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By using an integral inequality, we establish some sufficient conditions for the existence and p-exponential stability of periodic
solutions for a class of impulsive stochastic BAM neural networks with time-varying delays in leakage terms. Moreover, we present
an example to illustrate the feasibility of our results.

1. Introduction

Since it was proposed by Kosko (see [1]), the bidirectional
associative memory (BAM) neural networks have attracted
considerable attentions due to their extensive applications
in classification of patterns, associative memories, image
processing, and other areas. In the past few years, many
scholars have obtained lots of good results on the dynamical
behaviors analysis of BAM neural networks. The reader may
see [2–8] and the references therein.

But in a real nervous system, it is usually unavoidably
affected by external perturbations which are in many cases
of great uncertainty and hence may be treated as random. As
pointed out by Haykin [9], in real nervous systems, synaptic
transmission is a noisy process brought on by random
fluctuations from the release of neurotransmitters and other
probabilistic causes. And the stability of neural networks
could be stabilized or destabilized by some stochastic inputs
[10]. Therefore, it is significant and of prime importance to
consider the dynamics of stochastic neural networks. With
respect to stochastic neural networks, there are many works
on the stability. For example, in [11–17], the scholars studied
the stability of different classes of stochastic neural networks.
For other results on stochastic neural networks, the reader
may see [18–23] and the references therein.

However, the above results are mainly on the stability of
considered stochastic neural networks. And it is well known
that studies on neural dynamical systems not only involve
a discussion of stability properties, but also involve many

dynamic behaviors such as periodic oscillatory behavior. On
the other hand, the neural networks are often subject to
impulsive effects that in turn affect dynamical behaviors of
the systems.Moreover, a leakage delay, which is the time delay
in the leakage term of the systems and a considerable factor
affecting dynamics for theworse in the systems, is being put to
use in the problem of stability for neural networks. However,
so far, very little attention has been paid to neural networks
with time delay in the leakage (or “forgetting”) term. Such
time delays in the leakage term are difficult to handle but have
great impact on the dynamical behavior of neural networks.
Therefore, it is meaningful to consider neural networks with
time delays in the leakage term [24–32].

But to the best of our knowledge, there are few papers
published on studying the existence of periodic solutions of
impulsive stochastic neural networks with time delay in the
leakage term. Motivated by the previous discussions, in this
paper, we consider the following impulsive stochastic BAM
neural networks:

𝑑𝑥
𝑖 (𝑡) =

[

[

− 𝑎
𝑖 (𝑡) 𝑥𝑖 (𝑡 − 𝜏

𝑖 (𝑡))

+

𝑚

∑

𝑗=1

𝑐
𝑖𝑗 (𝑡) 𝑓𝑗 (𝑦𝑗 (𝑡)) + 𝐼

𝑖 (𝑡)
]

]

𝑑𝑡
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+

𝑚

∑

𝑗=1

𝜎
1𝑖𝑗

(𝑦
𝑗 (𝑡)) 𝑑𝑤1𝑗 (𝑡) ,

𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
,

𝑥
𝑖
(𝑡
+

𝑘
) = 𝛼
𝑖𝑘
𝑥
𝑖
(𝑡
𝑘
) , 𝑡 > 0, 𝑡 = 𝑡

𝑘
,

𝑑𝑦
𝑗 (𝑡) = [−𝑏

𝑗 (𝑡) 𝑦𝑗 (𝑡 − 𝜎
𝑗 (𝑡))

+

𝑛

∑

𝑖=1

𝑑
𝑗𝑖 (𝑡) 𝑔𝑖 (𝑥𝑖 (𝑡)) +𝐽𝑗 (𝑡) ] 𝑑𝑡

+

𝑛

∑

𝑖=1

𝜎
2𝑗𝑖

(𝑥
𝑖 (𝑡)) 𝑑𝑤2𝑖 (𝑡) ,

𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
,

𝑦
𝑗
(𝑡
+

𝑘
) = 𝛾
𝑗𝑘
𝑦
𝑗
(𝑡
𝑘
) , 𝑡 > 0, 𝑡 = 𝑡

𝑘
,

(1)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚 (𝑛 and 𝑚 are the
number of neurons in layers) and 𝑥

𝑖
(𝑡) and 𝑦

𝑗
(𝑡) denote the

activations of the 𝑖th neuron and the 𝑗th neuron at time 𝑡;
𝑎
𝑖
and 𝑏
𝑗
represent the rate with which the 𝑖th neuron and

𝑗th neuron will reset their potential to the resting state in
isolation when they are disconnected from the network and
the external inputs at time 𝑡; 0 < 𝜏

𝑖
< 𝜏
𝑖
and 0 < 𝜎

𝑗
< 𝜎
𝑗

denote the leakage delays; 𝑓
𝑗
and 𝑔

𝑖
are the input-output

functions (the activation functions); 𝑐
𝑖𝑗
and 𝑑

𝑗𝑖
are elements

of feedback templates at time 𝑡; 𝐼
𝑖
and 𝐽
𝑗
denote biases of the

𝑖th neuron and the 𝑗th neuron at time 𝑡, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 =

1, 2, . . . , 𝑚; 𝑤
1
(𝑡) = (𝑤

11
(𝑡), . . . , 𝑤

1𝑚
(𝑡))
𝑇 and 𝑤

2
(𝑡) =

(𝑤
21
(𝑡), . . . , 𝑤

2𝑛
(𝑡))
𝑇 are 𝑛-dimensional Brownian motions

defined on complete probability space (Ω, 𝐹, {𝐹
𝑡
}
𝑡>0

, 𝑃); here,
we denote by 𝐹 the associated 𝜎-algebra generated by {𝑤

𝑘
(𝑡)}

with the probability measure 𝑃, 𝑘 = 1, 2; 𝜎
1𝑖𝑗

and 𝜎
2𝑗𝑖

are Borel measurable functions; 𝜎
1

= (𝜎
1𝑖𝑗
)
𝑛×𝑚

and 𝜎
2

=

(𝜎
2𝑗𝑖
)
𝑚×𝑚

are diffusion coefficient matrices; 𝑥
𝑖
(𝑡
+

𝑘
) = 𝛼
𝑖𝑘
𝑥
𝑖
(𝑡
𝑘
)

and 𝑦
𝑗
(𝑡
+

𝑘
) = 𝛾

𝑗𝑘
𝑦
𝑗
(𝑡
𝑘
) are impulses at moment 𝑡, which

describe that the evolution processes experience abrupt
change of state at the moments of time 𝑡

𝑘
, where 𝑡

0
< 𝑡
1
<

𝑡
2
< ⋅ ⋅ ⋅ and lim

𝑘→∞
𝑡
𝑘
= ∞.

Our main purpose in this paper is using an integral
inequality, which is from a lemma in [33], to establish some
sufficient conditions on the existence and 𝑝-exponential
stability of the periodic solutions of (1).

Let (Ω, 𝐹, {𝐹
𝑡
}
𝑡>0

, 𝑃) be a complete probability space with
a filtration {𝐹

𝑡
}
𝑡>0

satisfying the usual conditions; that is,
{𝐹
𝑡
}
𝑡>0

is right continuous and 𝐹
0
contains all 𝑃-null sets.

Denote by PC𝑏
𝐹0
(𝑅, 𝑅
𝑛+𝑚

) the family of 𝐹
0
-measurable, 𝑅𝑛

valued random variables 𝑧(𝑡), where 𝑧(𝑡) is an piecewise-
continuous stochastic process; that is, 𝑧(𝑠) is continuous for
all but at most countable points 𝑡 ∈ 𝑅 and at these points 𝑠 ∈
𝑅, 𝑧(𝑠+) and 𝑧(𝑠

−
) exist, 𝑧(𝑠−) = 𝑧(𝑠). For 𝑧 ∈ PC𝑏

𝐹0
(𝑅, 𝑅
𝑛+𝑚

),
define the norm ‖𝑧‖ = max

0≤𝑡≤𝜔
(𝐸|𝑧(𝑡)|

𝑝

1
)
1/𝑝, where 𝑝 > 1

is an integer, |𝑧(𝑡)|
1
= (∑
𝑛+𝑚

𝑖=1
|𝑧
𝑖
(𝑡)|
2
)
1/2; 𝐸(⋅) stands for the

correspondent expectation operator with respect to the given
probability measure 𝑃.

For convenience, for an 𝜔-periodic function 𝑓 : 𝑅 → 𝑅,
denote 𝑓 = max

0≤𝑡≤𝜔
|𝑓(𝑡)|, 𝑓 = min

0≤𝑡≤𝜔
|𝑓(𝑡)|. The initial

condition of (1) is

𝑥
𝑖 (𝑠) = 𝜑

𝑖 (𝑠) , 𝑦
𝑗 (𝑠) = 𝜓

𝑗 (𝑠) , 𝑠 ≤ 𝑡
0
, (2)

where 𝜑
𝑖
, 𝜓
𝑗

∈ PC𝑏
𝐹0
((−𝛿, 𝑡

0
], 𝑅), 𝛿 =

max{max
1≤𝑖≤𝑛

𝜏
𝑖
,max
1≤𝑗≤𝑚

𝜎
𝑗
}, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 =

1, 2, . . . , 𝑚.
Throughout this paper, we assume that the following

conditions hold:

(𝐻
1
) 𝑎
𝑖
(𝑡) > 0, 𝑏

𝑗
(𝑡) > 0, 𝜏

𝑖
(𝑡), 𝜎
𝑗
(𝑡), 𝑐
𝑖𝑗
(𝑡), 𝑑
𝑗𝑖
(𝑡), 𝐼
𝑖
(𝑡), and

𝐽
𝑗
(𝑡) are all periodic continuous functionswith period

𝜔 for 𝑡 ∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚;

(𝐻
2
) 𝑓
𝑗
, 𝑔
𝑖
, 𝜎
1𝑖𝑗
, and 𝜎

2𝑗𝑖
are Lipschitz-continuous with

Lipschitz constants 𝐿𝑓
𝑗
> 0, 𝐿𝑔

𝑖
> 0, 𝑙
1𝑖𝑗

> 0, 𝑙
2𝑗𝑖

> 0

and 𝑓
𝑗
(0) = 𝑔

𝑖
(0) = 𝜎

1𝑖𝑗
(0) = 𝜎

2𝑗𝑖
(0) = 0, 𝑖 =

1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚;

(𝐻
3
) {𝛼
𝑖𝑘
} and {𝛾

𝑗𝑘
} are real sequences and ∏

𝑡0<𝑡𝑘<𝑡
𝛼
𝑖𝑘

and ∏
𝑡0<𝑡𝑘<𝑡

𝛾
𝑗𝑘

are 𝜔-periodic, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 =

1, 2, . . . , 𝑚, 𝑘 = 1, 2, . . ..

Remark 1. From (𝐻
3
), there exist constants 𝛼, 𝛼, 𝛾, and 𝛾 such

that

0 ≤ 𝛼 ≤



∏

𝑡0<𝑡𝑘<𝑡

𝛼
𝑖𝑘



≤ 𝛼,

0 ≤ 𝛾 ≤



∏

𝑡0<𝑡𝑘<𝑡

𝛾
𝑗𝑘



≤ 𝛾,

(3)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, and 𝑘 = 1, 2, . . ..

This paper is organized as follows. In Section 2, we
introduce somedefinitions and state somepreliminary results
which are needed in later sections. In Section 3, we state and
prove our results. In Section 4,we give an example to illustrate
the feasibility of our results obtained in the previous section.

2. Preliminaries

In this section, we introduce some definitions and state some
preliminary results.

Definition 2. A stochastic process 𝑥
𝑡
(𝑠) is said to be periodic

with period 𝜔 if its finite dimensional distributions are
periodic with period 𝜔; that is, for any positive integer 𝑚
and any moments of time 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑚
, the joint distribution

of the random variables 𝑥
𝑡1+𝑘𝜔

(𝑠), 𝑥
𝑡2+𝑘𝜔

(𝑠), . . . , 𝑥
𝑡𝑚+𝑘𝜔

(𝑠) is
independent of 𝑘, 𝑘 = ±1, ±2, . . ..



International Journal of Differential Equations 3

Lemma 3 (see [34]). If 𝑥(𝑡) is an𝜔-periodic stochastic process,
then its mathematical expectation and variance are𝜔-periodic.

Definition 4. The solution 𝑥
𝑡
(𝑡
0
, 𝜑) of (1) is said to be

(i) 𝑝-uniformly bounded if for each 𝛼 > 0, 𝑡
0

∈ 𝑅,
there exists a positive constant 𝜃 = 𝜃(𝛼) which
is independent of 𝑡

0
such that ‖𝜑‖𝑝 ≤ 𝛼 implies

𝐸(‖𝑥
𝑡
(𝑡
0
, 𝜑)‖
𝑝
) ≤ 𝜃, 𝑡 ≥ 𝑡

0
,

(ii) 𝑝-point dissipative if there exists a constant 𝑁 > 0

such that for any point 𝜑 ∈ PC𝑏
𝐹0
([−𝜏, 0], 𝑅

𝑛
), there

exists 𝑇(𝑡
0
, 𝜑) such that for each 𝛼 > 0, 𝑡

0
∈ 𝑅,

there exists a positive constant 𝜃 = 𝜃(𝛼) which is
independent of 𝑡

0
such that 𝐸(‖𝑥

𝑡
(𝑡
0
, 𝜑)‖
𝑝
) ≤ 𝑁, 𝑡 ≥

𝑡
0
+ 𝑇(𝑡
0
, 𝜑).

Lemma 5 (see [35]). Under conditions (𝐻
1
)–(𝐻
3
), assume

that the solution of (1) is 𝑝-uniformly bounded and 𝑝-point
dissipative for 𝑝 > 2; then (1) has an 𝜔-periodic solution.

Lemma 6 (see [36]). For any 𝑥 ∈ 𝑅
𝑛

+
and 𝑝 > 0,

|𝑥|
𝑝
≤ 𝑛
((𝑝/2)−1)∨0

𝑛

∑

𝑖=1

𝑥
𝑝

𝑖
,

(

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑝

≤ 𝑛
(𝑝−1)∨0

𝑛

∑

𝑖=1

𝑥
𝑝

𝑖
.

(4)

Definition 7. Theperiodic solution𝑥(𝑡, 𝑡
0
, 𝜑)with initial value

𝜑 ∈ PC𝑏
𝐹0
([−𝜏, 0], 𝑅

𝑛
) of (1) is said to be 𝑝-exponential stable

if there are constants 𝜆 > 0 and𝑀 > 1 such that any solution
𝑦(𝑡, 𝑡
0
, 𝜑
1
) with initial value 𝜑

1
∈ PC𝑏

𝐹0
([−𝜏, 0], 𝑅

𝑛
) of (1)

satisfies

𝐸 (
𝑥 − 𝑦


𝑝

1
) ≤ 𝑀

𝜑 − 𝜑
1


𝑝e−𝜆(𝑡−𝑡0), 𝑡 ≥ 𝑡

0
. (5)

Lemma 8 (see [33]). Let 𝑢(𝑡) ∈ 𝐶(𝑅, 𝑅
𝑛

+
) be a solution of the

delay integral inequality

𝑢 (𝑡) ≤ 𝑀
1
e−𝛿(𝑡−𝑡0)[𝜑]+

𝜏

+ ∫

𝑡

𝑡0

e−𝐶1(𝑡−𝑠)𝐴
1
𝑢 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡0

e−𝐶1(𝑡−𝑠)𝐵
1[𝑢 (𝑠)]

+

𝜏
𝑑𝑠 + 𝐽

1
,

𝑡 ≥ 𝑡
0
,

𝑢 (𝑡) ≤ 𝜑 (𝑡) , ∀𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
0
] ,

(6)

where 𝐴
1
, 𝐵
1
, 𝐶
1
, and𝑀

1
∈ 𝑅
𝑛×𝑛

+
, 𝐽
1
≥ 0 is a constant vector,

and 𝜑(𝑡) ∈ 𝐶([𝑡
0
− 𝜏, 𝑡
0
], 𝑅
𝑛

+
). If 𝜌(Π = 𝐶

−1

1
(𝐴
1
+ 𝐵
1
)) < 1,

then there are constants 0 < 𝜆 ≤ 𝛿 and𝑁 ≥ 1 such that

𝑢 (𝑡) ≤ 𝑁𝑧e−𝜆(𝑡−𝑡0) + (𝐼 − Π)
−1
𝐽
1
, 𝑡 ≥ 𝑡

0
, (7)

where 𝑧 satisfies [𝜑]+
𝜏
≤ 𝑧.

Lemma 9 (see [33]). Assume that all conditions of Lemma 9
hold. If 𝐽

1
= 0, then all solutions of inequality of (6)

exponentially converge to zero.

By Lemmas 8 and 9, we have the following corollary.

Corollary 10. Let 𝑢(𝑡) ∈ 𝐶(𝑅, 𝑅
+
) be a solution of the delay

integral inequality

𝑢 (𝑡) ≤ 𝑀
1
e−𝛿(𝑡−𝑡0)[𝜑]+

𝜏

+ ∫

𝑡

𝑡0

e−𝐶1(𝑡−𝑠)𝐴
1
𝑢 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡0

e−𝐶1(𝑡−𝑠)𝐵
1[𝑢 (𝑠)]

+

𝜏
𝑑𝑠 + 𝐽

1
,

𝑡 ≥ 𝑡
0
,

𝑢 (𝑡) ≤ 𝜑 (𝑡) , ∀𝑡 ∈ [𝑡
0
− 𝜏, 𝑡
0
] ,

(8)

where 𝐴
1
, 𝐵
1
, 𝐶
1
, and 𝑀

1
∈ 𝑅
+
, 𝐽
1
≥ 0 is a constant, and

𝜑(𝑡) ∈ 𝐶([𝑡
0
− 𝜏, 𝑡
0
], 𝑅
+
). If (𝐴

1
+ 𝐵
1
)/𝐶
1
< 1, then there are

constants 0 < 𝜆 ≤ 𝛿 and𝑁 ≥ 1 such that

𝑢 (𝑡) ≤ 𝑁𝑧e−𝜆(𝑡−𝑡0) + (1 −
𝐴
1
+ 𝐵
1

𝐶
1

)

−1

𝐽
1
,

𝑡 ≥ 𝑡
0
,

(9)

where 𝑧 satisfies [𝜑]+
𝜏
≤ 𝑧.Moreover, if 𝐽

1
= 0, then all solutions

of inequality of (8) exponentially converge to zero.

Under our assumptions, we consider the following sys-
tem:

𝑑𝑢
𝑖 (𝑡) = [ − 𝑎

𝑖 (𝑡) 𝑢𝑖 (𝑡 − 𝜏
𝑖 (𝑡))

+ ∏

𝑡0<𝑡𝑘<𝑡

𝛼
−1

𝑖𝑘

𝑚

∑

𝑗=1

𝑐
𝑖𝑗 (𝑡) 𝑓𝑗( ∏

𝑡0<𝑡𝑘<𝑡

𝛾
𝑗𝑘
V
𝑗 (𝑡))

+ ∏

𝑡0<𝑡𝑘<𝑡

𝛼
−1

𝑖𝑘
𝐼
𝑖 (𝑡)] 𝑑𝑡

+ ∏

𝑡0<𝑡𝑘<𝑡

𝛼
−1

𝑖𝑘

𝑚

∑

𝑗=1

𝜎
1𝑖𝑗

( ∏

𝑡0<𝑡𝑘<𝑡

𝛾
𝑗𝑘
V
𝑗 (𝑡)) 𝑑𝑤

1𝑗 (𝑡) ,

𝑡 ≥ 𝑡
0
,
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𝑑V
𝑗 (𝑡) = [ − 𝑏

𝑗 (𝑡) V𝑗 (𝑡 − 𝜎
𝑗 (𝑡))

+ ∏

𝑡0<𝑡𝑘<𝑡

𝛾
−1

𝑗𝑘

𝑛

∑

𝑖=1

𝑑
𝑗𝑖 (𝑡) 𝑔𝑖( ∏

𝑡0<𝑡𝑘<𝑡

𝛼
𝑖𝑘
𝑢
𝑖 (𝑡))

+ ∏

𝑡0<𝑡𝑘<𝑡

𝛾
−1

𝑗𝑘
𝐽
𝑗 (𝑡)] 𝑑𝑡

+ ∏

𝑡0<𝑡𝑘<𝑡

𝛾
−1

𝑗𝑘

𝑛

∑

𝑖=1

𝜎
2𝑗𝑖

( ∏

𝑡0<𝑡𝑘<𝑡

𝛼
𝑖𝑘
𝑢
𝑖 (𝑡)) 𝑑𝑤

2𝑖 (𝑡) ,

𝑡 ≥ 𝑡
0
,

(10)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.
Similar to Lemma 2.1 in paper [33], we have the following

lemma.

Lemma 11. Let (𝐻
1
)–(𝐻
3
) hold. Then,

(i) if (𝑢
1
(𝑡), . . . , 𝑢

𝑛
(𝑡), V
1
(𝑡), . . . , V

𝑚
(𝑡))
𝑇 is a solution of

(10), then (∏
𝑡0<𝑡𝑘<𝑡

𝛼
1𝑘
𝑢
1
(𝑡), . . . ,∏

𝑡0<𝑡𝑘<𝑡
𝛼
𝑛𝑘
𝑢
𝑛
(𝑡),

∏
𝑡0<𝑡𝑘<𝑡

𝛾
1𝑘
V
1
(𝑡), . . . ,∏

𝑡0<𝑡𝑘<𝑡
𝛾
𝑚𝑘
V
𝑚
(𝑡))
𝑇 is a solution

of (1);

(ii) if (𝑥
1
(𝑡),. . .,𝑥

𝑛
(𝑡),𝑦
1
(𝑡),. . .,𝑦

𝑚
(𝑡))
𝑇 is a solution of

(1), then (∏
𝑡0<𝑡𝑘<𝑡

𝛼
−1

𝑖𝑘
𝑥
1
(𝑡), . . . ,∏

𝑡0<𝑡𝑘<𝑡
𝛼
−1

𝑖𝑘
𝑥
𝑛
(𝑡),

∏
𝑡0<𝑡𝑘<𝑡

𝛾
−1

𝑗𝑘
𝑦
1
(𝑡), . . . ,∏

𝑡0<𝑡𝑘<𝑡
𝛾
−1

𝑚𝑘
𝑦
𝑚
(𝑡))
𝑇 is a solution

of (10).

3. Main Results

In this section, we will state and prove the sufficient condi-
tions for the existence and 𝑝-exponential stability of periodic
solution of (1).

Theorem 12. Let (𝐻
1
)–(𝐻
3
) hold. Suppose further that

(𝐻
4
) there exists an integer 𝑝 > 2 such that (𝜖 + 𝑐)/𝜃 < 1,
where

𝜃 = min{min
1≤𝑖≤𝑛

𝑎
𝑖
, min
1≤𝑗≤𝑚

𝑏
𝑗
} ,

𝑐 = 6
𝑝−1max{max

1≤𝑖≤𝑛

𝑎
𝑝

𝑖
, max
1≤𝑗≤𝑚

𝑏
𝑝

𝑗
} ,

𝜖 = max {𝑐, 𝜖
1
, 𝜖
2
} ,

𝜖
1
= 6
𝑝−1

𝑛

∑

𝑖=1

[

[

𝑎
1−𝑝

𝑖
(
𝛾

𝛼

𝑚

∑

𝑗=1

(𝑐
𝑖𝑗
𝐿
𝑓

𝑗
)
𝑝/(𝑝−1)

)

𝑝−1

+ 𝑙
𝑝
𝑛
(𝑝/2)−1

(
2𝑎
𝑖
(𝑝 − 1)

𝑝 − 2
)

1−(𝑝/2)

× (
𝛾

𝛼

𝑚

∑

𝑗=1

(𝑙
1𝑖𝑗
)
𝑝/(𝑝−1)

)

𝑝−1

]

]

,

𝜖
2
= 6
𝑝−1

𝑚

∑

𝑗=1

[

[

𝑏
1−𝑝

𝑗
(
𝛼

𝛾

𝑛

∑

𝑖=1

(𝑑
𝑗𝑖
𝐿
𝑔

𝑖
)
𝑝/(𝑝−1)

)

𝑝−1

+ 𝑙
𝑝
𝑚
(𝑝/2)−1

(

2𝑏
𝑗
(𝑝 − 1)

𝑝 − 2
)

1−(𝑝/2)

× (
𝛼

𝛾

𝑛

∑

𝑖=1

(𝑙
2𝑗𝑖
)
𝑝/(𝑝−1)

)

𝑝−1

]

]

.

(11)

Then (1) has an 𝜔-periodic solution, which is 𝑝-
exponentially stable.

Proof. We can rewrite (10) as follows:

𝑑𝑢
𝑖 (𝑡) = [ − 𝑎

𝑖 (𝑡) 𝑢𝑖 (𝑡) + 𝑎
𝑖 (𝑡) 𝑢𝑖 (𝑡)

− 𝑎
𝑖 (𝑡) 𝑢𝑖 (𝑡 − 𝜏

𝑖 (𝑡)) + ∏

𝑡0<𝑡𝑘<𝑡

𝛼
−1

𝑖𝑘

𝑚

∑

𝑗=1

𝑐
𝑖𝑗 (𝑡) 𝑓𝑗

× ( ∏

𝑡0<𝑡𝑘<𝑡

𝛾
𝑗𝑘
V
𝑗 (𝑡)) + ∏

𝑡0<𝑡𝑘<𝑡

𝛼
−1

𝑖𝑘
𝐼
𝑖 (𝑡)] 𝑑𝑡

+ ∏

𝑡0<𝑡𝑘<𝑡

𝛼
−1

𝑖𝑘

𝑚

∑

𝑗=1

𝜎
1𝑖𝑗

( ∏

𝑡0<𝑡𝑘<𝑡

𝛾
𝑗𝑘
V
𝑗 (𝑡)) 𝑑𝑤

1𝑗 (𝑡) ,

𝑡 ≥ 𝑡
0
, 𝑖 = 1, 2, . . . , 𝑛,

𝑑V
𝑗 (𝑡) = [ − 𝑏

𝑗 (𝑡) V𝑗 (𝑡) + 𝑏
𝑗 (𝑡) V𝑗 (𝑡)

− 𝑏
𝑗 (𝑡) V𝑗 (𝑡 − 𝜎

𝑗 (𝑡)) + ∏

𝑡0<𝑡𝑘<𝑡

𝛾
−1

𝑗𝑘

𝑛

∑

𝑖=1

𝑑
𝑗𝑖 (𝑡) 𝑔𝑖

× ( ∏

𝑡0<𝑡𝑘<𝑡

𝛼
𝑖𝑘
𝑢
𝑖 (𝑡)) + ∏

𝑡0<𝑡𝑘<𝑡

𝛾
−1

𝑗𝑘
𝐽
𝑗 (𝑡)] 𝑑𝑡
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+ ∏

𝑡0<𝑡𝑘<𝑡

𝛾
−1

𝑗𝑘

𝑛

∑

𝑖=1

𝜎
2𝑗𝑖

( ∏

𝑡0<𝑡𝑘<𝑡

𝛼
𝑖𝑘
𝑢
𝑖 (𝑡)) 𝑑𝑤

2𝑖 (𝑡) ,

𝑡 ≥ 𝑡
0
, 𝑗 = 1, 2, . . . , 𝑚.

(12)

By the method of variation parameter, for 𝑡 ≥ 𝑡
0
, 𝑖 =

1, 2, . . . , 𝑛, from the first equation of (12), we have the
following:

𝑢
𝑖 (𝑡) = 𝑢

𝑖
(𝑡
0
) e−∫

𝑡

𝑡0

𝑎𝑖(𝜗)𝑑𝜗

+ ∫

𝑡

𝑡0

e−∫
𝑡

𝑠
𝑎𝑖(𝜗)𝑑𝜗

× [𝑎
𝑖 (𝑠) 𝑢𝑖 (𝑠) − 𝑎

𝑖 (𝑠) 𝑢𝑖 (𝑠 − 𝜏
𝑖 (𝑠))

+ ∏

𝑡0<𝑡𝑘<𝑡

𝛼
−1

𝑖𝑘

𝑚

∑

𝑗=1

𝑐
𝑖𝑗 (𝑠) 𝑓𝑗

× ( ∏

𝑡0<𝑡𝑘<𝑡

𝛾
𝑗𝑘
V
𝑗 (𝑠)) + ∏

𝑡0<𝑡𝑘<𝑡

𝛼
−1

𝑖𝑘
𝐼
𝑖 (𝑠)] 𝑑𝑠

+ ∫

𝑡

𝑡0

e−∫
𝑡

𝑠
𝑎𝑖(𝜗)𝑑𝜗 ∏

𝑡0<𝑡𝑘<𝑡

𝛼
−1

𝑖𝑘

𝑚

∑

𝑗=1

𝜎
1𝑖𝑗

× ( ∏

𝑡0<𝑡𝑘<𝑡

𝛾
𝑗𝑘
V
𝑗 (𝑠)) 𝑑𝑤

1𝑗 (𝑠) .

(13)

For 𝑖 = 1, 2, . . . , 𝑛, denote

𝐹
1𝑖
= 𝑢
𝑖
(𝑡
0
) e−∫

𝑡

𝑡0

𝑎𝑖(𝜗)𝑑𝜗
,

𝐹
2𝑖
= ∫

𝑡

𝑡0

e−∫
𝑡

𝑠
𝑎𝑖(𝜗)𝑑𝜗𝑎

𝑖 (𝑠) 𝑢𝑖 (𝑠) 𝑑𝑠,

𝐹
3𝑖
= ∫

𝑡

𝑡0

e−∫
𝑡

𝑠
𝑎𝑖(𝜗)𝑑𝜗𝑎

𝑖 (𝑠) 𝑢𝑖 (𝑠 − 𝜏
𝑖 (𝑠)) 𝑑𝑠,

𝐹
4𝑖
= ∫

𝑡

𝑡0

e−∫
𝑡

𝑠
𝑎𝑖(𝜗)𝑑𝜗 ∏

𝑡0<𝑡𝑘<𝑡

𝛼
−1

𝑖𝑘
𝐼
𝑖 (𝑠) 𝑑𝑠,

𝐹
5𝑖
= ∫

𝑡

𝑡0

e−∫
𝑡

𝑠
𝑎𝑖(𝜗)𝑑𝜗 ∏

𝑡0<𝑡𝑘<𝑡

𝛼
−1

𝑖𝑘

×

𝑚

∑

𝑗=1

𝑐
𝑖𝑗 (𝑠) 𝑓𝑗( ∏

𝑡0<𝑡𝑘<𝑡

𝛾
𝑗𝑘
V
𝑗 (𝑠)) 𝑑𝑠,

𝐹
6𝑖
= ∫

𝑡

𝑡0

e−∫
𝑡

𝑠
𝑎𝑖(𝜗)𝑑𝜗 ∏

𝑡0<𝑡𝑘<𝑡

𝛼
−1

𝑖𝑘

×

𝑚

∑

𝑗=1

𝜎
1𝑖𝑗

( ∏

𝑡0<𝑡𝑘<𝑡

𝛾
𝑗𝑘
V
𝑗 (𝑠)) 𝑑𝑤

1𝑗 (𝑠) .

(14)

Considering expectations, using Lemma 6, for 𝑖 = 1, 2, . . . , 𝑛,
we have

𝐸
𝑢𝑖 (𝑡)


𝑝
≤ 6
𝑝−1

𝐸 (
𝐹1𝑖


𝑝
+
𝐹2𝑖


𝑝
+
𝐹3𝑖


𝑝

+
𝐹4𝑖


𝑝
+
𝐹5𝑖


𝑝
+
𝐹6𝑖


𝑝
) .

(15)

For 𝑖 = 1, 2, . . . , 𝑛, we evaluate the first term of (15) as follows:

𝐸
𝐹1𝑖


𝑝
= 𝐸


𝑢
𝑖
(𝑡
0
) e−∫

𝑡

𝑡0

𝑎𝑖(𝜗)𝑑𝜗


𝑝

≤ 𝐸

𝑢
𝑖
(𝑡
0
) e−𝑎𝑖(𝑡−𝑡0)

𝑝

≤ e−𝑝𝑎𝑖(𝑡−𝑡0)𝐸𝑢𝑖 (𝑡0)

𝑝
.

(16)

For the second term of (15), we have

𝐸
𝐹2𝑖


𝑝
= 𝐸



∫

𝑡

𝑡0

e−∫
𝑡

𝑠
𝑎𝑖(𝜗)𝑑𝜗𝑎

𝑖 (𝑠) 𝑢𝑖 (𝑠) 𝑑𝑠



𝑝

≤ 𝐸(∫

𝑡

𝑡0

e−∫
𝑡

𝑠
𝑎𝑖(𝜗)𝑑𝜗 𝑎𝑖 (𝑠)


𝑢𝑖 (𝑠)

 𝑑𝑠)

𝑝

≤ 𝐸(∫

𝑡

𝑡0

𝑎
𝑖
e−𝑎𝑖(𝑡−𝑠) 𝑢𝑖 (𝑠)

 𝑑𝑠)

𝑝

= 𝑎
𝑝

𝑖
∫

𝑡

𝑡0

e−𝑝𝑎𝑖(𝑡−𝑠)𝐸𝑢𝑖 (𝑠)

𝑝
𝑑𝑠,

𝑖 = 1, 2, . . . , 𝑛.

(17)

For the third term of (15), we have

𝐸
𝐹3𝑖


𝑝
= 𝐸



∫

𝑡

𝑡0

e−∫
𝑡

𝑠
𝑎𝑖(𝜗)𝑑𝜗𝑎

𝑖 (𝑠) 𝑢𝑖 (𝑠 − 𝜏
𝑖 (𝑠)) 𝑑𝑠



𝑝

≤ 𝐸(∫

𝑡

𝑡0

e−∫
𝑡

𝑠
𝑎𝑖(𝜗)𝑑𝜗 𝑎𝑖 (𝑠)


𝑢𝑖 (𝑠 − 𝜏

𝑖 (𝑠))
 𝑑𝑠)

𝑝

≤ 𝐸(∫

𝑡

𝑡0

𝑎
𝑖
e−𝑎𝑖(𝑡−𝑠) 𝑢𝑖 (𝑠 − 𝜏

𝑖 (𝑠))
 𝑑𝑠)

𝑝
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= 𝑎
𝑝

𝑖
∫

𝑡

𝑡0

e−𝑝𝑎𝑖(𝑡−𝑠)𝐸𝑢𝑖 (𝑠 − 𝜏
𝑖 (𝑠))


𝑝
𝑑𝑠,

𝑖 = 1, 2, . . . , 𝑛.

(18)

As for the fourth term of (15), for 𝑖 = 1, 2, . . . , 𝑛, we have

𝐸
𝐹4𝑖


𝑝
= 𝐸



∫

𝑡

𝑡0

e−∫
𝑡

𝑠
𝑎𝑖(𝜗)𝑑𝜗 ∏

𝑡0<𝑡𝑘<𝑡

𝛼
−1

𝑖𝑘
𝐼
𝑖 (𝑠) 𝑑𝑠



𝑝

≤ 𝐸



∫

𝑡

𝑡0

e−𝑎𝑖(𝑡−𝑠) ∏
𝑡0<𝑡𝑘<𝑡

𝛼
−1

𝑖𝑘
𝐼
𝑖 (𝑠) 𝑑𝑠



𝑝

≤ (
𝐼
𝑖

𝑎
𝑖
𝛼
)

𝑝

.

(19)

For the fifth term of (15), by Hölder inequality, we have

𝐸
𝐹5𝑖


𝑝
= 𝐸



∫

𝑡

𝑡0

e−∫
𝑡

𝑠
𝑎𝑖(𝜗)𝑑𝜗 ∏

𝑡0<𝑡𝑘<𝑡

𝛼
−1

𝑖𝑘

×

𝑚

∑

𝑗=1

𝑐
𝑖j (𝑠) 𝑓𝑗( ∏

𝑡0<𝑡𝑘<𝑡

𝛾
𝑗𝑘
V
𝑗 (𝑠)) 𝑑𝑠



𝑝

≤ 𝐸(∫

𝑡

𝑡0

e−𝑎𝑖(𝑡−𝑠)


∏

𝑡0<𝑡𝑘<𝑡

𝛼
−1

𝑖𝑘



𝑚

∑

𝑗=1


𝑐
𝑖𝑗 (𝑠)



×



𝑓
𝑗
( ∏

𝑡0<𝑡𝑘<𝑡

𝛾
𝑗𝑘
V
𝑗 (𝑠))



𝑑𝑠)

𝑝

≤ 𝐸(∫

𝑡

𝑡0

e−𝑎𝑖(𝑡−𝑠)

×



∏

𝑡0<𝑡𝑘<𝑡

𝛼
−1

𝑖𝑘



𝑚

∑

𝑗=1


𝑐
𝑖𝑗 (𝑠)


𝐿
𝑓

𝑗

×



∏

𝑡0<𝑡𝑘<𝑡

𝛾
𝑗𝑘
V
𝑗 (𝑠)



𝑑𝑠)

𝑝

≤ 𝐸(∫

𝑡

𝑡0

e−𝑎𝑖(𝑡−𝑠)
𝛾

𝛼

𝑚

∑

𝑗=1


𝑐
𝑖𝑗 (𝑠)



× 𝐿
𝑓

𝑗


V
𝑗 (𝑠)


𝑑𝑠)

𝑝

= 𝐸(∫

𝑡

𝑡0

(e−𝑎𝑖(𝑡−𝑠))
(𝑝−1)/𝑝

(e−𝑎𝑖(𝑡−𝑠))
1/𝑝

×
𝛾

𝛼

𝑚

∑

𝑗=1


𝑐
𝑖𝑗 (𝑠)


𝐿
𝑓

𝑗


V
𝑗 (𝑠)


𝑑𝑠)

𝑝

≤ 𝐸((∫

𝑡

𝑡0

e−𝑎𝑖(𝑡−𝑠)𝑑𝑠)
𝑝−1

× ∫

𝑡

𝑡0

e−𝑎𝑖(𝑡−𝑠) (
𝛾

𝛼

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
𝐿
𝑓

𝑗


V
𝑗 (𝑠)


)

𝑝

𝑑𝑠)

≤ 𝑎
1−𝑝

𝑖
∫

𝑡

𝑡0

e−𝑎𝑖(𝑡−𝑠)(
𝛾

𝛼

𝑚

∑

𝑗=1

(𝑐
𝑖𝑗
𝐿
𝑓

𝑗
)
𝑝/(𝑝−1)

)

𝑝−1

×

𝑚

∑

𝑗=1

𝐸

V
𝑗 (𝑠)



𝑝

𝑑𝑠, 𝑖 = 1, 2, . . . , 𝑛.

(20)

As for the last term of (15), using Proposition 1.9 in [37] and
Hölder inequality, for 𝑖 = 1, 2, . . . , 𝑛, we have

𝐸
𝐹6𝑖


𝑝
= 𝐸



∫

𝑡

𝑡0

e−∫
𝑡

𝑠
𝑎𝑖(𝜗)𝑑𝜗 ∏

𝑡0<𝑡𝑘<𝑡

𝛼
−1

𝑖𝑘

×

𝑚

∑

𝑗=1

𝜎
1𝑖𝑗

( ∏

𝑡0<𝑡𝑘<𝑡

𝛾
𝑗𝑘
V
𝑗 (𝑠)) 𝑑𝑤

1𝑗 (𝑠)



𝑝

≤ 𝑙
𝑝

[
[

[

∫

𝑡

𝑡0

(e−𝑝𝑎𝑖(𝑡−𝑠) 𝐸


∏

𝑡0<𝑡𝑘<𝑡

𝛼
−2

𝑖𝑘

𝑛

∑

𝑗=1

𝜎
2

1𝑖𝑗

×( ∏

𝑡0<𝑡𝑘<𝑡

𝛾
𝑗𝑘
V
𝑗 (𝑠))



𝑝/2

)

2/𝑝

𝑑𝑠
]
]

]

𝑝/2

≤ 𝑙
𝑝
𝑛
(𝑝/2)−1 [

[

[

∫

𝑡

𝑡0

(e−𝑝𝑎𝑖(𝑡−𝑠)

×𝐸(
𝛾

𝛼

𝑛

∑

𝑗=1

𝑙
1𝑖𝑗


V
𝑗 (𝑠)


)

𝑝

)

2/𝑝

𝑑𝑠
]
]

]

𝑝/2

= 𝑙
𝑝
𝑛
(𝑝/2)−1 [

[

[

∫

𝑡

𝑡0

(e−(𝑝−1)𝑎𝑖(𝑡−𝑠)e−𝑎𝑖(𝑡−𝑠)

×𝐸(
𝛾

𝛼

𝑛

∑

𝑗=1

𝑙
1𝑖𝑗


V
𝑗 (𝑠)


)

𝑝

)

2/𝑝

𝑑𝑠
]
]

]

𝑝/2
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≤ 𝑙
𝑝
𝑛
(𝑝/2)−1

(∫

𝑡

𝑡0

e(−2𝑎𝑖(𝑝−1)/(𝑝−2))(𝑡−𝑠)𝑑𝑠)
(𝑝/2)−1

× (∫

𝑡

𝑡0

e−𝑎𝑖(𝑡−𝑠)𝐸(
𝛾

𝛼

𝑛

∑

𝑗=1

𝑙
1𝑖𝑗


V
𝑗 (𝑠)


)

𝑝

𝑑𝑠)

≤ 𝑙
𝑝
𝑛
(𝑝/2)−1

(
2𝑎
𝑖
(𝑝 − 1)

𝑝 − 2
)

1−(𝑝/2)

× (∫

𝑡

𝑡0

e−𝑎𝑖(𝑡−𝑠)

× 𝐸 (
𝛾

𝛼

𝑚

∑

𝑗=1

𝑙
1𝑖𝑗


V
𝑗 (𝑠)


)

𝑝

𝑑𝑠)

≤ 𝑙
𝑝
𝑛
(𝑝/2)−1

(
2𝑎
𝑖
(𝑝 − 1)

𝑝 − 2
)

1−(𝑝/2)

× (∫

𝑡

𝑡0

e−𝑎𝑖(𝑡−𝑠) (
𝛾

𝛼

𝑚

∑

𝑗=1

(𝑙
1𝑖𝑗
)
𝑝/(𝑝−1)

)

𝑝−1

×

𝑚

∑

𝑗=1

𝐸

V
𝑗 (𝑠)



𝑝

𝑑𝑠) ,

(21)

where 𝑙
𝑝
= (𝑝(𝑝 − 1)/2)

𝑝/2. Therefore, for 𝑖 = 1, 2, . . . , 𝑛, we
have

𝐸
𝑢𝑖 (𝑡)


𝑝

≤ 6
𝑝−1

{

{

{

e−𝑝𝑎𝑖(𝑡−𝑡0)𝐸𝑢𝑖 (𝑡0)

𝑝

+ 𝑎
𝑝

𝑖
∫

𝑡

𝑡0

e−𝑝𝑎𝑖(𝑡−𝑠)𝐸𝑢𝑖 (𝑠)

𝑝
𝑑𝑠

+ 𝑎
𝑝

𝑖
∫

𝑡

𝑡0

e−𝑝𝑎𝑖(𝑡−𝑠)𝐸𝑢𝑖 (𝑠 − 𝜏
𝑖 (𝑠))


𝑝
𝑑𝑠

+ 𝑎
1−𝑝

𝑖
∫

𝑡

𝑡0

e−𝑎𝑖(𝑡−𝑠)

× (
𝛾

𝛼

𝑚

∑

𝑗=1

(𝑐
𝑖𝑗
𝐿
𝑓

𝑗
)
𝑝/(𝑝−1)

)

𝑝−1

×

𝑛

∑

𝑗=1

𝐸

V
𝑗 (𝑠)



𝑝

𝑑𝑠

+ 𝑙
𝑝
𝑛
(𝑝/2)−1

(
2𝑎
𝑖
(𝑝 − 1)

𝑝 − 2
)

1−(𝑝/2)

× (∫

𝑡

𝑡0

e−𝑎𝑖(𝑡−𝑠) (
𝛾

𝛼

𝑚

∑

𝑗=1

(𝑙
1𝑖𝑗
)
𝑝/(𝑝−1)

)

𝑝−1

×

𝑚

∑

𝑗=1

𝐸

V
𝑗 (𝑠)



𝑝

𝑑𝑠) + (
𝐼
𝑖

𝑎
𝑖
𝛼
)

𝑝
}

}

}

= 6
𝑝−1

{

{

{

e−𝑝𝑎𝑖(𝑡−𝑡0)𝐸𝑢𝑖 (𝑡0)

𝑝

+ 𝑎
𝑝

𝑖
∫

𝑡

𝑡0

e−𝑝𝑎𝑖(𝑡−𝑠)𝐸𝑢𝑖 (𝑠)

𝑝
𝑑𝑠

+ 𝑎
𝑝

𝑖
∫

𝑡

𝑡0

e−𝑝𝑎𝑖(𝑡−𝑠)𝐸𝑢𝑖 (𝑠 − 𝜏
𝑖 (𝑠))


𝑝
𝑑𝑠

+ ∫

𝑡

𝑡0

e−𝑎𝑖(𝑡−𝑠)

× [

[

𝑎
1−𝑝

𝑖
(
𝛾

𝛼

𝑚

∑

𝑗=1

(𝑐
𝑖𝑗
𝐿
𝑓

𝑗
)
𝑝/(𝑝−1)

)

𝑝−1

+𝑙
𝑝
𝑛
(𝑝/2)−1

(
2𝑎
𝑖
(𝑝 − 1)

𝑝 − 2
)

1−(𝑝/2)

×(
𝛾

𝛼

𝑚

∑

𝑗=1

(𝑙
1𝑖𝑗
)
𝑝/(𝑝−1)

)

𝑝−1

]

]

×

𝑚

∑

𝑗=1

𝐸

V
𝑗 (𝑠)



𝑝

𝑑𝑠 + (
𝐼
𝑖

𝑎
𝑖
𝛼
)

𝑝
}

}

}

≤ 6
𝑝−1

{

{

{

e−𝑎𝑖(𝑡−𝑡0)𝐸𝑢𝑖 (𝑡0)

𝑝

+ 𝑎
𝑝

𝑖
∫

𝑡

𝑡0

e−𝑎𝑖(𝑡−𝑠)𝐸𝑢𝑖 (𝑠)

𝑝
𝑑𝑠

+ 𝑎
𝑝

𝑖
∫

𝑡

𝑡0

e−𝑎𝑖(𝑡−𝑠)𝐸𝑢𝑖 (𝑠 − 𝜏
𝑖 (𝑠))


𝑝
𝑑𝑠

+ ∫

𝑡

𝑡0

e−𝑎𝑖(𝑡−𝑠)

× [

[

𝑎
1−𝑝

𝑖
(
𝛾

𝛼

𝑚

∑

𝑗=1

(𝑐
𝑖𝑗
𝐿
𝑓

𝑗
)
𝑝/(𝑝−1)

)

𝑝−1

+ 𝑙
𝑝
𝑛
(𝑝/2)−1

(
2𝑎
𝑖
(𝑝 − 1)

𝑝 − 2
)

1−(𝑝/2)
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× (
𝛾

𝛼

𝑚

∑

𝑗=1

(𝑙
1𝑖𝑗
)
𝑝/(𝑝−1)

)

𝑝−1

]

]

×

𝑚

∑

𝑗=1

𝐸

V
𝑗 (𝑠)



𝑝

𝑑𝑠 + (
𝐼
𝑖

𝑎
𝑖
𝛼
)

𝑝
}

}

}

.

(22)

Similarly, for 𝑡 ≥ 𝑡
0
, 𝑗 = 1, 2, . . . , 𝑚, from the second equation

of (12), we can obtain the following:

𝐸

V
𝑗 (𝑡)



𝑝

≤ 6
𝑝−1

{

{

{

e−𝑏𝑗(𝑡−𝑡0)𝐸V𝑗 (𝑡0)


𝑝

+ 𝑏
𝑝

𝑗
∫

𝑡

𝑡0

e−𝑏𝑗(𝑡−𝑠)𝐸V𝑗 (𝑠)


𝑝

𝑑𝑠

+ 𝑏
𝑝

𝑗
∫

𝑡

𝑡0

e−𝑏𝑗(𝑡−𝑠)𝐸V𝑗 (𝑠 − 𝜎
𝑗 (𝑠))



𝑝

𝑑𝑠

+ ∫

𝑡

𝑡0

e−𝑏𝑗(𝑡−𝑠)

× [

[

𝑏
1−𝑝

𝑗
(
𝛼

𝛾

𝑛

∑

𝑖=1

(𝑑
𝑗𝑖
𝐿
𝑔

𝑖
)
𝑝/(𝑝−1)

)

𝑝−1

+𝑙
𝑝
𝑚
(𝑝/2)−1

(

2𝑏
𝑗
(𝑝 − 1)

𝑝 − 2
)

1−(𝑝/2)

×(
𝛼

𝛾

𝑛

∑

𝑖=1

(𝑙
2𝑗𝑖
)
𝑝/(𝑝−1)

)

𝑝−1

]

]

×

𝑛

∑

𝑖=1

𝐸
𝑢𝑖 (𝑠)


𝑝
𝑑𝑠 + (

𝐽
𝑗

𝑏
𝑗
𝛾
)

𝑝

}

}

}

.

(23)

Hence, by (22) and (23), we have that

𝑛

∑

𝑖=1

𝐸
𝑢𝑖 (𝑡)


𝑝
+

𝑚

∑

𝑗=1

𝐸

V
𝑗 (𝑡)



𝑝

≤ 6
𝑝−1

𝑛

∑

𝑖=1

{

{

{

e−𝑎𝑖(𝑡−𝑡0)𝐸𝑢𝑖 (𝑡0)

𝑝

+ 𝑎
𝑝

𝑖
∫

𝑡

𝑡0

e−𝑎𝑖(𝑡−𝑠)𝐸𝑢𝑖 (𝑠)

𝑝
𝑑𝑠

+ 𝑎
𝑝

𝑖
∫

𝑡

𝑡0

e−𝑎𝑖(𝑡−𝑠)𝐸𝑢𝑖 (𝑠 − 𝜏
𝑖 (𝑠))


𝑝
𝑑𝑠

+ ∫

𝑡

𝑡0

e−𝑎𝑖(𝑡−𝑠)

× [

[

𝑎
1−𝑝

𝑖
(
𝛾

𝛼

𝑚

∑

𝑗=1

(𝑐
𝑖𝑗
𝐿
𝑓

𝑗
)
𝑝/(𝑝−1)

)

𝑝−1

+𝑙
𝑝
𝑛
(𝑝/2)−1

(
2𝑎
𝑖
(𝑝−1)

𝑝−2
)

1−(𝑝/2)

× (
𝛾

𝛼

𝑚

∑

𝑗=1

(𝑙
1𝑖𝑗
)
𝑝/(𝑝−1)

)

𝑝−1

]

]

×

𝑚

∑

𝑗=1

𝐸

V
𝑗 (𝑠)



𝑝

𝑑𝑠 + (
𝐼
𝑖

𝑎
𝑖
𝛼
)

𝑝
}

}

}

+ 6
𝑝−1

𝑚

∑

𝑗=1

{

{

{

e−𝑏𝑗(𝑡−𝑡0)𝐸V𝑗 (𝑡0)


𝑝

+ 𝑏
𝑝

𝑗
∫

𝑡

𝑡0

e−𝑏𝑗(𝑡−𝑠)𝐸V𝑗 (𝑠)


𝑝

𝑑𝑠

+ 𝑏
𝑝

𝑗
∫

𝑡

𝑡0

e−𝑏𝑗(𝑡−𝑠)𝐸V𝑗 (𝑠 − 𝜎
𝑗 (𝑠))



𝑝

𝑑𝑠

+ ∫

𝑡

𝑡0

e−𝑏𝑗(𝑡−𝑠)

× [

[

𝑏
1−𝑝

𝑗
(
𝛼

𝛾

𝑛

∑

𝑖=1

(𝑑
𝑗𝑖
𝐿
𝑔

𝑖
)
𝑝/(𝑝−1)

)

𝑝−1

+𝑙
𝑝
𝑚
(𝑝/2)−1

(

2𝑏
𝑗
(𝑝−1)

𝑝−2
)

1−(𝑝/2)

× (
𝛼

𝛾

𝑛

∑

𝑖=1

(𝑙
2𝑗𝑖
)
𝑝/(𝑝−1)

)

𝑝−1

]

]

×

𝑛

∑

𝑖=1

𝐸
𝑢𝑖 (𝑠)


𝑝
𝑑𝑠 + (

𝐽
𝑗

𝑏
𝑗
𝛾
)

𝑝

}

}

}

.

(24)

Set 𝑉(𝑡) = ∑
𝑛

𝑖=1
𝐸|𝑢
𝑖
(𝑡)|
𝑝
+ ∑
𝑚

𝑗=1
𝐸|V
𝑗
(𝑡)|
𝑝. By (24), we have

that

𝑉 (𝑡) ≤ 6
𝑝−1e−𝜃(𝑡−𝑡0)𝑉 (𝑡

0
) + ∫

𝑡

𝑡0

𝜖e−𝜃(𝑡−𝑠)𝑉 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡0

𝑐e−𝜃(𝑡−𝑠)𝑉+
𝛿
(𝑠) 𝑑𝑠 + 𝐻,

(25)
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where 𝑉
+

𝛿
(𝑠) = max

−𝛿≤𝑠≤0
|𝑉(𝑡 + 𝑠)|, 𝐻 = 6

𝑝−1

max{{max
1≤𝑖≤𝑛

(𝐼
𝑖
/𝑎
𝑖
𝛼)
𝑝
}, {max

1≤𝑗≤𝑚
(𝐽
𝑗
/𝑏
𝑗
𝛾)
𝑝
}}. By (𝐻

4
) and

Corollary 10, the solutions of (10) are 𝑝-uniformly bounded
and it also shows that the family of all solutions of (10) is 𝑝-
point dissipative.Then, it follows from Lemma 5 that (10) has
an 𝜔-periodic solution (𝑢

∗

1
(𝑡), . . . , 𝑢

∗

𝑛
(𝑡), V∗
1
(𝑡), . . . , V∗

𝑚
(𝑡))
𝑇.

Suppose that (𝑢
1
(𝑡), . . . , 𝑢

𝑛
(𝑡), V
1
(𝑡), . . . , V

𝑚
(𝑡))
𝑇 is an

arbitrary solution of (10). Then it follows from (10) that

𝑑 (𝑢
𝑖 (𝑡) − 𝑢

∗

𝑖
(𝑡))

= −𝑎
𝑖 (𝑡) (𝑢𝑖 (𝑡 − 𝜏

𝑖 (𝑡)) − 𝑢
∗

𝑖
(𝑡 − 𝜏
𝑖 (𝑡)))

+ ∏

𝑡0<𝑡𝑘<𝑡

𝛼
−1

𝑖𝑘

𝑚

∑

𝑗=1

𝑐
𝑖𝑗 (𝑡)

× [𝑓
𝑗
( ∏

𝑡0<𝑡𝑘<𝑡

𝛾
𝑗𝑘
V
𝑗 (𝑡))

− 𝑓
𝑗
( ∏

𝑡0<𝑡𝑘<𝑡

𝛾
𝑗𝑘
V∗
𝑗
(𝑡))]𝑑𝑡

+ ∏

𝑡0<t𝑘<𝑡
𝛼
−1

𝑖𝑘

× [

[

𝑚

∑

𝑗=1

𝜎
1𝑖𝑗
( ∏

𝑡0<𝑡𝑘<𝑡

𝛾
𝑗𝑘
V
𝑗 (𝑡))

−

𝑚

∑

𝑗=1

𝜎
1𝑖𝑗

( ∏

𝑡0<𝑡𝑘<𝑡

𝛾
𝑗𝑘
V∗
𝑗
(𝑡))]

]

𝑑𝑤
1𝑗 (𝑡) ,

𝑡 ≥ 𝑡
0
, 𝑖 = 1, 2, . . . , 𝑛,

𝑑 (V
𝑗 (𝑡) − V∗

𝑗
(𝑡))

= −𝑏
𝑗 (𝑡) (V𝑗 (𝑡 − 𝜎

𝑗 (𝑡)) − V∗
𝑗
(𝑡 − 𝜎

𝑗 (𝑡)))

+ ∏

𝑡0<𝑡𝑘<𝑡

𝛾
−1

𝑗𝑘

𝑛

∑

𝑖=1

𝑑
𝑗𝑖 (𝑡)

× [𝑔
𝑖
( ∏

𝑡0<𝑡𝑘<𝑡

𝛼
𝑖𝑘
𝑢
𝑖 (𝑡))

−𝑔
𝑖
( ∏

𝑡0<𝑡𝑘<𝑡

𝛼
𝑖𝑘
𝑢
∗

𝑖
(𝑡))]𝑑𝑡

+ ∏

𝑡0<𝑡𝑘<𝑡

𝛾
−1

𝑗𝑘

𝑛

∑

𝑖=1

[𝜎
2𝑗𝑖

( ∏

𝑡0<𝑡𝑘<𝑡

𝛼
𝑖𝑘
𝑢
𝑖 (𝑡))

− 𝜎
2𝑗𝑖

( ∏

𝑡0<𝑡𝑘<𝑡

𝛼
𝑖𝑘
𝑢
∗

𝑖
(𝑡))]𝑑𝑤

2𝑖 (𝑡) ,

𝑡 ≥ 𝑡
0
, 𝑗 = 1, 2, . . . , 𝑚.

(26)

Let 𝑈(𝑡) = ∑
𝑛

𝑖=1
|𝑢
𝑖
(𝑡) − 𝑢

∗

𝑖
(𝑡)|
𝑝
+ ∑
𝑚

𝑗=1
|V
𝑗
(𝑡) − V∗

𝑗
(𝑡)|
𝑝.

Proceeding as the proof of the existence of periodic solution
of (10), from (26), we obtain that

𝑈 (𝑡) ≤ 6
𝑝−1e−𝜃(𝑡−𝑡0)𝑈 (𝑡

0
) + ∫

𝑡

𝑡0

𝜖e−𝜃(𝑡−𝑠)𝑈 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡0

𝑐e−𝜃(𝑡−𝑠)𝑈+
𝛿
(𝑠) 𝑑𝑠.

(27)

By (𝐻
4
) and Corollary 10, the periodic solution of (10) is

𝑝-exponentially stable; that is, the periodic solution of (1)
is 𝑝-exponentially stable. Therefore, (1) has an 𝜔-periodic
solution, which is 𝑝-exponentially stable. This completes the
proof of Theorem 12.

4. An Example

In this section, we present an example to illustrate the
feasibility of our results obtained in the previous section.

Let 𝑛 = 𝑚 = 2. Consider the following impulsive
stochastic BAM neural network:

𝑑𝑥
𝑖 (𝑡) =

[

[

− 𝑎
𝑖 (𝑡) 𝑥𝑖 (𝑡 − 𝜏

𝑖 (𝑡))

+

2

∑

𝑗=1

𝑐
𝑖𝑗 (𝑡) 𝑓𝑗 (𝑦𝑗 (𝑡)) + 𝐼

𝑖 (𝑡)
]

]

𝑑𝑡

+

2

∑

𝑗=1

𝜎
1𝑖𝑗

(𝑦
𝑗 (𝑡)) 𝑑𝑤1𝑗 (𝑡) ,

𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
,

𝑥
𝑖
(𝑡
+

𝑘
) = 𝛼
𝑖𝑘
𝑥
𝑖
(𝑡
𝑘
) , 𝑡 > 0, 𝑡 = 𝑡

𝑘
,

𝑑𝑦
𝑗 (𝑡) = [ − 𝑏

𝑗 (𝑡) 𝑦𝑗 (𝑡 − 𝜎
𝑗 (𝑡))

+

2

∑

𝑖=1

𝑑
𝑗𝑖 (𝑡) 𝑔𝑖 (𝑥𝑖 (𝑡)) + 𝐽

𝑗 (𝑡)] 𝑑𝑡

+

2

∑

𝑖=1

𝜎
2𝑗𝑖

(𝑥
𝑖 (𝑡)) 𝑑𝑤2𝑖 (𝑡) ,

𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
,

𝑦
𝑗
(𝑡
+

𝑘
) = 𝛾
𝑗𝑘
𝑦
𝑗
(𝑡
𝑘
) , 𝑡 > 0, 𝑡 = 𝑡

𝑘
,

(28)
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where 𝑖, 𝑗 = 1, 2 and the coefficients are as follows:

𝑎
1 (𝑡) = 1.15 + 0.05 sin 𝜋

2
𝑡,

𝑎
2 (𝑡) = 0.85 + 0.01 cos 𝜋

2
𝑡,

𝑏
1 (𝑡) = 0.86 + 0.01 sin 𝜋

2
𝑡,

𝑏
2 (𝑡) = 0.74 + 0.01 cos 𝜋

2
𝑡,

𝑐
11 (𝑡) = 0.04 sin 𝜋

2
𝑡,

𝑐
12 (𝑡) = 0.02 cos 𝜋

2
𝑡,

𝑐
21 (𝑡) = 0.03 sin 𝜋

2
𝑡,

c
22 (𝑡) = 0.01 sin 𝜋

2
𝑡,

𝑑
11 (𝑡) = 0.04 + 0.03 cos 𝜋

2
𝑡,

𝑑
12 (𝑡) = 0.01 sin 𝜋

2
𝑡,

𝑑
21 (𝑡) = 0.05 + 0.01 sin 𝜋

2
𝑡,

𝑑
22 (𝑡) = 0.02 cos 𝜋

2
𝑡,

𝑓
1 (𝑢) = 0.03 sin 𝑢,

𝑓
2 (𝑢) = 0.04 cos 𝑢,

𝑔
1 (𝑢) = 0.05 cos 𝑢,

𝑔
2 (𝑢) = 0.07 sin 𝑢,

𝜎
111 (𝑢) = 0.02 sin 𝑢,

𝜎
112 (𝑢) = 0.03 cos 𝑢,
𝜎
121 (𝑢) = 0.01 sin 𝑢,

𝜎
122 (𝑢) = 0.04 cos 𝑢,

𝜎
211 (𝑢) = 0.01 cos 𝑢,
𝜎
212 (𝑢) = 0.04 sin 𝑢,

𝜎
221 (𝑢) = 0.03 sin 𝑢,

𝜎
222 (𝑢) = 0.04 cos 𝑢,

𝜏
1 (𝑡) = 𝜏

2 (𝑡) = 𝜎
1 (𝑡) = 𝜎

2 (𝑡) = 0.2 + 0.1 sin 𝜋

2
𝑡,

𝐼
1 (𝑡) = 𝐼

2 (𝑡) = 0.6 sin√2𝑡,

𝐽
1 (𝑡) = 𝐽

2 (𝑡) = 0.5 cos 𝑡, 𝑖, 𝑗 = 1, 2,

𝛼
1𝑘

= 𝛾
1𝑘

= 3
sin (𝑘𝜋/2)

,

𝛼
2𝑘

= 𝛾
2𝑘

= 3
cos (𝑘𝜋/2)

, 𝑘 = 1, 2, . . . .

(29)
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Figure 1: Transient states of stochastic BAM neural networks.

By calculating, we have

𝑎
1
= 1.2, 𝑎

1
= 1.1,

𝑎
2
= 0.86, 𝑎

2
= 0.84,

𝑏
1
= 0.87, 𝑏

1
= 0.85,

𝑏
2
= 0.75, 𝑏

2
= 0.73,

𝑐
11

= 0.04, 𝑐
12

= 0.02,

𝑐
21

= 0.03, 𝑐
22

= 0.01,

𝑑
11

= 0.07, 𝑑
12

= 0.01,

𝑑
21

= 0.06, 𝑑
22

= 0.02,

𝐿
𝑓

1
= 0.03, 𝐿

𝑓

2
= 0.04,

𝐿
𝑔

1
= 0.05, 𝐿

𝑔

2
= 0.07,

𝑙
111

= 0.02, 𝑙
112

= 0.03,

𝑙
121

= 0.01, 𝑙
122

= 0.04,

𝑙
211

= 0.01, 𝑙
212

= 0.04,

𝑙
221

= 0.03, 𝑙
222

= 0.04,

𝛼 = 𝛾 = 3, 𝛼 = 𝛾 = 1.

(30)

Taking 𝑝 = 3, we can verify that all conditions ofTheorem 12
are satisfied. Hence, (28) has a 4-periodic solution, which is
3-exponentially stable.

By the numerical simulation in Figures 1, 2, and 3 we can
show that our results are plausible and effective.
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