)

𝑑𝑡
2

+ 𝐴
𝑥

ℎ
𝑢
ℎ
(𝑡, 𝑥) = 𝑓

ℎ
(𝑡, 𝑥) + 𝑝

ℎ
(𝑥) ,

0 < 𝑡 < 𝑇, 𝑥 ∈ Ω
ℎ
,

𝑢
ℎ
(0, 𝑥) = 𝜑

ℎ
(𝑥) , 𝑢

ℎ
(𝜆, 𝑥) = 𝜉

ℎ
(𝑥) , 𝑢

ℎ
(𝑇, 𝑥) = 𝜓

ℎ
(𝑥) ,

𝑥 ∈ Ω̃
ℎ
.

(19)

For finding a solution 𝑢ℎ(𝑡, 𝑥) of problem (19) we apply the
substitution

𝑢
ℎ
(𝑡, 𝑥) = Vℎ (𝑡, 𝑥) + (𝐴𝑥

ℎ
)
−1

𝑝
ℎ
(𝑥) , (20)

where Vℎ(𝑡, 𝑥) is the solution of nonlocal boundary value
problem; a system of ordinary differential equations

−

𝑑
2Vℎ (𝑡, 𝑥)

𝑑𝑡
2

+ 𝐴
𝑥

ℎ
Vℎ (𝑡, 𝑥) = 𝑓ℎ (𝑡, 𝑥) ,

0 < 𝑡 < 𝑇, 𝑥 ∈ Ω
ℎ
,

Vℎ (0, 𝑥) − Vℎ (𝜆, 𝑥) = 𝜑ℎ (𝑥) − 𝜉ℎ (𝑥) , 𝑥 ∈ Ω̃
ℎ
,

Vℎ (𝑇, 𝑥) − Vℎ (𝜆, 𝑥) = 𝜓ℎ (𝑥) − 𝜉ℎ (𝑥) , 𝑥 ∈ Ω̃
ℎ

(21)

and unknown function 𝑝ℎ(𝑥) is defined by formula

𝑝
ℎ
(𝑥) = 𝐴

𝑥

ℎ
𝜑
ℎ
(𝑥) − 𝐴

𝑥

ℎ
Vℎ (0, 𝑥) , 𝑥 ∈ Ω̃

ℎ
. (22)

Thus, we consider the algorithm for solving problem
(19) which includes three stages. In the first stage, we get
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the nonlocal boundary value problem (21) and obtain Vℎ(𝑡, 𝑥).
In the second stage, we put 𝑡 = 0 and find Vℎ(0, 𝑥). Then,
using (22), we obtain 𝑝ℎ(𝑥). Finally, in the third stage, we use
formula (20) for obtaining the solution 𝑢ℎ(𝑡, 𝑥) of problem
(19).

In the second step, we approximate (19) in variable 𝑡. Let
[0, 𝑇]
𝜏
= {𝑡
𝑘
= 𝑘𝜏, 𝑘 = 1, . . . , 𝑁,𝑁𝜏 = 𝑇} be the uniform grid

space with step size 𝜏 > 0, where𝑁 is a fixed positive integer.
Applying the approximate formulas

𝑢
ℎ
(𝜆, 𝑥) = 𝑢

ℎ
([

𝜆

𝜏

] 𝜏, 𝑥) + 𝑜 (𝜏) , 𝑥 ∈ Ω
ℎ
,

𝑢
ℎ
(𝜆, 𝑥) = 𝑢

ℎ
([

𝜆

𝜏

] 𝜏, 𝑥) + (

𝜆

𝜏

− [

𝜆

𝜏

])

× (𝑢
ℎ
([

𝜆

𝜏

] 𝜏 + 𝜏, 𝑥) − 𝑢
ℎ
([

𝜆

𝜏

] 𝜏, 𝑥))

+ 𝑜 (𝜏
2
) , 𝑥 ∈ Ω

ℎ

(23)

for 𝑢ℎ(𝜆, 𝑥) = 𝜉ℎ(𝑥), problem (19) is replaced by first order of
accuracy difference scheme

−

𝑢
ℎ

𝑘+1
(𝑥) − 2𝑢

ℎ

𝑘
(𝑥) + 𝑢

ℎ

𝑘−1
(𝑥)

𝜏
2

+ 𝐴
𝑥

ℎ
𝑢
ℎ

𝑘
(𝑥)

= 𝑓
ℎ

𝑘
(𝑥) + 𝑝

ℎ
(𝑥) ,

𝑓
ℎ

𝑘
(𝑥) = 𝑓

ℎ
(𝑡
𝑘
, 𝑥) , 𝑡

𝑘
= 𝑘𝜏,

1 ≤ 𝑘 ≤ 𝑁 − 1, 𝑥 ∈ Ω
ℎ
,

𝑢
ℎ

0
(𝑥) = 𝜑

ℎ
(𝑥) , 𝑥 ∈ Ω̃

ℎ
,

𝑢
ℎ

𝑙
(𝑥) = 𝜉

ℎ
(𝑥) , 𝑥 ∈ Ω̃

ℎ
,

𝑢
ℎ

𝑁
(𝑥) = 𝜓

ℎ
(𝑥) , 𝑥 ∈ Ω̃

ℎ
, 𝑙 = [

𝜆

𝜏

]

(24)

and second order of accuracy difference scheme

−

𝑢
ℎ

𝑘+1
(𝑥) − 2𝑢

ℎ

𝑘
(𝑥) + 𝑢

ℎ

𝑘−1
(𝑥)

𝜏
2

+ 𝐴
𝑥

ℎ
𝑢
ℎ

𝑘
(𝑥)

= 𝑓
ℎ

𝑘
(𝑥) + 𝑝

ℎ
(𝑥) ,

𝑓
ℎ

𝑘
(𝑥) = 𝑓

ℎ
(𝑡
𝑘
, 𝑥) , 𝑡

𝑘
= 𝑘𝜏,

1 ≤ 𝑘 ≤ 𝑁 − 1, 𝑥 ∈ Ω
ℎ
,

𝑢
ℎ

0
(𝑥) = 𝜑

ℎ
(𝑥) , 𝑥 ∈ Ω̃

ℎ
,

𝑢
ℎ

𝑙
(𝑥) + (

𝜆

𝜏

− 𝑙) (𝑢
ℎ

𝑙+1
(𝑥) − 𝑢

ℎ

𝑙
(𝑥)) = 𝜉

ℎ
(𝑥) ,

𝑥 ∈ Ω̃
ℎ
,

𝑢
ℎ

𝑁
(𝑥) = 𝜓

ℎ
(𝑥) , 𝑥 ∈ Ω̃

ℎ
, 𝑙 = [

𝜆

𝜏

] .

(25)

For approximate solution of nonlocal problem (21), we have
first order of accuracy difference scheme

−

Vℎ
𝑘+1
(𝑥) − 2Vℎ

𝑘
(𝑥) + Vℎ

𝑘−1
(𝑥)

𝜏
2

+ 𝐴
𝑥

ℎ
Vℎ
𝑘
(𝑥) = 𝑓

ℎ

𝑘
(𝑥) ,

𝑓
ℎ

𝑘
(𝑥) = 𝑓

ℎ
(𝑡
𝑘
, 𝑥) , 𝑡

𝑘
= 𝑘𝜏,

1 ≤ 𝑘 ≤ 𝑁 − 1, 𝑥 ∈ Ω
ℎ
,

Vℎ
0
(𝑥) − Vℎ

𝑙
(𝑥) = 𝜑

ℎ
(𝑥) − 𝜉

ℎ
(𝑥) , 𝑥 ∈ Ω̃

ℎ
,

Vℎ
𝑁
(𝑥) − Vℎ

𝑙
(𝑥) = 𝜓

ℎ
(𝑥) − 𝜉

ℎ
(𝑥) , 𝑥 ∈ Ω̃

ℎ

(26)

and second order of accuracy difference scheme

−

Vℎ
𝑘+1
(𝑥) − 2Vℎ

𝑘
(𝑥) + Vℎ

𝑘−1
(𝑥)

𝜏
2

+ 𝐴
𝑥

ℎ
Vℎ
𝑘
(𝑥) = 𝑓

ℎ

𝑘
(𝑥) ,

𝑓
ℎ

𝑘
(𝑥) = 𝑓

ℎ
(𝑡
𝑘
, 𝑥) ,

𝑡
𝑘
= 𝑘𝜏, 1 ≤ 𝑘 ≤ 𝑁, 𝑥 ∈ Ω

ℎ
,

Vℎ
0
(𝑥) − (

𝜆

𝜏

− 𝑙) Vℎ
𝑙+1
(𝑥) + (

𝜆

𝜏

− 𝑙 − 1) Vℎ
𝑙
(𝑥)

= 𝜑
ℎ
(𝑥) − 𝜉

ℎ
(𝑥) ,

Vℎ
𝑁
(𝑥) − (

𝜆

𝜏

− 𝑙) Vℎ
𝑙+1
(𝑥) + (

𝜆

𝜏

− 𝑙 − 1) Vℎ
𝑙
(𝑥)

= 𝜓
ℎ
(𝑥) − 𝜉

ℎ
(𝑥) , 𝑥 ∈ Ω̃

ℎ
,

(27)

respectively.

Theorem 6. Let 𝜏 and |ℎ| = √ℎ2
1
+ ⋅ ⋅ ⋅ + ℎ

2

𝑛
be sufficiently

small positive numbers. Then, for the solutions ({𝑢ℎ
𝑘
}

𝑁−1

𝐾−1
, 𝑝
ℎ
)

of difference schemes (24) and (25) the stability estimates









{𝑢
ℎ

𝑘
}

𝑁−1

1







C
𝜏
(𝐿
2ℎ
)

≤ 𝑀[






𝜑
ℎ


𝐿
2ℎ

+






𝜓
ℎ


𝐿
2ℎ

+






𝜉
ℎ


𝐿
2ℎ

+









{𝑓
ℎ

𝑘
}

𝑁−1

1







C
𝜏
(𝐿
2ℎ
)

] ,






𝑝
ℎ


𝐿
2ℎ

≤ 𝑀[






𝜑
ℎ


𝑊
2

2ℎ

+






𝜓
ℎ


𝑊
2

2ℎ

+






𝜉
ℎ


𝑊
2

2ℎ

+

1

𝛼 (1 − 𝛼)









{𝑓
ℎ

𝑘
}

𝑁−1

1







C
𝜏
(𝐿
2ℎ
)

]

(28)

hold, where 𝑀 is independent of 𝜏, 𝛼, ℎ, 𝜑ℎ(𝑥), 𝜓ℎ(𝑥), 𝜉ℎ(𝑥),
and {𝑓ℎ

𝑘
(𝑥)}

𝑁−1

1
.
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Theorem 7. Let 𝜏 and |ℎ| = √ℎ2
1
+ ⋅ ⋅ ⋅ + ℎ

2

𝑛
be sufficiently

small positive numbers. Then, for the solutions of difference
schemes (24) and (25) the following almost coercive stability
estimate













{

𝑢
ℎ

𝑘+1
− 2𝑢
ℎ

𝑘
+ 𝑢
𝑘

𝑘−1

𝜏
2

)}

𝑁−1

1











C
𝜏
(𝐿
2ℎ
)

+









{𝑢
ℎ

𝑘
}

𝑁−1

1







C
𝜏
(𝑊
2

2ℎ
)

+






𝑝
ℎ


𝐿
2ℎ

≤ 𝑀[






𝜑
ℎ


𝑊
2

2ℎ

+






𝜓
ℎ


𝑊
2

2ℎ

+






𝜉
ℎ


𝑊
2

2ℎ

+ ln( 1
𝜏 + ℎ

)









{𝑓
ℎ

𝑘
}

𝑁−1

1







C
𝜏
(𝐿
2ℎ
)

]

(29)

holds, where 𝑀 is independent of 𝜏, 𝛼, ℎ, 𝜑ℎ(𝑥),𝜓ℎ(𝑥), 𝜉ℎ(𝑥),
and {𝑓ℎ

𝑘
(𝑥)}

𝑁−1

1
.

Proofs of Theorems 6 and 7 are based on the symmetry
property of operator 𝐴𝑥, on Lemmas 3–5, the formulas

𝑢
ℎ

𝑘
(𝑥) = (𝐼 − 𝑅

2𝑁
)

−1

×[ ((𝑅
𝑘
− 𝑅
2𝑁−𝑘
) Vℎ
0
(𝑥)

+ (𝑅
𝑁−𝑘
− 𝑅
𝑁+𝑘
) Vℎ
𝑁
(𝑥))

− (𝑅
𝑁−𝑘
− 𝑅
𝑁+𝑘
) (𝐼 + 𝜏𝐶) (2𝐼 + 𝜏𝐶)

−1

× 𝐶
−1

𝑁−1

∑

𝑖=1

(𝑅
𝑁−𝑖
− 𝑅
𝑁+𝑖
) 𝑓
ℎ

𝑖
(𝑥) 𝜏]

+ (𝐼 + 𝜏𝐶) (2𝐼 + 𝜏𝐶)
−1
𝐶
−1

×

𝑁−1

∑

𝑖=1

(𝑅
|𝑘−𝑖|
− 𝑅
𝑘+𝑖
)

× 𝑓
ℎ

𝑖
(𝑥) 𝜏 + 𝜑

ℎ
(𝑥) − Vℎ

0
(𝑥) ,

𝑝
ℎ
(𝑥) = 𝐴

𝑥

ℎ
𝜑
ℎ
(𝑥) − 𝐴

𝑥

ℎ
Vℎ
0
(𝑥) ,

Vℎ
𝑁
(𝑥) = Vℎ

0
(𝑥) + 𝜓

ℎ
(𝑥) − 𝜑

ℎ
(𝑥) ,

Vℎ
0
(𝑥) = −𝐺 (𝑅

𝑁−𝑙
− 𝑅
𝑁+𝑙
)

× (𝐼 + 𝜏𝐶) (2𝐼 + 𝜏𝐶)
−1
𝐶
−1

×

𝑁−1

∑

𝑖=1

(𝑅
𝑁−𝑖
− 𝑅
𝑁+𝑖
) 𝑓
ℎ

𝑖
(𝑥) 𝜏

+ 𝐺 (𝐼 − 𝑅
2𝑁
) (𝐼 + 𝜏𝐶)

× (2𝐼 + 𝜏𝐶)
−1
𝐶
−1

𝑁−1

∑

𝑖=1

(𝑅
|𝑙−𝑖|
− 𝑅
𝑙+𝑖
) 𝑓
ℎ

𝑖
(𝑥) 𝜏

+ 𝐺 (𝐼 − 𝑅
2𝑁
) (𝜑
ℎ
(𝑥) − 𝜉

ℎ
(𝑥))

+ 𝐺 (𝑅
𝑁−𝑙
− 𝑅
𝑁+𝑙
) (𝜓
ℎ
(𝑥) − 𝜑

ℎ
(𝑥)) ,

(30)

for difference scheme (24),

Vℎ
0
(𝑥) = (

𝜆

𝜏

− 𝑙 − 1)𝐺
1
(𝑅
𝑁−𝑙
− 𝑅
𝑁+𝑙
)

× (𝐼 + 𝜏𝐶) (2𝐼 + 𝜏𝐶)
−1
𝐶
−1

×

𝑁−1

∑

𝑖=1

(𝑅
𝑁−𝑖
− 𝑅
𝑁+𝑖
) 𝑓
ℎ

𝑖
(𝑥) 𝜏

− (

𝜆

𝜏

− 𝑙 − 1)𝐺
1
(𝐼 − 𝑅

2𝑁
)

× (𝐼 + 𝜏𝐶) (2𝐼 + 𝜏𝐶)
−1
𝐶
−1

×

𝑁−1

∑

𝑖=1

(𝑅
|𝑙−𝑖|
− 𝑅
𝑙+𝑖
) 𝑓
ℎ

𝑖
(𝑥) 𝜏

− (

𝜆

𝜏

− 𝑙)𝐺
1
(𝑅
𝑁−𝑙−1

− 𝑅
𝑁+𝑙+1

)

× (𝐼 + 𝜏𝐶) (2𝐼 + 𝜏𝐶)
−1
𝐶
−1

×

𝑁−1

∑

𝑖=1

(𝑅
𝑁−𝑖
− 𝑅
𝑁+𝑖
) 𝑓
ℎ

𝑖
(𝑥) 𝜏

+ (

𝜆

𝜏

− 𝑙)𝐺
1
(𝐼 − 𝑅

2𝑁
)

× (𝐼 + 𝜏𝐶) (2𝐼 + 𝜏𝐶)
−1
𝐶
−1

×

𝑁−1

∑

𝑖=1

(𝑅
|𝑙+1−𝑖|

− 𝑅
𝑙+1+𝑖
) 𝑓
ℎ

𝑖
(𝑥) 𝜏

+ 𝐺
1
(𝐼 − 𝑅

2𝑁
) (𝜑
ℎ
(𝑥) − 𝜉

ℎ
(𝑥))
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+ ((

𝜆

𝜏

− 𝑙 − 1)𝐺
1
(𝑅
𝑁−𝑙
− 𝑅
𝑁+𝑙
)

+(

𝜆

𝜏

− 𝑙)𝐺
1
(𝑅
𝑁−𝑙−1

− 𝑅
𝑁+𝑙+1

))

× (𝜓
ℎ
(𝑥) − 𝜑

ℎ
(𝑥)) ,

(31)

for difference scheme (25), and on the following theorem
on the coercivity inequality for the solution of the elliptic
difference problem in 𝐿

2ℎ
.

Theorem 8 (see [28]). For the solution of the elliptic difference
problem

𝐴
𝑥

ℎ
𝑢
ℎ
(𝑥) = 𝜔

ℎ
(𝑥) , 𝑥 ∈ Ω̃

ℎ
,

𝐷
ℎ
𝑢
ℎ
(𝑥) = 0, 𝑥 ∈ 𝑆

ℎ
,

(32)

the following coercivity inequality holds:

𝑛

∑

𝑟=1






(𝑢
ℎ

𝑘
)
𝑥
𝑟
𝑥
𝑟
,𝑗
𝑟





𝐿
2ℎ

≤ 𝑀






𝜔
ℎ


𝐿
2ℎ

, (33)

where𝑀 does not depend on ℎ and 𝜔ℎ.

4. Numerical Results

We have not been able to obtain a sharp estimate for the
constants figuring in the stability estimates. Therefore, we
will give the following results of numerical experiments of
the inverse problem for the two-dimensional elliptic equation
with Dirichlet-Neumann boundary conditions

−

𝜕
2
𝑢 (𝑡, 𝑥)

𝜕𝑡
2
−

𝜕

𝜕𝑥

((2 + cos𝑥) 𝜕𝑢 (𝑡, 𝑥)
𝜕𝑥

) + 𝑢 (𝑡, 𝑥)

= 𝑓 (𝑡, 𝑥) + 𝑝 (𝑥) , 0 < 𝑥 < 𝜋, 0 < 𝑡 < 𝑇,

𝑓 (𝑡, 𝑥) = − exp (−𝑡) cos (𝑥)

+ (exp (−𝑡) + 𝑡) (3 cos (𝑥) + cos (2𝑥)) ,

𝑢 (0, 𝑥) = 2 cos (𝑥) , 0 ≤ 𝑥 ≤ 𝜋,

𝑢 (𝑇, 𝑥) = (exp (−𝑇) + 𝑇 + 1) cos (𝑥) , 0 ≤ 𝑥 ≤ 𝜋,

𝑢 (𝜆, 𝑥) = (exp (−𝜆) + 𝜆 + 1) cos (𝑥) , 0 ≤ 𝑥 ≤ 𝜋,

𝑢
𝑥
(𝑡, 0) = 𝑢

𝑥
(𝑡, 𝜋) = 0, 0 ≤ 𝑡 ≤ 𝑇, 𝜆 =

3𝑇

5

.

(34)

It is clear that 𝑢(𝑡, 𝑥) = (exp(−𝑡) + 𝑡 + 1) cos(𝑥) and 𝑝(𝑥) =
sin(𝑥) + (𝑥 + 2) cos(𝑥) are the exact solutions of (34).

We can obtain 𝑢(𝑡, 𝑥) by formula 𝑢(𝑡, 𝑥) = V(𝑡, 𝑥)+𝑤(𝑡, 𝑥),
where V(𝑡, 𝑥) is the solution of the nonlocal boundary value
problem

−

𝑑
2V (𝑡, 𝑥)

𝑑𝑡
2
−

𝜕

𝜕𝑥

((2 + cos𝑥) 𝜕V (𝑡, 𝑥)
𝜕𝑥

) + V (𝑡, 𝑥)

= 𝑓 (𝑡, 𝑥) , 0 < 𝑥 < 𝜋, 0 < 𝑡 < 𝑇,

V (0, 𝑥) − V (𝜆, 𝑥) = (1 − exp (−𝜆) − 𝜆) cos (𝑥) ,

0 ≤ 𝑥 ≤ 𝜋

V (𝑇, 𝑥) − V (𝜆, 𝑥)

= (exp (−𝑇) − exp (−𝜆) + 𝑇 − 𝜆) cos (𝑥) ,

0 ≤ 𝑥 ≤ 𝜋,

V
𝑥
(𝑡, 0) = V

𝑥
(𝑡, 𝜋) = 0, 0 ≤ 𝑡 ≤ 𝑇,

(35)

and 𝑤(𝑡, 𝑥) is the solution of the boundary value problem

−

𝑑
2
𝑤 (𝑡, 𝑥)

𝑑𝑡
2
−

𝜕

𝜕𝑥

((2 + cos𝑥) 𝜕𝑤 (𝑡, 𝑥)
𝜕𝑥

) + 𝑤 (𝑡, 𝑥)

= 𝑝 (𝑥) , 0 < 𝑥 < 𝜋, 0 < 𝑡 < 𝑇,

𝑤 (0, 𝑥) = (exp (−𝜆) + 𝜆 + 1) cos (𝑥) − V (𝜆, 𝑥) ,

0 ≤ 𝑥 ≤ 𝜋,

𝑤 (𝑇, 𝑥) = (exp (−𝜆) + 𝜆 + 1) cos (𝑥) − V (𝜆, 𝑥) ,

0 ≤ 𝑥 ≤ 𝜋,

𝑤
𝑥
(𝑡, 0) = 𝑤

𝑥
(𝑡, 𝜋) = 0, 0 ≤ 𝑡 ≤ 𝑇.

(36)

Introduce small parameters 𝜏 and ℎ such that 𝑁𝜏 =
𝑇, 𝑀ℎ = 𝜋. For approximate solution of nonlocal boundary
value problem (35) we consider the set [0, 𝑇]

𝜏
× [0, 𝜋]

ℎ
of a

family of grid points

[0, 𝑇]
𝜏
× [0, 𝜋]

ℎ

= {(𝑡
𝑘
, 𝑥
𝑛
) : 𝑡
𝑘
= 𝑘𝜏,

𝑘 = 0, . . . , 𝑁, 𝑥
𝑛
= 𝑛ℎ, 𝑛 = 0, . . . ,𝑀} .

(37)
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Applying (21), we obtain difference schemes of the first
order of accuracy in 𝑡 and the second order of accuracy in 𝑥

V𝑘+1
𝑛
− 2V𝑘
𝑛
+ V𝑘−1
𝑛

𝜏
2

+ (2 + cos (𝑥
𝑛
))

V𝑘
𝑛+1
− 2V𝑘
𝑛
+ V𝑘
𝑛−1

ℎ
2

− sin (𝑥
𝑛
)

V𝑘
𝑛+1
− V𝑘
𝑛−1

2ℎ

− V𝑘
𝑛
= 𝜃
𝑘

𝑛
,

𝜃
𝑘

𝑛
= −𝑓 (𝑡

𝑘
, 𝑥
𝑛
) , 𝑘 = 1, . . . , 𝑁 − 1, 𝑛 = 1, . . . ,𝑀 − 1,

V𝑘
0
− V𝑘
1
= V𝑘
𝑀
− V𝑘
𝑀−1
= 0, 𝑘 = 0, . . . , 𝑁,

V0
𝑛
− V𝑙
𝑛
= (1 − exp (−𝜆) − 𝜆) cos (𝑥

𝑛
) , 𝑛 = 0, . . . ,𝑀,

V𝑁
𝑛
− V𝑙
𝑛
= (exp (−𝑡

𝑁
) − exp (−𝜆) + 𝑡

𝑁
− 𝜆) cos (𝑥

𝑛
) ,

𝑛 = 0, . . . ,𝑀, 𝑙 = [

𝜆

𝜏

] ,

(38)

for the approximate solutions of the nonlocal boundary value
problem (35), and

𝑤
𝑘+1

𝑛
− 2𝑤
𝑘

𝑛
+ 𝑤
𝑘−1

𝑛

𝜏
2

+(2 + cos (𝑥
𝑛
))

𝑤
𝑘

𝑛+1
− 2𝑤
𝑘

𝑛
+ 𝑤
𝑘

𝑛−1

ℎ
2

− sin (𝑥
𝑛
)

𝑤
𝑘

𝑛+1
− 𝑤
𝑘

𝑛−1

2ℎ

− 𝑤
𝑘

𝑛

= −𝑝
𝑛
, 𝑘 = 1, . . . , 𝑁 − 1,

𝑝
𝑛
= 𝑝 (𝑥

𝑛
) , 𝑛 = 1, . . . ,𝑀 − 1,

𝑤
𝑘

0
− 𝑤
𝑘

1
= 𝑤
𝑘

𝑀
− 𝑤
𝑘

𝑀−1
= 0, 𝑘 = 0, . . . , 𝑁,

𝑤
0

𝑛
= (exp (−𝜆) + 𝜆 + 1) cos (𝑥

𝑛
) − V𝑙
𝑛
,

𝑛 = 0, . . . ,𝑀, 𝑙 = [

𝜆

𝜏

] ,

𝑤
𝑁

𝑛
= (exp (−𝜆) + 𝜆 + 1) cos (𝑥

𝑛
) − V𝑙
𝑛
,

𝑛 = 0, . . . ,𝑀,

(39)

for the approximate solutions of the boundary value problem
(36).

By using (22) and second order of accuracy in 𝑥 approxi-
mation of 𝐴, we get the following values of 𝑝 in grid points:

𝑝
𝑛
= −

(2 + cos (𝑥
𝑛
))

ℎ
2

((𝜑
𝑛+1
− V0
𝑛+1
) − 2 (𝜑

𝑛
− V0
𝑛
)

+ (𝜑
𝑛−1
− V0
𝑛−1
)) +

sin (𝑥
𝑛
)

2ℎ

× ((𝜑
𝑛+1
− V0
𝑛+1
) − (𝜑

𝑛−1
− V0
𝑛−1
))

+ (𝜑
𝑛
− V0
𝑛
) , 𝑛 = 1, . . . ,𝑀 − 1.

(40)

We can rewrite difference scheme (38) in the matrix form

𝐴
𝑛
V
𝑛+1
+ 𝐵
𝑛
V
𝑛
+ 𝐶
𝑛
V
𝑛−1
= 𝐼𝜃
𝑘

𝑛
, 𝑛 = 1, . . . ,𝑀 − 1,

V
0
= V
1
, V

𝑀
= V
𝑀−1
.

(41)

Here, 𝐼 is the (𝑁 + 1) × (𝑁 + 1) identity matrix, 𝐴
𝑛
, 𝐵
𝑛
, 𝐶
𝑛

are (𝑁 + 1) × (𝑁 + 1) square matrices, and 𝜃
𝑛
is a (𝑁 + 1) × 1

column matrix which are defined by

𝐴
𝑛
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0

0 𝑎
𝑛
0 0 ⋅ ⋅ ⋅ 0 0 0 0

0 0 𝑎
𝑛
0 ⋅ ⋅ ⋅ 0 0 0 0

0 0 0 𝑎
𝑛
⋅ ⋅ ⋅ 0 0 0 0

...
...

...
... ⋅ ⋅ ⋅

...
...

...
...

0 0 0 0 ⋅ ⋅ ⋅ 𝑎
𝑛
0 0 0

0 0 0 0 ⋅ ⋅ ⋅ 0 𝑎
𝑛
0 0

0 0 0 0 ⋅ ⋅ ⋅ 0 0 𝑎
𝑛
0

0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

𝐵
𝑛
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 0 0 0 ⋅ ⋅ ⋅ −1 ⋅ ⋅ ⋅ 0 0 0 0

𝑑 𝑏
𝑛
𝑑 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 0 0 0

0 𝑑 𝑏
𝑛
𝑑 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 0 0 0

0 0 𝑑 𝑏
𝑛
⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 0 0 0

...
...

...
...

...
... ⋅ ⋅ ⋅

...
...

...
...

0 0 0 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 𝑏
𝑛
𝑑 0 0

0 0 0 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 𝑑 𝑏
𝑛
𝑑 0

0 0 0 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 𝑑 𝑏
𝑛
𝑑

0 0 0 0 ⋅ ⋅ ⋅ −1 ⋅ ⋅ ⋅ 0 0 0 1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

(42)

𝐶
𝑛
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0

0 𝑐
𝑛
0 0 ⋅ ⋅ ⋅ 0 0 0 0

0 0 𝑐
𝑛
0 ⋅ ⋅ ⋅ 0 0 0 0

0 0 0 𝑐
𝑛
⋅ ⋅ ⋅ 0 0 0 0

...
...

...
... ⋅ ⋅ ⋅

...
...

...
...

0 0 0 0 ⋅ ⋅ ⋅ 𝑐
𝑛
0 0 0

0 0 0 0 ⋅ ⋅ ⋅ 0 𝑐
𝑛
0 0

0 0 0 0 ⋅ ⋅ ⋅ 0 0 𝑐
𝑛
0

0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

, (43)

𝑎
𝑛
=

2 + cos (𝑥
𝑛
)

ℎ
2

−

sin (𝑥
𝑛
)

2ℎ

,

𝑏
𝑛
= −

2

𝜏
2
−

2 (2 + cos (𝑥
𝑛
))

ℎ
2

− 1,

𝑐
𝑛
=

2 + cos (𝑥
𝑛
)

ℎ
2

+

sin (𝑥
𝑛
)

2ℎ

, 𝑑 =

1

𝜏
2
,

(44)
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𝜃
𝑛
=
[

[

[

𝜃
0

𝑛

...
𝜃
𝑁

𝑛

]

]

]

,

𝜃
0

𝑛
= (1 − exp (−𝜆) − 𝜆) cos (𝑥

𝑛
) ,

𝜃
𝑁

𝑛
= (exp (−𝑡

𝑁
) − exp (−𝜆) + 𝑡

𝑁
− 𝜆) cos (𝑥

𝑛
) ,

𝑛 = 1, . . . ,𝑀 − 1,

𝜃
𝑘

𝑛
= −𝑓 (𝑡

𝑘
, 𝑥
𝑛
) , 𝑘 = 1, . . . , 𝑁 − 1, 𝑛 = 1, . . . ,𝑀 − 1,

V
𝑠
=
[

[

[

V0
𝑠

...
V𝑁
𝑠

]

]

](𝑁+1)×1

, 𝑠 = 𝑛 − 1, 𝑛, 𝑛 + 1.

(45)

For solving (41) we use the modified Gauss elimination
method (see [29]). Namely, we seek solution of (41) by the
formula

V
𝑛
= 𝛼
𝑛+1

V
𝑛+1
+ 𝛽
𝑛+1
, 𝑛 = 𝑀 − 1, . . . , 1, (46)

where V
𝑀
= 0⃗, 𝛼

𝑛
(𝑛 = 1, . . . ,𝑀 − 1) are (𝑁 + 1) × (𝑁 + 1)

square matrices and 𝛽
𝑛
(𝑛 = 1, . . . ,𝑀 − 1) are (𝑁 + 1) × 1

column matrices. For 𝛼
𝑛+1
, 𝛽
𝑛+1

, we get formulas

𝛼
𝑛+1
= −(𝐵

𝑛
+ 𝐶
𝑛
𝛼
𝑛
)
−1

𝐴
𝑛
,

𝛽
𝑛+1
= −(𝐵

𝑛
+ 𝐶
𝑛
𝛼
𝑛
)
−1

(𝐼𝜃
𝑛
− 𝐶
𝑛
𝛽
𝑛
) , 𝑛 = 1, . . . ,𝑀 − 1,

(47)

where 𝛼
1
is the (𝑁+1) × (𝑁+1) identity matrix and 𝛽

1
is the

(𝑁 + 1) × 1 zero column vector.
Futher, we rewrite difference scheme (39) in the matrix

form

𝐴
𝑛
𝑤
𝑛+1
+ 𝐸
𝑛
𝑤
𝑛
+ 𝐶
𝑛
𝑤
𝑛−1
= 𝐼𝜂
𝑘

𝑛
,

𝑛 = 1, . . . ,𝑀 − 1,

𝑤
0
= 𝑤
1
, 𝑤

𝑀
= 𝑤
𝑀−1
.

(48)

Here,

𝐸
𝑛
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0

𝑑 𝑏
𝑛
𝑑 0 ⋅ ⋅ ⋅ 0 0 0 0

0 𝑑 𝑏
𝑛
𝑑 ⋅ ⋅ ⋅ 0 0 0 0

0 0 𝑑 𝑏
𝑛
⋅ ⋅ ⋅ 0 0 0 0

...
...

...
... d

...
...

...
...

0 0 0 0 ⋅ ⋅ ⋅ 𝑏
𝑛
𝑑 0 0

0 0 0 0 ⋅ ⋅ ⋅ 𝑑 𝑏
𝑛
𝑑 0

0 0 0 0 ⋅ ⋅ ⋅ 0 𝑑 𝑏
𝑛
𝑑

0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

, (49)

𝐴
𝑛
and𝐶

𝑛
are defined by (42) and (43) and (𝑁+1)×1 column

matrix 𝜂
𝑛
is defined by

𝜂
𝑛
=
[

[

[

𝜂
0

𝑛

...
𝜂
𝑁

𝑛

]

]

]

,

𝜂
0

𝑛
= (exp (−𝜆) + 𝜆 + 1) cos (𝑥

𝑛
) − V𝑙
𝑛
,

𝜂
𝑁

𝑛
= (exp (−𝜆) + 𝜆 + 1) cos (𝑥

𝑛
) − V𝑙
𝑛
, 𝑛 = 1, . . . ,𝑀 − 1,

𝜂
𝑘

𝑛
= −𝑝
𝑛
, 𝑘 = 1, . . . , 𝑁 − 1, 𝑛 = 1, . . . ,𝑀 − 1,

𝑤
𝑠
=
[

[

[

𝑤
0

𝑠

...
𝑤
𝑁

𝑠

]

]

](𝑁+1)×1

, 𝑠 = 𝑛 − 1, 𝑛, 𝑛 + 1.

(50)

Now we present second order of accuracy in 𝑡 and 𝑥
difference schemes for problems (35) and (36). Applying (27)
and formulas for sufficiently smooth function 𝜌

𝜌 (𝑥
𝑛+1
) − 𝜌 (𝑥

𝑛−1
)

2ℎ

− 𝜌

(𝑥
𝑛
) = 𝑂 (ℎ

2
) ,

𝜌 (𝑥
𝑛+1
) − 2𝜌 (𝑥

𝑛
) + 𝜌 (𝑥

𝑛−1
)

ℎ
2

− 𝜌

(𝑥
𝑛
) = 𝑂 (ℎ

2
) ,

10𝜌 (0) − 15𝜌 (ℎ) + 6𝜌 (2ℎ) − 𝜌 (3ℎ)

ℎ
3

− 𝜌

(0) = 𝑂 (ℎ

2
) ,

−3𝜌 (0) + 4𝜌 (ℎ) − 𝜌 (2ℎ)

2ℎ

− 𝜌

(0) = 𝑂 (ℎ

2
) ,

10𝜌 (𝜋) − 15𝜌 (𝜋 − ℎ) + 6𝜌 (𝜋 − 2ℎ) − 𝜌 (𝜋 − 3ℎ)

ℎ
3

− 𝜌

(𝜋) = 𝑂 (ℎ

2
) ,

−3𝜌 (𝜋) + 4𝜌 (𝜋 − ℎ) − 𝜌 (𝜋 − 2ℎ)

2ℎ

− 𝜌

(𝜋) = 𝑂 (ℎ

2
) ,

(51)

we get

V𝑘+1
𝑛
− 2V𝑘
𝑛
+ V𝑘−1
𝑛

𝜏
2

+ (2 + cos (𝑥
𝑛
))

V𝑘
𝑛+1
− 2V𝑘
𝑛
+ V𝑘
𝑛−1

ℎ
2

− sin (𝑥
𝑛
)

V𝑘
𝑛+1
− V𝑘
𝑛−1

2ℎ

− V𝑘
𝑛
= 𝜃
𝑘

𝑛
,
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𝜃
𝑘

𝑛
= −𝑓 (𝑡

𝑘
, 𝑥
𝑛
) , 𝑘 = 1, . . . , 𝑁 − 1, 𝑛 = 1, . . . ,𝑀 − 1,

− 3V𝑘
0
+ 4V𝑘
1
− V𝑘
2

= −3V𝑘
𝑀
+ 4V𝑘
𝑀−1
− V𝑘
𝑀−2
= 0, 𝑘 = 0, . . . , 𝑁,

10V𝑘
0
− 15V𝑘
1
+ 6V𝑘
2
− V𝑘
3

= 10V𝑘
𝑀
− 15V𝑘
𝑀−1
+ 6V𝑘
𝑀−2
− V𝑘
𝑀−3
= 0,

V0
𝑛
+ (

𝜆

𝜏

− 𝑙 − 1) V𝑙
𝑛
− (

𝜆

𝜏

− 𝑙) V𝑙+1
𝑛

= (1 − exp (−𝜆) − 𝜆) cos (𝑥
𝑛
) , 𝑛 = 0, . . . ,𝑀,

V𝑁
𝑛
+ (

𝜆

𝜏

− 𝑙 − 1) V𝑙
𝑛
− (

𝜆

𝜏

− 𝑙) V𝑙+1
𝑛

= (exp (−𝑡
𝑁
) − exp (−𝜆) + 𝑡

𝑁
− 𝜆) cos (𝑥

𝑛
) ,

𝑛 = 0, . . . ,𝑀,

(52)

difference scheme for nonlocal problem (35), and

𝑤
𝑘+1

𝑛
− 2𝑤
𝑘

𝑛
+ 𝑤
𝑘−1

𝑛

𝜏
2

+ (2 + cos (𝑥
𝑛
))

𝑤
𝑘

𝑛+1
− 2𝑤
𝑘

𝑛
+ 𝑤
𝑘

𝑛−1

ℎ
2

− sin (𝑥
𝑛
)

𝑤
𝑘

𝑛+1
− 𝑤
𝑘

𝑛−1

2ℎ

= −𝑝
𝑛
,

𝑘 = 1, . . . , 𝑁 − 1, 𝑝
𝑛
= 𝑝 (𝑥

𝑛
) , 𝑛 = 1, . . . ,𝑀 − 1,

− 3𝑤
𝑘

0
+ 4𝑤
𝑘

1
− 𝑤
𝑘

2
= −3𝑤

𝑘

𝑀
+ 4𝑤
𝑘

𝑀−1
− 𝑤
𝑘

𝑀−2
= 0,

𝑘 = 0, . . . , 𝑁,

10𝑤
𝑘

0
− 15𝑤

𝑘

1
+ 6𝑤
𝑘

2
− 𝑤
𝑘

3

= 10𝑤
𝑘

𝑀
− 15𝑤

𝑘

𝑀−1
+ 6𝑤
𝑘

𝑀−2
− 𝑤
𝑘

𝑀−3
= 0,

𝑤
0

𝑛
= (exp (−𝜆) + 𝜆 + 1) cos (𝑥

𝑛
)

+ (

𝜆

𝜏

− 𝑙 − 1) V𝑙
𝑛
− (

𝜆

𝜏

− 𝑙) V𝑙+1
𝑛
, 𝑛 = 0, . . . ,𝑀,

𝑤
𝑁

𝑛
= (exp (−𝜆) + 𝜆 + 1) cos (𝑥

𝑛
)

+ (

𝜆

𝜏

− 𝑙 − 1) V𝑙
𝑛
− (

𝜆

𝜏

− 𝑙) V𝑙+1
𝑛
,

𝜉
𝑛
= 𝜉 (𝑥

𝑛
) , 𝑛 = 0, . . . ,𝑀,

(53)

difference scheme for boundary value problem (36).

By difference scheme (52), we write in matrix form

𝐴
𝑛
V
𝑛+1
+ 𝐵
𝑛
V
𝑛
+ 𝐶
𝑛
V
𝑛−1
= 𝐼𝜃
𝑘

𝑛
, 𝑛 = 1, . . . ,𝑀 − 1,

−3V
0
+ 4V
1
− V
2
= 0,

−3V
𝑀
+ 4V
𝑀−1
− V
𝑀−2
= 0,

(54)

where𝐴
𝑛
, 𝐶
𝑛
are defined by (42), (43), (44), and 𝐵

𝑛
is defined

by

𝐵
𝑛
=

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1 0 0 0 ⋅ ⋅ ⋅ 0 𝑦 𝑧 0 ⋅ ⋅ ⋅ 0 0 0 0

𝑑 𝑏
𝑛
𝑑 0 ⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0

0 𝑑 𝑏
𝑛
𝑑 ⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0

0 0 𝑑 𝑏
𝑛
⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅ 𝑏
𝑛
𝑑 0 0

0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅ 𝑑 𝑏
𝑛
𝑑 0

0 0 0 0 ⋅ ⋅ ⋅ 0 0 0 0 ⋅ ⋅ ⋅ 0 𝑑 𝑏
𝑛
𝑑

0 0 0 0 ⋅ ⋅ ⋅ 0 𝑦 𝑧 0 ⋅ ⋅ ⋅ 0 0 0 1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

𝑏
𝑛
= −

2

𝜏
2
−

2 (2 + cos (𝑥
𝑛
))

ℎ
2

− 1,

𝑑 =

1

𝜏
2
, 𝑦 = (

𝜆

𝜏

− 𝑙 − 1) , 𝑧 = −(

𝜆

𝜏

− 𝑙) .

(55)

We seek solution of (54) by the formula

V
𝑛
= 𝛼
𝑛
V
𝑛+1
+ 𝛽
𝑛
V
𝑛+2
+ 𝛾
𝑛
, 𝑛 = 𝑀 − 2, . . . , 0, (56)

where 𝛼
𝑛
, 𝛽
𝑛
(𝑛 = 0, . . . ,𝑀 − 2) are (𝑁 + 1) × (𝑁 + 1) square

matrices and 𝛾
𝑛
(𝑛 = 0, . . . ,𝑀 − 2) are (𝑁 + 1) × 1 column

matrices. For the solution of difference equation (41) we need
to use the following formulas for 𝛼

𝑛
, 𝛽
𝑛
:

𝛼
𝑛
= −(𝐵

𝑛
+ 𝐶
𝑛
𝛼
𝑛−1
)
−1

(𝐴
𝑛
+ 𝐶
𝑛
𝛽
𝑛−1
) ,

𝛽
𝑛
= 0,

𝛾
𝑛
= −(𝐵

𝑛
+ 𝐶
𝑛
𝛼
𝑛−1
)
−1

(𝐼𝜃
𝑛
− 𝐶
𝑛
𝛾
𝑛−1
) , 𝑛 = 1, . . . ,𝑀 − 1,

(57)

where

𝛼
0
=

4

3

𝐼, 𝛽
0
= −

1

3

𝐼,

𝛼
1
=

8

5

𝐼, 𝛽
1
= −

3

5

𝐼,

𝛼
𝑀−2
= 4𝐼, 𝛽

𝑀−2
= −3𝐼,

𝛼
𝑀−3
=

8

3

𝐼, 𝛽
𝑀−3
= −

5

3

𝐼,

(58)

and 𝛾
0
, 𝛾
1
, 𝛾
𝑀−2
, 𝛾
𝑀−3

are the (𝑁 + 1) × 1 zero column vector.
For V
𝑀
and V
𝑀−1

we have

V
𝑀
= (𝑄
11
− 𝑄
12
𝑄
−1

22
𝑄
21
)

−1

(𝐺
1
− 𝑄
12
𝑄
−1

22
𝐺
2
) ,

V
𝑀−1
= 𝑄
−1

22
(𝐺
2
− 𝑄
21
V
𝑀
) ,

(59)
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where

𝑄
11
= −3𝐴

𝑀−2
− 8𝐵
𝑀−2
− 8𝐶
𝑀−2
𝛼
𝑀−3
− 3𝐶
𝑀−2
𝛽
𝑀−3
,

𝑄
12
= 4𝐴
𝑀−2
+ 9𝐵
𝑀−2
+ 9𝐶
𝑀−2
𝛼
𝑀−3
+ 4𝐶
𝑀−2
𝛽
𝑀−3
,

𝑄
21
= −3𝐵

𝑀−1
− 8𝐶
𝑀−1
,

𝑄
22
= 𝐴
𝑀−1
+ 4𝐵
𝑀−1
+ 9𝐶
𝑀−1
,

𝐺
1
= 𝐼𝜃
𝑀−2
− 𝐶
𝑀−2
𝛾
𝑀−3
, 𝐺

2
= 𝐼𝜃
𝑀−1
.

(60)

We can rewrite difference scheme (53) in the matrix form

𝐴
𝑛
𝑤
𝑛+1
+ 𝐸
𝑛
𝑤
𝑛
+ 𝐶
𝑛
𝑤
𝑛−1
= 𝐼𝜂
𝑘

𝑛
, 𝑛 = 1, . . . ,𝑀 − 1,

−3𝑤
0
+ 4𝑤
1
− 𝑤
2
= 0,

−3𝑤
𝑀
+ 4𝑤
𝑀−1
− 𝑤
𝑀−2
= 0,

(61)

where𝐴
𝑛
, 𝐸
𝑛
, 𝐶
𝑛
are defined by (42), (49), (43), and (44) and

𝜂
𝑛
is defined by

𝜂
𝑛
=
[

[

[

𝜂
0

𝑛

...
𝜂
𝑁

𝑛

]

]

]

,

𝜂
0

𝑛
= (exp (−𝜆) + 𝜆 + 1) cos (𝑥

𝑛
)

+ (

𝜆

𝜏

− 𝑙 − 1) V𝑙
𝑛
− (

𝜆

𝜏

− 𝑙) V𝑙+1
𝑛
,

𝜂
𝑁

𝑛
= (exp (−𝜆) + 𝜆 + 1) cos (𝑥

𝑛
) + (

𝜆

𝜏

− 𝑙 − 1) V𝑙
𝑛

− (

𝜆

𝜏

− 𝑙) V𝑙+1
𝑛
, 𝑛 = 0, . . . ,𝑀,

𝜂
𝑘

𝑛
= −𝑝
𝑛
, 𝑘 = 1, . . . , 𝑁 − 1, 𝑛 = 1, . . . ,𝑀 − 1.

(62)

Now, we give the results of the numerical realization
of finite difference method for (34) by using MATLAB
programs. The numerical solutions are recorded for 𝑇 =
2 and different values of 𝑁 = 𝑀. Grid functions V𝑘

𝑛
, 𝑢𝑘
𝑛

represent the numerical solutions of difference schemes for
auxiliary nonlocal problem (35) and inverse problem (34)
at (𝑡
𝑘
, 𝑥
𝑛
), respectively. Grid function 𝑝

𝑛
calculated by (40)

represents numerical solution at 𝑥
𝑛
for unknown function 𝑝.

The errors are computed by the norms

𝐸V𝑁
𝑀
= max
1≤𝑘≤𝑁−1

(

𝑀−1

∑

𝑛=1






V (𝑡
𝑘
, 𝑥
𝑛
) − V𝑘
𝑛







2

ℎ)

1/2

,

𝐸𝑢
𝑁

𝑀
= max
1≤𝑘≤𝑁−1

(

𝑀−1

∑

𝑛=1






𝑢 (𝑡
𝑘
, 𝑥
𝑛
) − 𝑢
𝑘

𝑛







2

ℎ)

1/2

,

𝐸𝑝
𝑀
= (

𝑀−1

∑

𝑛=1





𝑝 (𝑥
𝑛
) − 𝑝
𝑛






2

ℎ)

1/2

.

(63)

Table 1: Error analysis for nonlocal problem.

𝑁 = 𝑀 =

20

𝑁 = 𝑀 =

40

𝑁 = 𝑀 =

80

𝑁 = 𝑀 =

160

Difference
scheme (38) 0.30522 0.14933 0.073953 0.036814

Difference
scheme (52) 0.024714 0.0031054 4.36 × 10

−4
7.52 × 10

−5

Table 2: Error analysis for p.

𝑁 = 𝑀 =

20

𝑁 = 𝑀 =

40

𝑁 = 𝑀 =

80

𝑁 = 𝑀 =

160

Difference
scheme (38),
(40)

0.57878 0.33755 0.20387 0.12905

Difference
scheme (52),
(40)

0.058201 0.010646 0.0020228 4.03 × 10
−4

Table 3: Error analysis for u.

𝑁 = 𝑀 =

20

𝑁 = 𝑀 =

40

𝑁 = 𝑀 =

80

𝑁 = 𝑀 =

160

Difference
scheme (38),
(40), (39)

0.088225 0.038586 0.01815 0.008818

Difference
scheme (52),
(40), (53)

0.017034 0.0020225 2.47 × 10
−4
3.08 × 10

−5

Tables 1–3 present the error between the exact solution
and numerical solutions derived by corresponding difference
schemes. The results are recorded for 𝑁 = 𝑀 = 20, 40, 80
and 160, respectively. The tables show that the second order
of accuracy difference scheme is more accurate than the first
order of accuracy difference scheme for both auxiliary non-
local and inverse problems. Table 1 contains error between
the exact and approximate solutions V of auxiliary nonlocal
boundary value problem (35). Table 2 includes error between
the exact and approximate solutions 𝑝 of inverse problem
(34). Table 3 represents error between the exact solution 𝑢
of inverse problem (34) and approximate solution which is
derived by the first and second orders accuracy of difference
schemes.

5. Conclusion

In this paper, inverse problem for multidimensional elliptic
equation with Dirichlet-Neumann conditions is considered.
The stability and coercive stability estimates for solution
of this problem are established. First and second order of
accuracy difference schemes are presented for approximate
solutions of inverse problem. Theorems on the stability
and coercive stability inequalities for difference schemes
are proved. The theoretical statements for the solution of
these difference schemes are supported by the results of
numerical example in a two-dimensional case. As it can be
seen from Tables 1–3, second order of accuracy difference
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scheme is more accurate compared with the first order of
accuracy difference scheme. Moreover, applying the result of
the monograph [29] the high order of accuracy difference
schemes for the numerical solution of the boundary value
problem (2) can be presented.
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