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The problem of global exponential stability for recurrent neural networks with time-varying delay is investigated. By dividing the
time delay interval [0, 7(¢)] into K + 1 dynamical subintervals, a new Lyapunov-Krasovskii functional is introduced; then, a novel
linear-matrix-inequality (LMI-) based delay-dependent exponential stability criterion is derived, which is less conservative than
some previous literatures (Zhang et al., 2005; He et al., 2006; and Wu et al., 2008). An illustrate example is finally provided to show

the effectiveness and the advantage of the proposed result.

1. Introduction

In the past decades, recurrent neural networks (RNNs)
have been extensively investigated because of their applica-
tions, such as combinatorial optimization [1, 2], associative
memories [3-5], signal processing [6], image processing
[7], pattern recognition [8, 9], and so forth. Some of these
applications often require that equilibrium points of the
designed networks be stable. Meanwhile, in the hard imple-
mentation of RNNs, time delay commonly occurrs due to the
finite switching speed of amplifiers or finite speed of signal
processing, and its existence is always an origin of oscillation,
divergence, and instability in neural networks. Therefore,
the stability of RNNs with time delay has received much
attention, and a large amount of results have been proposed
to ensure the asymptotic or exponential stability of delayed
neural networks [10-21].

So far, there is a main means handling the stability of
delayed neural networks: free-weighting matrix approach

[22-26]. Recently, a novel method was proposed for Hopfield
neural networks with constant delay in [27], which brings
more free-weighting matrices by dividing equally the con-
stant time delay interval [0, ] into m subintervals. Further
more, by dividing the time delay interval [0,7(¢)] into
K + 1 dynamical subintervals, Zhang et al. [28] generalize
this method to study global asymptotic stability of RNNs
with time-varying delay. This method mainly utilizes the
information in the time delay interval [0, ()], which brings
more freedom degrees and can reduce conservativeness.
Motivated by above-mentioned discussions, in this paper,
we consider the global exponential stability of RNNs with
time-varying delay. By dividing the time delay interval
[0,7(¢)] into K + 1 dynamical subintervals, we construct
a new Lyapunov-Krasovskii functional (LKF) and derive a
novel sufficient condition, which is presented in term of linear
matrix inequality (LMI). The obtained stability result is less
conservative than some existing results [22, 23, 29]. Finally,



an illustrating example is given to verify the effectiveness and
the advantage of the proposed result.

The rest of this paper is organized as follows. In Section 2,
the problem of exponential stability analysis for RNNs with
time-varying delay is formulated. Section 3 presents our main
results. An illustrating example is provided in Section 4. The
conclusion is stated in Section 5.

Throughout this paper, C = [C;;],,, denotes an n x n real
matrix. CT, |C|, A,,(C), and A,(C) represent the transpose,
the Euclidean norm, the minimum eigenvalue, and the
maximum eigenvalue of matrix C, respectively. C > 0 (C <
0) denotes that C is a positive (negative) definite matrix. I
denotes an identify matrix with compatible dimensions, and
* denotes the symmetric terms in a symmetric matrix.

2. Problem Formulation

Consider the following RNNs with time-varying delay:

z(t)=-Dz(t)+Af (z(1)+Bf (z(t—7()) +],
z(t)=y({) Vte[-1,0],

where z(1) = [z1(:),2,(-),... ,zn(-)]T is the state vector,
F@) = AEO): fol@Os s folzn(DIT denotes the
neuron activation function, and J is a bias value vector. D =
diag(d;) is diagonal matrix with d; > 0,i = 1,2,...,n. A
and B are connection weight matrix and the delay connection
weight matrix, respectively. The initial condition w(t) is a
continuous and differentiable vector-valued function, where
t € [-7,0]. The time delay 7(¢) is a differentiable function that
satisfies: 0 < 7(t) < 7, 7(¢) < p, where 7 > O and y > 0.

To obtain the proposal result, we assume that each f; is
bounded and satisfies

IISMSZ:—, (2)
u-v

where Vu,v € R, u#v. [ and li+ are some constants, i =
1,2,...,n.

Let g;(z;(t)) = fi(z;(1)) =7 z;(t), I, = l;r — I, system (1) is
equivalent to the following form:

z(t)=—(D-ALy)z(t)+ Ag(z () + Bg (z (t — T (1))

+BLyz(t-7(t)+ ],
3)

where L, = diag(l;,1,,...,1,), L, = diag(l},1;,...,1I}), L =
diag(l;,1,,...,1,) =L, — L.
Noting assumption (2), we have

0< 3 -9 <l

u-—-v (4)
Yu,v € R, u#v, l,-=li+—li_ i=12,...,n).
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Assuming system (3) has an equilibrium point z* =
(21,2),...,2, )T Then, let x = (2, (), %,(8), .. - xn(t))T, and
we define x;(t) = z;(t) -z, system (3) is transformed into the
following form:

x(t) ==(D~ALg) x (t) + Ag (x (1))
+Bg (x(t—1(t)+BLyx(t-7(t)),

where g.(x;(t)) = gi(x;(t) + z[) — g;(z]) with g,(0) =
0, g;(x;(t — (1)) = g;(o;(t — (1)) + 2[) — g;(2] ).

In the derivation of the main results, we need the
following lemmas and definitions.

Definition 1 (global exponential stability). System (5) is said
to be globally exponentially stable with convergence rate k, if
there exist constants k > 0 and M > 1, such that

Ix (t)]| < Mge™, Vvt >0, (6)

where ¢ = sup___g_,lx(O)].

Lemma 2. Let x(t) € R" be a vector-valued function with the
first-order continuous-derivative entries. Then, the following
integral inequality holds for matrix X = X' > 0 and any
matrices M,, M,, and two scalar functions h,(t) and h,(t),
where h,(t) > h,(t) = 0

t=hy(t) -
- J x" (s) Xx(s)ds
t=h,(t)

Ml + M, -M] + M,
* -M, ~ M,

7)

<) [ {(t)

+(h, () —hy 0)) ") HRHL (1),

where H = [M;,M,] € R"* and ((t) =

(= hy(6) X7t - hy(O)].

Proof. This proof can be completed in a manner similar to
[30]. O

Lemma 3 (see [31]). Forany two vectorsa, b € R", any matrix
A, any positive definite symmetric matrix B with the same
dimensions, and any two positive constants m, n, the following
inequality holds:

—ma’ Ba + 2na’ Ab < n*b” AT(mB) ™" Ab. (8)

3. Main Results

In this section, we will consider the delay interval [0, 7(¢)],
which is divided into K + 1 dynamical subintervals, namely,
[0, p,T()], ..., [pxT(t), T(t)], where p; < --- < pg. This is to
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say, there is a parameter sequence (p,, . . .
the following conditions:

, Px)> which satisfies

0<pt)<pr(t) < < pgr(@)<T(t),
9
0 < pt(t) < pis ®)

where p; € (0,1), i =1,2,...,K, K is positive integer.

Utilizing the useful information of K+ 1 dynamical subin-
tervals, a novel LKF is constructed, and then a newly LMI-
based delay-dependent sufficient condition can be proposed
to guarantee the global exponential stability of RNNs with
time-varying delay.

Theorem 4. The equilibrium point of system (5) with y < 1

Q,, Z, some positive definite diagonal matrices A, X, X,, Y;
and Y,, and any matrices M;, where i = 1,2,...,K, j =
1,2,...,2K + 4, and K is a positive integer, such that the
following LMI has feasible solution:

[Z W, 0 0 0
-7
* — W 0 0
P1 5
* % 0 <0, (10)
P2 = P1
% % % Wy
-7
% % * *
L 1- Px

is globally exponentially stable with convergence rate k > 0,  where W; = te *"H!, H; = [My,, M,,,] € R™*, i =
if there exists parameter p; satisfying 0 < p; < --- < px < 0,1,2,...,K.
1, some positive definite symmetric matrices P, R;, R,, R;,
(20 21, 00 0 0 21 K42 0 Ziked  ZLK+5 |
¥ %, %, 00 0 0 0 0 0
T A N 0 0 0 0 0
* * * 0 0 0 0 0 0
S L K ZKK+H 0 0 0 0 ’ ()
wooox kO * o XRyLKHD ZKHLK42 0 0 0
* * * * * * ZK+2,K+2 ZK+2,K+3 z"K+2,K+4 ZI<+2,K+5
* * * * * * * 2 K43, K43 0 0
ook kX * * * * ZRraK+e ZKA4KHS
| % * * * * * * * * ZR5.K45

.1 =2kP—P(D - ALy) - (D - AL,)'P

+R, + Ry + (D - ALy) " Z(D - AL,)

K
+ Y Q+LX,L+7e ™ (M] +M,),
i=1

Sy, = 1e N (-M] + M),

1xs2 = PBLy —7° (D - AL,) ZBL,,

S kea = PA+2kA - (D - ALg)'A

~(D- ALy ZA + LX,,

S, x5 = PB—72(D - AL,)" ZB,

3y, = —e *PTQ, (1 - pyu) + e X (—MZT - Mz)
+1e KT (MST + M3) ,

5 =1e T (-Mj + M,),

X35 = —eizkpzTQ2 (1 - pz[/{) + e 2k (—MZ - M4)

+1e 2 (MI + Ms),

Syq=1e (M7 + M),
Tk = —e_ZkPKTQK (1 - px)

+1e 2K (—MZTK - MZK)

+1e kT (MZTKJrl + M2K+1) ,

-2kt T
Ziirke2 = T€ (_M2K+1 + M2K+2)>

ok
Ziioke2 = € . TRI (1 - 14)
2; T
+ LB ZBL, + LY,L
2k T
+7e " (_M2K+2 - M2K+2)

-2kt T
+ Te (M2K+3 + M2K+3)

-2kt T
Zriakes = T€ (_M2K+3 + M2K+4)>

Sxiaxia = LoB A+ 2Ly BT ZA,

Skiakes = T'LoB ZB+ LY,,



—2kt -2kt T
Zreskez =€ Ry+e (_M21<+4 - M2K+4) >

Sxraxea = AA+ATA+R,
+T°ATZA - X, - 2X,,
Sxraxss = AB+1T°ATZB,
—2k
Ziiokes =€ Ry (1-p)
+7°B"ZB-Y, -2Y,,
L, =diag(l;),
L, =diag(l}),
Ly = diag (),

D = diag(d,),
A= [aij]nxn’
B= [b"j]nxn'

(12)

Proof. Construct the following Lyapunov-Krasovskii func-
tional candidate:

Vi(x(8)) = V) (x (1) + V, (x (1) + V5 (x (1))

(13)
+Vy (x () + Vs (x (1)),
where
Vy (x () = X7 (t) Px (1),
2Kt x50 _
V, (x () =2e™ Y ), J g, (s)ds,
i=1 0
t
Vs (x (1) = L_ o e xT (s) Ryx (s) ds
! 2ks—=T —
+ J;T(t) eg (s)R,g (s)ds (14)

t
+ J e xT (s) Ryx (s)ds,
-7

t
e xT () Qux (s) ds,

K
ASOEY|

i=1 Jt=p;T(t)

V. ( _ ot 2ks . T .
s(x@®) =1 +ee x (s)Zx(s)ds,

-1 Jt

where P = PT > 0, A = diag(A;) > 0,R, = Rl > 0, R, =
RI>0R =Rl >0,Q =Q >0,Z=2">0,and
i=0,1,2,...,K.
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Let the parameters p, = 0, pg,; = 1; calculating the time
derivatives V; (i = 1,2, 3,4, 5) along the trajectories of system
(5) yields

V, (x () = 2ke®™ x" (1) Px (t) + 2e*x" (t) Px (1),

L x;(t)
V) =4k YA [ g 0 ds
i=1

0
+2eG" (x (1) Ax (1),

Vs (x (1) = & [x" () Ryx (1)
—e O (T (1) Ryx (£ — T (1))
x(1-1())
+3" (X (1) Ryg (x (1))
—e G (x (1 -1 (1)) Ryg (x (t = 7 (1))
x (1 -1 (1) +x" (t) Ryx (1)

-G (x (t - 1) Ryg (x (t - 1))],
K
Vi (x () =Y & [x" () Qux (t) = e kT (£ - pr (1))
i=1

xQix (t = pr (1) (1 - p (1)) ] ]

Vi (x () = 25T () Zx (1) - T Jt %7 (s) Zx (s) ds.
t—T

(15)
It is clear that the following inequality is true:
X' () Zx () < [~ (D - ALy) x (£) + Ag (x (1))
+Bg (x(t -7 (1)) + Bx (t - (1)) »

x Z[-(D-ALy) x () + Ag (x (1))

+Bg (x(t -7 () +Bx(t -7 (1)],

According to (4), for some diagonal matrices X, > 0, X, >
0,Y,>0,Y, >0, we have

7 (x (1) X,g(x () < x () LX,Lx(t),
g (x(0) X9 (x (1) < x" (t) LX, G (x (1)),
g (x(t—7(®))Y,g(x(t-7(1)
(17)
<x' (t-1(@)LY,Lx(t — T (1)),
G (x(t-T(1)Y,g (x(t -7 ()

<x' (t-T())LY,g (x (t -7 (t)).
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Using Lemma 2, we have

t—p;7(t) T
- J x (s)Zx(s)ds
t=pi 7(t)

T
My, + Myips

T
<7t My + Miip
- * _M2Ti+2 = Myiss

] G (1)
+ (P —p) TV () H] Z7 HE (8)

t—1(t)
- J £ (s) Zx (s) ds
t—T

T

T
<T@ Mgy + Moges —Mogys + Mogia
= SK+1 * T

:| CK+1 (t) >
(18)

_M2K+4 - M2K+4

where H, = [My, My,] € R ()

(= pr() %7 (= p 7O L (0)
K- () *"(t-1)], i=0,1,...,K.
From (15)-(17), and using (18), we finally get

V(x (@) <, 19)

where Q = {T(£)Z{(t) + Qy + Q, + -+ + Qy, T is defined in
(10).

Q; = (P — pi Tze_ZkTCiT (1) HiTZ_lHiCi (t),

i=0,1,...,K,
¢ ()= [XT (t - piT (t)) x" (t ~ PjT (t))]T,
j=0,1,..., K+ 1. (20)
()= [x" @), x" (t-pyr(®),....x" (t = pr(t),

L t-t@),x (t-1),

7 (0.7 (xt-7®))] .

Obviously, if O < 0, it implies V(x(t)) < 0 for any {(t) #0.
And

n x,-()
V (x(0)) :xT(O)Px(O)+ZZ/1iJ ’ g, (s)ds
0

i=1

0
+ J e x" (s) Ryx (s)ds
—7(0)

+ JO eg" (x (s)) R,g (x (s)) ds
-7(0)
(21)
0
+ J e x" (s) Ryx (s)ds

K -0
2]
i=1 J-piT(0)

0 (0
+T J J %7 (s) Zx (s) ds.
-7 JO

e xT (s) Q;x (s)ds

5
On the other hand, the following inequality holds:
£ ()% () < [~ (D= ALg) x(s) + Ag (x (5))
+Bg (x (t—7(5)) + Bx (t —7(s))]" o

x[=(D-ALy)x(s) + Ag(x(s))
+Bg (x (t —7(s))) + Bx (t — 7(s))] -

Combining Lemma 3, we have
2 (5)x(s) < 4[Ay ((D- ALy)" (D - ALy))
+ Ay (L) Ay (ATA)

+Xar (L) Ao (B'B)+Aus (LoB'BLo ) | 4]
(23)

Thus,
V (x(0) = Ay (P) |9)* + (Aag (£7) + Ay (ATA)) )

+ At (R) T[] + As (Ry) Mg (17) 7]
K
+ Ay (Rs) T"‘/’”2 + Z Aur (Qi) Pi'f"‘/’”2

#2003 (2) [Ma (D= ALy) (D - AL))
+ 2y (L) Ay (ATA)
+ Ay (L) Ay, (B"B)

+Anm (LOBTBLO) ] “‘15" >
(24)

where

A=Ay (P)+ Ay (L) + Ap (ATA)) + 4y (R)) T

+ Aag (R) Ay (L) 7+ Ay (R T

K
+ Z A (Q) PiT||¢||2
i=1

#2003 (2) [ (D = ALy)" (D - ALy))

+ A (L2) Ay (ATA)
+Aps (L) Aps (B'B) + Ay (LoB"BL,) |-
(25)
On the other hand, we have
V(x(@t) =M, (P9 (26)

Therefore,

| A
||x<t)||se"J LA @7)



Thus, according to Definition 1, we can conclude that the
equilibrium point x* of system (5) is globally exponentially
stable. This completes the proof. O

Remark 5. Differential from the results in [22, 23, 29], we
divide the time delay interval [0, 7(t)] into K + 1 dynamical
subintervals, and a novel Lyapunov-Krasovskii functional is
introduced. This brings more degrees of freedom to ensure
the global exponential stability. Therefore, Theorem 4 is less
conservative than some previous results.

Remark 6. In Theorem 4, by setting R, = R, = Q; =0 (i =
1,2,...,K), similar to the proof of Theorem 4, we can derive
a criterion to guarantee the global exponential stability of
RNNs with time-varying delay when 7(t) is unknown or 7(t)
is not differentiable.

4. Illustrating Example

In this section, an illustrating example is given to verify the
effectiveness and advantage of the criteria proposed in this

paper.

Example 7. Consider system (5) with the following parame-

ters:
2 0
b= [0 3 5] ?
-1 0.5
A= [0.5 —1]’
(28)
-0.5 0.5
B= [ 0.5 0.5]’
10
£ o of

At first, we suppose that the time delay interval [0, 7(t)]
is divided into 2 (K = 1) subintervals, and p = 0.1. While
the upper bound 7 = 1, the exponential convergence rates
for various y obtained from Theorem 4 and those in [22, 23,
29] are listed in Table 1. In addition, while the exponential
convergence rate of k = 0.8, the upper bounds of 7 for various
p from Theorem 4 and those in [22, 23, 29] are listed in
Table 2.

Thus, from Tables 1 and 2, we can say that, the result
in this paper is much effective and less conservative than
those in [22, 23, 29]. Figure 1 shows the state response of
Example 7 with constant delay 7 = 1, when the initial value is
[0.8,-0.6]".

5. Conclusion

In this paper, we consider the global exponential stability
for RNNs with time-varying delay. By dividing the time
delay interval [0, 7(¢)] into K + 1 dynamical subintervals, a
novel Lyapunov-Krasovskii functional is introduced. A less
conservative LMI-based delay-dependent stability criterion is
derived based on Lyapunov stability theory. Furthermore, an
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State

—04 . ]

—-0.6 L L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10
Time (s)
— x
X2

FIGURE I: State response curves with 7 = 1 and p = 0 for Example 7.

TaBLE 1: Allowable exponential convergence rate k for variable g and
T=1

2 0 0.5 0.9 Unsure
[22] 0.25 Fail Fail Fail

[23] 115 0.7538 0.6106 0.3391
[29] 115 0.8643 0.8344 0.8169
Theorem 4 (p = 1) 115 0.9105 0.9105 0.8608

TaBLE 2: Allowable upper bound of 7 for variable y and k = 0.8.

U 0.5 0.8 Unsure
[22] Fail Fail Fail

(23] 1.2606 0.9442 0.8310
[29] 1.2787 1.0819 1.0366
Theorem 4 (p = 1) 1.3022 1.1646 1.0817

illustrating example is given to show the effectiveness of the
proposed result.
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