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The idea of approximation by monomials together with the collocation technique over a uniform mesh for solving state-space
analysis and optimal control problems (OCPs) has been proposed in this paper. After imposing the Pontryagins maximum principle
to the main OCPs, the problems reduce to a linear or nonlinear boundary value problem. In the linear case we propose a monomial
collocation matrix approach, while in the nonlinear case, the general collocation method has been applied. We also show the
efficiency of the operational matrices of differentiation with respect to the operational matrices of integration in our numerical
examples. These matrices of integration are related to the Bessel, Walsh, Triangular, Laguerre, and Hermite functions.

1. Introduction

In the last four decades, numerical methods which are
based on the operational matrices of integration (especially
for orthogonal polynomials and functions) have received
considerable attention for dealing with a huge size of applied
mathematics problems such as 𝑠𝑡𝑎𝑡𝑒-space analysis and opti-
mal control. The key idea of these methods is based on the
integral expression

∫

𝑡

0

Φ (𝜏) 𝑑𝜏 ≈ Φ (𝑡) 𝑃, (1)

where Φ(𝑡) = [Φ
1
(𝑡), Φ
2
(𝑡), . . . , Φ

𝑁
(𝑡)] is an arbitrary basis

vector and 𝑃 is a (𝑁 + 1) × (𝑁 + 1) constant matrix,
called the operational matrix of integration. The matrix 𝑃

has already been determined for many types of orthogonal
(or nonorthogonal) bases such as Walsh functions [1–3],
block-pulse functions [4], Laguerre polynomials [5], Cheby-
shev polynomials [6], Legendre polynomials [7], Hermite
polynomials [8], Fourier series [9], Bernstein polynomials
[10], and Bessel functions [11]. As a primary research work
which was based on the operational matrices of integration,
one can refer to the work of Corrington [1]. In [1], the

author proposed a method of solving nonlinear differential
and integral equations using a set of Walsh functions as the
basis. His method is aimed at obtaining piecewise constant
solutions of dynamic equations and requires previously pre-
pared tables of coefficients for integrating Walsh functions.
To alleviate the need for such tables, Chen and Hsiao [2, 3]
introduced an operational matrix to perform integration of
Walsh functions. This operational matrix approach has been
applied to various problems such as time-domain analysis
and synthesis of linear systems, and piecewise constant-
feedback-gain determination for optimal control of linear
systems and for inverting irrational Laplace transforms.

On the other hand, since the beginning of 1994, the
Bernoulli, Chebyshev, Laguerre, Bernstein, Legendre, Taylor,
Hermite, and Bessel matrix methods have been used in
the works [12–24] to solve high-order linear and nonlinear
differential (including hyperbolic partial differential equa-
tions) Fredholm Volterra integrodifferential difference delay
equations and their systems. The main characteristic of
these approaches is based on the operational matrices of
differentiation instead of integration. The best advantage of
these techniques with respect to the integation methods is
that, in the fundamental matrix relations, there is not any
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approximation symbol, meanwhile in the integration forms
such as (1) the approximation symbol could be seen obviously.
In other words

Φ

(𝜏) = Φ (𝜏) 𝐵, (2)

where 𝐵 is the operational matrix of differentiation for any
selected basis such as the previously mentioned polynomials,
functions, and truncated series.The readers can see that there
is no approximation symbol in (2), meanwhile this can be
seen in (1) by using operational matrices of integration. For
justifying this expression, one can refer to this subject that
after differentiating an 𝑁th degree polynomial we usually
reach to a polynomial which has less than𝑁th degree. How-
ever, in the integration processes the degree of polynomials
would be increased.

In this paper, we generalize a new collocation matrix
method that was applied for solving a huge size of applied
mathematics models (see for instance [16] and the references
therein), to several special classes of systems of ordinary
differential equations (ODEs). Two important classes of such
systems of ODEs are

(i) State space analysis,

(ii) Hamiltonian system,

which are the necessary (and also are sufficient in several
special cases) conditions for optimality of the solutions
of OCPs, originate from the PMP, and have considerable
importance in optimal control and calculus of variation.

We again emphasized that the methods that are based on
the operational matrices of differentiation are more accurate
and effective with regard to the integration ones.We illustrate
this fact through several examples for dealing with the
previously mentioned systems in the section of numerical
examples. It should be noted that one of the best tools
for the integration approaches is using high accurate Gauss
quadrature rules such as the method of [25, 26]. However,
moreCPU times are required for using such quadrature rules,
and also the matrix coefficient associated to these methods is
ill-conditioned usually and should be preconditioned.

The remainder of this paper is organized as follows.
In Section 2, the considered problems such as state-space
analysis andHamiltonian system are introduced. In Section 3,
the fundamentalmatrix relations together with themethod of
obtaining approximate solutions are described. In Section 4,
several numerical examples are provided for confirming high
accuracy of the proposed method.The last Section is devoted
to the conclusions.

2. Problems Statement

In this section two types of problems are considered. In the
first subsection, we show that how the Hamiltonian systems
can be obtained in both linear and nonlinear forms. In the
second subsection, we introduce a general form of state-space
analysis problems.

2.1. Hamiltonian Systems

2.1.1. Linear Quadratic Optimal Control Problems. In this
part, we consider the following linear optimal control prob-
lem (OCP):

min 𝐽 =

1

2

∫

𝑡𝑓

𝑡0

(𝑥
𝑇
𝑃𝑥 + 2𝑥

𝑇
𝑄𝑢 + 𝑢

𝑇
𝑅𝑢) 𝑑𝑡

s.t. �̇� = 𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑢 (𝑡) , 𝑥 (𝑡
0
) = 𝑥
0
,

(3)

where 𝑥 ∈ R𝑛, 𝑢 ∈ R𝑚, 𝐴(⋅) ∈ R𝑛×𝑛 and 𝐵(⋅) ∈ 𝑅
𝑚×𝑛.

The control 𝑢(𝑡) is an admissible control if it is piecewise
continuous in 𝑡 for 𝑡 ∈ [𝑡

0
, 𝑡
𝑓
]. Its values belong to a

given closed subset 𝑈 of R𝑚. The input 𝑢(𝑡) is derived by
minimizing the quadratic performance index 𝐽, where 𝑃 ∈

R𝑛×𝑛 is positive semidefinite matrix and 𝑅 ∈ R𝑚×𝑚 is a
positive definite matrix. We consider Hamiltonian for system
(3) as

𝐻(𝑥, 𝑢, 𝜆, 𝑡) =

1

2

(𝑥
𝑇
𝑃𝑥 + 2𝑥

𝑇
𝑄𝑢 + 𝑢

𝑇
𝑅𝑢)

+ 𝜆
𝑇
(𝐴 (𝑡) 𝑥 + 𝐵 (𝑡) 𝑢) ,

(4)

where 𝜆 ∈ R𝑛 is the costate vector.
According to the Pontryagin’s maximum principle, we

have [27]

̇
𝜆 = −

𝜕𝐻

𝜕𝑥

= −𝑃𝑥 − 𝑄𝑢 − 𝐴(𝑡)
𝑇
𝜆,

𝜕𝐻

𝜕𝑢

= 𝑄
𝑇
𝑥 + 𝑅𝑢 + 𝐵(𝑡)

𝑇
𝜆 = 0.

(5)

The optimal control is computed by [27]

𝑢
∗
= −𝑅
−1
𝑄
𝑇
𝑥 − 𝑅
−1
𝐵(𝑡)
𝑇
𝜆, (6)

where 𝜆 and 𝑥 are the solution of the Hamiltonian system:

�̇� = [𝐴 (𝑡) − 𝐵 (𝑡) 𝑅
−1
𝑄
𝑇
] 𝑥 − 𝐵 (𝑡) 𝑅

−1
𝐵(𝑡)
𝑇
𝜆,

̇
𝜆 = [−𝑃 + 𝑄𝑅

−1
𝑄
𝑇
] 𝑥 + [𝑄𝑅

−1
𝐵(𝑡)
𝑇
− 𝐴(𝑡)

𝑇
] 𝜆,

𝑥 (𝑡
0
) = 𝑥
0
, 𝜆 (𝑡

𝑓
) = 0.

(7)

2.1.2. Nonlinear Quadratic Optimal Control Problems. Con-
sider the nonlinear dynamical system

�̇� (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) + 𝑔 (𝑡, 𝑥 (𝑡)) 𝑢 (𝑡) , 𝑡 ∈ [𝑡
0
, 𝑡
𝑓
] ,

𝑥 (𝑡
0
) = 𝑥
0
,

(8)

with 𝑥(𝑡) ∈ R𝑛 denoting the state variable, 𝑢(𝑡) ∈ R𝑚

the control variable, and 𝑥
0
is the given initial state at 𝑡

0
.

Moreover, 𝑓(𝑡, 𝑥(𝑡)) ∈ R𝑛 and 𝑔(𝑡, 𝑥(𝑡)) ∈ R𝑛×𝑚 are two
continuously differentiable functions in all arguments. Our
aim is to minimize the quadratic objective functional

𝐽 [𝑥, 𝑢] =

1

2

∫

𝑡𝑓

𝑡0

(𝑥
𝑇
(𝑡) 𝑄𝑥 (𝑡) + 𝑢

𝑇
(𝑡) 𝑅𝑢 (𝑡)) 𝑑𝑡, (9)
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subject to the nonlinear system (8), for 𝑄 ∈ R𝑛×𝑛, 𝑅 ∈

R𝑚×𝑚 positive semidefinite and positive definite matrices,
respectively. Since the performance index (9) is convex, the
following extreme necessary conditions are also sufficient for
optimality [28]:

�̇� = 𝑓 (𝑡, 𝑥) + 𝑔 (𝑡, 𝑥) 𝑢
∗
,

̇
𝜆 = −𝐻

𝑥
(𝑥, 𝑢
∗
, 𝜆) ,

𝑢
∗
= arg min

𝑢

𝐻(𝑥, 𝑢, 𝜆) , 𝑥 (𝑡
0
) = 𝑥
0
, 𝜆 (𝑡

𝑓
) = 0,

(10)

where 𝐻(𝑥, 𝑢, 𝜆) = (1/2)[𝑥
𝑇
𝑄𝑥 + 𝑢

𝑇
𝑅𝑢] + 𝜆

𝑇
[𝑓(𝑡, 𝑥) +

𝑔(𝑡, 𝑥)𝑢] is referred to theHamiltonian. Equivalently, (10) can
be written in the form of

�̇� = 𝑓 (𝑡, 𝑥) + 𝑔 (𝑡, 𝑥) [−𝑅
−1
𝑔
𝑇
(𝑡, 𝑥) 𝜆]

̇
𝜆 = − (𝑄𝑥 + (

𝜕𝑓 (𝑡, 𝑥)

𝜕𝑥

)

𝑇

𝜆

+

𝑛

∑

𝑖=1

𝜆
𝑖
[−R−1𝑔𝑇 (𝑡, 𝑥) 𝜆]

𝑇 𝜕𝑔
𝑖
(𝑡, 𝑥)

𝜕𝑥

)

𝑥 (𝑡
0
) = 𝑥
0
, 𝜆 (𝑡

𝑓
) = 0,

(11)

where 𝜆(𝑡) ∈ R𝑛 is the costate vector with the 𝑖th component
𝜆
𝑖
(𝑡), 𝑖 = 1, . . . , 𝑛 and 𝑔(𝑡, 𝑥) = [𝑔

1
(𝑡, 𝑥), . . . , 𝑔

𝑛
(𝑡, 𝑥)]

𝑇 with
𝑔
𝑖
(𝑡, 𝑥) ∈ R𝑚, 𝑖 = 1, . . . , 𝑛.
Also the optimal control law is obtained by

𝑢
∗
= −𝑅
−1
𝑔
𝑇
(𝑡, 𝑥) 𝜆. (12)

For solving such a two-point boundary value problem
(TPBVP) in (11), we apply a similar collocation method that
was proposed in [29].

2.2. State Space Analysis Problems. In this part, we consider
the following state space analysis problem:

�̇� (𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑢 (𝑡) , 𝑥 (0) = 𝑥
0
, (13)

where 𝐴(𝑡) ∈ R𝑛×𝑛, 𝐵(𝑡) ∈ R𝑛, and 𝑢(𝑡) ∈ R are known,
meanwhile 𝑥(𝑡) ∈ R𝑛 is unknown. The goal is to obtain
the approximation of 𝑥(𝑡) in (13). The previously mentioned
system (13) is similar to Hamiltonian system (7) and the
scheme of their solutions is the same.

Remark 1. We recall that the main goal of this paper is to
approximate the solution of the systems (7), (11), and (13)
by applying a new matrix method which is based on the
operational matrix of differentiation and also the uniform
collocation scheme in the parts of Hamiltonian systems and
state space analysis problems.

3. Fundamental Matrix Relations and Method
of the Solution

In this section, by using the collocation points and the matrix
relations between the monomials {1, 𝑡, 𝑡

2
, . . . , 𝑡

𝑁
} and their

derivatives, we will find the approximate solution of the
system (7) expressed in the truncated monomial series form
(assuming that 𝑥(𝑡) and 𝜆(𝑡) ∈ R and also 𝐴(𝑡) together with
𝐵(𝑡) is independent of time 𝑡, that is, 𝐴 = 𝐴(𝑡) and 𝐵 = 𝐵(𝑡))

𝑥 (𝑡) ≈ 𝑥
𝑁
(𝑡) =

𝑁

∑

𝑛=0

𝑎
1,𝑛

𝑡
𝑛
,

𝜆 (𝑡) ≈ 𝜆
𝑁
(𝑡) =

𝑁

∑

𝑛=0

𝑎
2,𝑛

𝑡
𝑛
,

(14)

so that 𝑎
1,𝑛

and 𝑎
2,𝑛
; 𝑛 = 0, 1, 2, . . . , 𝑁 are the unknown

coefficients.
Let us consider the desired solutions 𝑥(𝑡) and 𝜆(𝑡), of (7)

defined by the truncated monomial series (14). We can write
the approximate solutions, which are given in relation (14) in
the matrix form

𝑥
𝑁
(𝑡) = X (𝑡)A

1
, 𝜆

𝑁
(𝑡) = X (𝑡)A

2
, (15)

where X(𝑡) = [1 𝑡 ⋅ ⋅ ⋅ 𝑡
𝑁
] and A

𝑖
= [𝑎
𝑖,0

𝑎
𝑖,1

⋅ ⋅ ⋅ 𝑎
𝑖,𝑁

]
𝑇, 𝑖 =

1, 2.
The matrix form of the relation between the matrix X(𝑡)

and its 𝑘th derivative X(𝑘)(𝑡) is

X(𝑘) (𝑡) = X (𝑡) (B𝑇)
𝑘 (16)

so that

B𝑇 =
[

[

[

[

[

[

[

0 1 0 ⋅ ⋅ ⋅ 0

0 0 2 ⋅ ⋅ ⋅ 0

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 𝑁

0 0 0 ⋅ ⋅ ⋅ 0

]

]

]

]

]

]

]

,

(B𝑇)
0

= [I]
(𝑁+1)×(𝑁+1)

is the identity matrix.

(17)

By using the relations (15) and (16), we have the following
relations:

𝑥
(𝑖)

𝑁
(𝑡) = X (𝑡) (B𝑇)

𝑖

A
1
,

𝜆
(𝑖)

𝑁
(𝑡) = X (𝑡) (B𝑇)

𝑖

A
2
, 𝑖 = 0, 1.

(18)

Thus, we can express the matrices y(𝑡) and y(1)(𝑡) as follows:

y(𝑖)
𝑁

(𝑡) = X (𝑡) (B)
𝑖

A, 𝑖 = 0, 1, (19)

where

y(𝑖)
𝑁

(𝑡) =
[

[

𝑥
(𝑖)

𝑁
(𝑡)

𝜆
(𝑖)

𝑁
(𝑡)

]

]

, A = [

A
1

A
2

] ,

X (𝑡) = [

X (𝑡) 0

0 X (𝑡)

] , B = [

B𝑇 0

0 B𝑇
] .

(20)

Now, we can restate the system (7) in the matrix form

y(1)
𝑁

(𝑡) − 𝑀y
𝑁
(𝑡) = 𝑂, (21)
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where

y(1)
𝑁

(𝑡) =
[

[

𝑥
(1)

𝑁
(𝑡)

𝜆
(1)

𝑁
(𝑡)

]

]

,

M = [

𝐴 − 𝐵𝑅
−1
𝑄
𝑇

−𝐵𝑅
−1
𝐵
𝑇

−𝑃 + 𝑄𝑅
−1
𝑄
𝑇

𝑄𝑅
−1
𝐵
𝑇
− 𝐴
𝑇
] ,

y
𝑁
(𝑡) = [

𝑥
𝑁
(𝑡)

𝜆
𝑁
(𝑡)

] , O = [

0

0
] .

(22)

Applying the following collocation points in (21):

𝑡
𝑠
= 𝑡
0
+

𝑡
𝑓
− 𝑡
0

𝑁

𝑠, 𝑠 = 0, 1, . . . , 𝑁 (23)

yields to𝑁 + 1 equations as follows:

y(1)
𝑁

(𝑡
𝑠
) − 𝑀y

𝑁
(𝑡
𝑠
) = 𝑂, 𝑠 = 0, 1, . . . , 𝑁. (24)

All of the these equations can be written in the following
matrix form:

Y(1) −MY = 𝑂, (25)

where

Y(1) =

[

[

[

[

[

[

[

[

y(1)
𝑁

(𝑡
0
)

y(1)
𝑁

(𝑡
1
)

...
y(1)
𝑁

(𝑡
𝑁
)

]

]

]

]

]

]

]

]

, M = 𝐼 ⊗ 𝑀 = kron (𝐼,𝑀) ,

Y =

[

[

[

[

[

[

[

y
𝑁
(𝑡
0
)

y
𝑁
(𝑡
1
)

...
y
𝑁
(𝑡
𝑁
)

]

]

]

]

]

]

]

,

(26)

where ⊗ denotes the Kronecker product and 𝐼 is the identity
matrix of dimension𝑁 + 1.

With the aid of relation (19) and the collocation points
(23), we gain

y
𝑁
(𝑡
𝑠
) = X (𝑡

𝑠
)A, y(1)

𝑁
(𝑡
𝑠
) = X (𝑡

𝑠
)BA, 𝑠 = 0, 1, . . . , 𝑁,

(27)

which can be written as

Y = XA, Y(1) = XBA, (28)

where

X =

[

[

[

[

[

[

X (𝑡
0
)

X (𝑡
1
)

...
X (𝑡
𝑁
)

]

]

]

]

]

]

, X (𝑡
𝑠
) = [

X (𝑡
𝑠
) 0

0 X (𝑡
𝑠
)

] ,

𝑠 = 0, 1, . . . , 𝑁.

(29)

If the relation (28) is substituted into (25), the fundamental
matrix equation is obtained as

{XB −MX}A = O. (30)

Thus, the fundamental matrix equation (30) corresponding
to (7) can be written in the form

WA = O or [W;O] , (31)

which corresponds to a linear system of 2(𝑁 + 1) algebraic
equations in 2(𝑁+1) the unknownmonomial coefficients so
that

W = {XB −MX} = [𝑤
𝑝,𝑞

] , 𝑝, 𝑞 = 1, 2, . . . , 2 (𝑁 + 1) .

(32)

By the aid of the relation (19), the matrix form for the
boundary conditions which are given in (7) can be written
as

UA = [R] , or [U;R] . (33)

Finally, by replacing the rows of the matrices [U;R] by
the last rows of the matrices [W;O], we obtain the new
augmented matrix

̃WA=
̃O. (34)

The unknown monomials coefficients which exist in A
are determined by solving this linear system, and hence
𝑎
𝑖,0
, 𝑎
𝑖,1
, . . . , 𝑎

𝑖,𝑁
, (𝑖 = 1, 2) are substituted in (14). Therefore,

we find the approximated solutions

𝑥
𝑁
(𝑡) =

𝑁

∑

𝑛=0

𝑎
1,𝑛

𝑡
𝑛
, 𝜆

𝑁
(𝑡) =

𝑁

∑

𝑛=0

𝑎
2,𝑛

𝑡
𝑛
. (35)

We can easily check the accuracy of themethod. Since the
truncatedmonomial series (14) are the approximate solutions
of (7), when the functions 𝑥

𝑁
(𝑡), 𝜆
𝑁
(𝑡) and their derivatives

are substituted in (7), the resulting equation must be satisfied
approximately; that is, for 𝑡 = 𝑡

𝑞
∈ [𝑡
0
, 𝑡
𝑓
], 𝑞 = 0, 1, 2, . . .

𝐸
1
(𝑡
𝑞
) =






𝑥
(1)

(𝑡
𝑞
) − [𝐴 (𝑡) − 𝐵 (𝑡) 𝑅

−1
𝑄
𝑇
] 𝑥 (𝑡
𝑞
)

+𝐵 (𝑡) 𝑅
−1
𝐵(𝑡)
𝑇
𝜆 (𝑡
𝑞
)






≅ 0,

𝐸
2
(𝑡
𝑞
) =






𝜆
(1)

(𝑡
𝑞
) − [−𝑃 + 𝑄𝑅

−1
𝑄
𝑇
] 𝑥 (𝑡
𝑞
)

− [𝑄𝑅
−1
𝐵(𝑡)
𝑇
− 𝐴(𝑡)

𝑇
] 𝜆 (𝑡
𝑞
)






≅ 0,

(36)

and 𝐸
𝑖,𝑁

(𝑡
𝑞
) ≤ 10

−𝑘𝑞 , 𝑖 = 1, 2 (𝑘
𝑞
positive integer).

If max 10
−𝑘𝑞

= 10
−𝑘 (𝑘 positive integer) is prescribed,

then the truncation limit 𝑁 is increased until the difference
𝐸
𝑖,𝑁

(𝑡
𝑞
) at each of the points becomes smaller than the

prescribed 10
−𝑘, see [24].

Remark 2. We must recall that a similar approach can be
applied for the state space analysis problem (13). Moreover,
as we say before, for solving a general nonlinear system of
ODEs such as (11), we apply a generalization of the collocation
method that was proposed in [29].
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4. Numerical Examples

In this section, several numerical examples are given to
illustrate the accuracy and effectiveness of the proposed
method. All calculations are designed in MAPLE 13 and run
on a Pentium 4 PC Laptop with 2GHz of CPU and 2GB of
RAM. In this regard, in tables and figures, we report the abso-
lute error functions associated to the trajectory and control
variables and also the approximated values of performance
index. In the first example, we provide an OCP that was
recently considered by a new method (which is based on
the operational matrix of integration of Triangular functions)
[30] and reach to more accurate results. Also, in the second
example, we consider another OCP (or Hamiltonian system)
with time variant dynamical system, in which our results
have more accuracy and credit with regard to methods [30,
31]. Moreover, we consider a nonlinear OCP as our third
numerical illustration. In the fourth example, we provide a
state space analysis problem together with a full comparison
with the methods that are based on the operational matrices
of integration such as Bessel [11] and Laguerre [32].

Example 3 (see [30] linear Hamiltonian system). Consider
the problem of minimizing

𝐽 =

1

2

∫

1

0

(2𝑥
2
(𝑡) + 𝑢

2
(𝑡)) 𝑑𝑡, (37)

subject to

�̇� (𝑡) = −

1

2

𝑥 (𝑡) + 𝑢 (𝑡) , 𝑥 (0) = 1. (38)

The purpose is to find the optimal control 𝑢(𝑡) which mini-
mizes (37) subject to (38).The Optimal value of performance
index for this problem is 𝐽

∗
= 0.463566653481105 and also

exact solutions have been given in [30] as

𝑥
∗
(𝑡) =

1

2 + 𝑒
−3

(2𝑒
−(3𝑡/2)

+ 𝑒
−3+(3𝑡/2)

) ,

𝑢
∗
(𝑡) =

1

2 + 𝑒
−3

(−𝑒
−(3𝑡/2)

+ 𝑒
−3+(3𝑡/2)

) .

(39)

Since the objective function of this OCP is convex, therefore
the following necessary conditions (i.e., linear Hamiltonian
system) for optimality are also sufficient:

�̇� (𝑡) = −

1

2

𝑥 (𝑡) − 𝜆 (𝑡) ,

̇
𝜆 (𝑡) = −2𝑥 (𝑡) +

1

2

𝜆 (𝑡) ,

𝑥 (0) = 1, 𝜆 (1) = 0.

(40)

Hence, we need to solve the previous system of differential
equations such that the obtained numerical solution is the
optimal solution of problem (37)-(38). It should be noted that
according to (6) the optimal control is computed by 𝑢

∗
(𝑡) =

−𝜆(𝑡), where 𝜆(𝑡) is the solution of the previous system.

We solve this problem by using our proposed method in
the cases of 𝑁 = 4, 5, 6, 7, and 8. The approximated solutions
corresponding to these values of𝑁 are provided below

𝑥
4
(𝑡) = 0.130043𝑡

4
− 0.4921311𝑡

3
+ 1.1171671𝑡

2

− 1.4266579𝑡 + 1.0,

𝑢
4
(𝑡) = − 0.1020785𝑡

4
+ 0.5247564𝑡

3
− 1.0326910𝑡

2

+ 1.5366710𝑡 − 0.9266579,

𝑥
5
(𝑡) = − 0.0317935𝑡

5
+ 0.1886526𝑡

4
− 0.5272247𝑡

3

+ 1.123919𝑡
2
− 1.427164𝑡 + 1.0,

𝑢
5
(𝑡) = 0.04038275𝑡

5
− 0.1772002𝑡

4
+ 0.5697892𝑡

3

− 1.042226𝑡
2
+ 1.536418𝑡 − 0.9271638,

𝑥
6
(𝑡) = 0.009145352𝑡

6
− 0.05359579𝑡

5
+ 0.2075571𝑡

4

− 0.5343086𝑡
3
+ 1.124911𝑡

2
− 1.4271300𝑡 + 1.0,

𝑢
6
(𝑡) = − 0.006951979𝑡

6
+ 0.05688585𝑡

5
− 0.1914114𝑡

4

+ 0.5750789𝑡
3
− 1.042907𝑡

2
+ 1.536435𝑡

− 0.9271298,

𝑥
7
(𝑡) = − 0.001606958𝑡

7
+ 0.01380419𝑡

6
− 0.05883564𝑡

5

+ 0.210416𝑡
4
− 0.5350703𝑡

3
+ 1.124991𝑡

2

− 1.427133𝑡 + 1.0,

𝑢
7
(𝑡) = 0.002084015𝑡

7
− 0.01300909𝑡

6
+ 0.06371979𝑡

5

− 0.1951577𝑡
4
+ 0.5760817𝑡

3
− 1.043019𝑡

2

+ 1.536433𝑡 − 0.9271335,

𝑥
8
(𝑡) = 0.0003561777𝑡

8
− 0.002824592𝑡

7
+ 0.01548942𝑡

6

− 0.06004358𝑡
5
+ 0.2108896𝑡

4
− 0.5351673𝑡

3

+ 1.124999𝑡
2
− 1.427133𝑡 + 1.0,

𝑢
8
(𝑡) = − 0.0002657152𝑡

8
+ 0.00299044𝑡

7
− 0.01426032𝑡

6

+ 0.06461366𝑡
5
− 0.1955065𝑡

4
+ 0.5761526𝑡

3

− 1.043024𝑡
2
+ 1.536433𝑡 − 0.9271333.

(41)

The associated performance indexes for the selected values
of 𝑁 are 𝐽

4
= 0.463550469, 𝐽

5
= 0.4635575131, 𝐽

6
=

0.4635665731, 𝐽
7

= 0.463566618, and 𝐽
8

= 0.4635666532.
We provide the 𝑒

𝑥𝑁
= max

0≤𝑡≤1
|𝑥
𝑁
(𝑡) −𝑥

∗
(𝑡)|, 𝑒
𝐽𝑁

= |𝐽
𝑁
−𝐽
∗
|

associated to our proposed method (PM) and a new method
that is based on the operational matrix of integration of
Triangular functions [30] for different values of 𝑁 in Table 1.
It can be seen from this table that our obtained results for such



6 Abstract and Applied Analysis

considered values of𝑁 (i.e., 4, 5, 6, 7, and 8) are the same and
equal to the obtained results of [30] for higher values of 𝑁
such as 4, 8, 16, 32, and 64 in computation of 𝑒

𝑥𝑁
. Moreover,

our results corresponding to the 𝑒
𝐽𝑁

are more accurate with
regard to the method of [30] even by choosing lower values
of𝑁.

Example 4 (see [30, 31] linearHamiltonian system). Consider
the linear time-varying system

�̇� (𝑡) = 𝑡𝑥 (𝑡) + 𝑢 (𝑡) , (42)

with the cost functional

𝐽 =

1

2

∫

1

0

(𝑥
2
(𝑡) + 𝑢

2
(𝑡)) 𝑑𝑡. (43)

The problem is to obtain the optimal control 𝑢
∗
(𝑡) which

minimizes (43) subject to (42). The optimal control is

𝑢
∗
(𝑡) = −𝐾 (𝑡) 𝑥

∗
(𝑡) , (44)

where 𝐾(𝑡) is the feedback controller gain matrix and the
solution of the Riccati equation [30]

𝐾 (𝑡) = 𝐾
2
(𝑡) − 2𝑡𝐾 (𝑡) − 1, 𝐾 (1) = 0. (45)

According to the optimality conditions (5) and (6) we have

�̇� = 𝑡𝑥 (𝑡) − 𝜆 (𝑡) ,
̇

𝜆 = −𝑥 (𝑡) − 𝑡𝜆 (𝑡) ,

𝑥 (0) = 1, 𝜆 (1) = 0, 𝑢 (𝑡) = −𝜆 (𝑡) .

(46)

We first solve the previous system and obtain the numerical
solutions 𝑥

𝑁
(𝑡) and 𝜆

𝑁
(𝑡) for𝑁 = 4, 5, 6, and then solve (45)

by ODE solver commands which exist in MAPLE 13. Since,
𝐾(𝑡) = −(𝑢(𝑡)/𝑥(𝑡)) then our numerical results of 𝐾(𝑡) are
equal to−(𝑢

𝑁
(𝑡)/𝑥
𝑁
(𝑡)), that is,𝐾

𝑁
(𝑡) = −(𝑢

𝑁
(𝑡)/𝑥
𝑁
(𝑡)).The

numerical results of system (46), which are obtained by the
proposed method could be deduced as

𝑥
4
(𝑡) = 0.20203304𝑡

4
− 0.31263421𝑡

3
+ 1.0000762𝑡

2

− 0.96700804𝑡 + 1.0,

𝑢
4
(𝑡) = 0.011211016𝑡

4
− 0.055485904𝑡

3
+ 0.011282926𝑡

2

+ 1.0𝑡 − 0.96700804,

𝑥
5
(𝑡) = 0.021615359𝑡

5
+ 0.16221315𝑡

4
− 0.28939672𝑡

3

+ 0.99513749𝑡
2
− 0.96857084𝑡 + 1.0,

𝑢
5
(𝑡) = 0.047811786𝑡

5
− 0.078776302𝑡

4
− 0.00037310025𝑡

3

− 0.000091547293𝑡
2
+ 1.0𝑡 − 0.96857084,

𝑥
6
(𝑡) = 0.043743856𝑡

6
− 0.083312898𝑡

5
+ 0.25396668𝑡

4

− 0.32429532𝑡
3
+ 1.0001826𝑡

2
− 0.96853474𝑡 + 1.0,

𝑢
6
(𝑡) = − 0.002379348𝑡

6
+ 0.052612074𝑡

5
− 0.081954336𝑡

4

+ 0.00027888358𝑡
3
− 0.000022529694𝑡

2
+ 1.0𝑡

− 0.96853474.

(47)

Also, the exact solution𝐾(𝑡) of the Riccati equation (45) at the
uniformmesh in the interval (0, 1) are𝐾(0) = 9.6854𝑒 − 001,
𝐾(0.1) = 9.5147𝑒 − 001, 𝐾(0.2) = 9.1063𝑒 − 001, 𝐾(0.3) =

8.4416𝑒−001,𝐾(0.4) = 7.5241𝑒−001,𝐾(0.5) = 6.3856𝑒−001,
𝐾(0.6) = 5.0873𝑒 − 001, 𝐾(0.7) = 3.7127𝑒 − 001, 𝐾(0.8) =

2.3540𝑒 − 001, 𝐾(0.9) = 1.0955𝑒 − 001, and 𝐾(1) = 0. In
Table 2, we provide the absolute values of errors at the selected
points for the previously considered values of𝑁 togetherwith
the same errors associatedwith othermethods [30, 31]. Again,
we can see the accuracy ofmethodwith regard to themethods
that are based on operational matrices of integration.

Example 5 (nonlinear Hamiltonian system). As our third
illustration, consider the following nonlinear optimal control
problem:

min 𝐽 = ∫

1

0

𝑢
2
(𝑡) 𝑑𝑡

s.t. �̇� =

1

2

𝑥
2
(𝑡) sin𝑥 (𝑡) + 𝑢 (𝑡) , 𝑡 ∈ [0, 1]

𝑥 (0) = 0, 𝑥 (1) = 0.5.

(48)

Trivially𝑓(𝑡, 𝑥(𝑡)) = (1/2)𝑥
2
(𝑡) sin𝑥(𝑡), 𝑔(𝑡, 𝑥(𝑡)) = 1,𝑄 = 0,

𝑅 = 1, 𝑡
0
= 0, and 𝑡

𝑓
= 1. As mentioned in Section 2.2, we

solve the following system of ordinary differential equations:

�̇� =

1

2

𝑥
2
(𝑡) sin𝑥 (𝑡) −

1

2

𝜆 (𝑡) ,

̇
𝜆 = − 𝜆 (𝑡) 𝑥 (𝑡) sin𝑥 (𝑡) −

1

2

𝜆 (𝑡) 𝑥
2
(𝑡) cos𝑥 (𝑡) ,

𝑡 ∈ [0, 1] ,

𝑥 (0) = 0, 𝑥 (1) = 0.5, 𝜆 (1) = 0.

(49)

Also the optimal control law is given by

𝑢
∗
(𝑡) = −

1

2

𝜆 (𝑡) . (50)

Similar to the linear cases, we suppose that the state
and costate variables could be written in terms of linear
combination of monic polynomials which are defined in
Section 3, with the unknown monomial coefficients. These
coefficients will be determined after imposing the previous
system of differential equations at the uniform mesh in the
interval (0, 1). In other words, applying these collocation
points to the main system together with the considered
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Table 1: Comparison results of Example 3.

𝑁 𝑒
𝑥𝑁

of PM 𝑒
𝐽𝑁

of PM 𝑁 𝑒
𝑥𝑁

of TFM [30] 𝑒
𝐽𝑁

of TFM [30]
4 1.8441𝑒 − 003 1.6184𝑒 − 005 4 7.68816𝑒 − 03 4.27347𝑒 − 03

5 2.2886𝑒 − 004 9.1404𝑒 − 006 8 3.19260𝑒 − 03 1.06808𝑒 − 03

6 3.3538𝑒 − 005 8.0381𝑒 − 008 16 1.74696𝑒 − 04 2.67002𝑒 − 04

7 4.5138𝑒 − 005 3.5481𝑒 − 008 32 4.36429𝑒 − 05 6.67494𝑒 − 05

8 3.0718𝑒 − 005 2.8111𝑒 − 010 64 1.09092𝑒 − 05 1.66873𝑒 − 05

Table 2: The error histories at the selected points for Example 4.

𝑡 PM for𝑁 = 4 PM for𝑁 = 5 PM for𝑁 = 6 TFM [30]𝑁 = 6 MGL [31]𝑁 = 6 TFM [30]𝑁 = 64

0.0 1.5274𝑒 − 003 3.5407𝑒 − 005 6.8533𝑒 − 007 7.4890𝑒 − 002 9.3400𝑒 − 002 7.6980𝑒 − 003

0.1 1.9116𝑒 − 003 6.7725𝑒 − 005 1.4752𝑒 − 006 2.2140𝑒 − 002 1.0020𝑒 − 001 1.6770𝑒 − 003

0.2 2.3352𝑒 − 003 9.5549𝑒 − 005 1.7583𝑒 − 006 5.2150𝑒 − 002 1.0660𝑒 − 001 5.6050𝑒 − 003

0.3 2.6500𝑒 − 003 9.9318𝑒 − 005 1.8482𝑒 − 006 7.1120𝑒 − 002 1.5530𝑒 − 001 5.8040𝑒 − 003

0.4 2.8209𝑒 − 003 1.0115𝑒 − 004 2.2289𝑒 − 006 1.5220𝑒 − 002 2.3530𝑒 − 001 2.0900𝑒 − 003

0.5 2.9118𝑒 − 003 1.1223𝑒 − 004 2.5894𝑒 − 006 9.9270𝑒 − 002 2.9390𝑒 − 001 1.0200𝑒 − 002

0.6 2.9909𝑒 − 003 1.1855𝑒 − 004 2.3877𝑒 − 006 2.8060𝑒 − 002 2.7180𝑒 − 001 1.9860𝑒 − 003

0.7 3.0063𝑒 − 003 1.0774𝑒 − 004 2.1119𝑒 − 006 5.7040𝑒 − 002 1.7540𝑒 − 001 5.9630𝑒 − 003

0.8 2.7289𝑒 − 003 9.2586𝑒 − 005 2.4315𝑒 − 006 6.5130𝑒 − 002 7.5600𝑒 − 002 5.5260𝑒 − 003

0.9 1.8221𝑒 − 003 8.1824𝑒 − 005 1.6928𝑒 − 006 1.5240𝑒 − 002 1.8200𝑒 − 002 1.7450𝑒 − 003

Table 3: Numerical results of Example 5.

𝑁 𝐽
𝑁
of PM 𝑥

𝑁
(1) − 𝑥(1) of PM

5 0.2426752 0
7 0.2426750 1.0000𝑒 − 007

9 0.2426740 2.0000𝑒 − 015

boundary conditions on 𝑥(𝑡) and 𝜆(𝑡) transforms the basic
problem to the corresponding system of nonlinear algebraic
equations. By assuming different values of 𝑁 such as 5, 7,
and 9, we solve the previously mentioned system. In Table 3,
we provide the approximated performance index 𝐽

𝑁
, which

is obtained by our proposed method and also the difference
between the approximated 𝑥

𝑁
(1) − 𝑥(1) = 𝑥

𝑁
(1) − (1/2) for

the considered values of𝑁.

Example 6 (see [11, 32] state-space analysis). We consider a
linear-time invariant state equation

[

�̇�
1
(𝑡)

�̇�
2
(𝑡)

] = 𝐴[

𝑥
1
(𝑡)

𝑥
2
(𝑡)

] + 𝑏𝑢 (𝑡) , 𝑡 ∈ (0, 1) , (51)

where

𝐴 = [

−3 1

2 −4
] , 𝑏 = [

1

1
] . (52)

We are given that the input 𝑢(𝑡) is the unit step function in
the interval (0, 1) and the initial state is

𝑥
0
= [

𝑥
1
(0)

𝑥
2
(0)

] = [

1

1
] . (53)

The exact solution for (51) is

𝑥
1
(𝑡) = 𝑥

2
(𝑡) =

1 + 𝑒
−2𝑡

2

. (54)

We solve this problem by using our proposed method in the
cases of 𝑁 = 4, 5, 6, 7, 8, 9, 10, 12, and 20. The approximated
solutions corresponding to the 𝑁 = 4, 5, 6, 7, 8, 9, and 10 are
provided later

𝑥
1,4

(𝑡) = 𝑥
2,4

(𝑡) = 0.1658𝑡
4
− 0.58031𝑡

3
+ 0.98446𝑡

2

− 1.0𝑡 + 1.0,

𝑥
1,5

(𝑡) = 𝑥
2,5

(𝑡) = − 0.06235𝑡
5
+ 0.28058𝑡

4
− 0.64844𝑡

3

+ 0.99761𝑡
2
− 1.0𝑡 + 1.0,

𝑥
1,6

(𝑡) = 𝑥
2,6

(𝑡) = 0.019951𝑡
6
− 0.10973𝑡

5
+ 0.32143𝑡

4

− 0.66365𝑡
3
+ 0.99969𝑡

2
− 1.0𝑡 + 1.0,

𝑥
1,7

(𝑡) = 𝑥
2,7

(𝑡) = − 0.0055374𝑡
7
+ 0.035993𝑡

6

− 0.12776𝑡
5
+ 0.33126𝑡

4
− 0.66626𝑡

3

+ 0.99997𝑡
2
− 1.0𝑡 + 1.0,

𝑥
1,8

(𝑡) = 𝑥
2,8

(𝑡) = 0.0013547𝑡
8
− 0.010161𝑡

7

+ 0.042378𝑡
6
− 0.13232𝑡

5
+ 0.33304𝑡

4

− 0.66662𝑡
3
+ 1.0𝑡

2
− 1.0𝑡 + 1.0,
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Table 4: The error histories at the selected points for Example 6.

𝑡 Bessel Int𝑁 = 8 Bessel Int𝑁 = 12 Bessel Int𝑁 = 20 PM for𝑁 = 8 PM for𝑁 = 12 PM for𝑁 = 20

0.0 9.6890𝑒 − 003 6.6498𝑒 − 003 4.1214𝑒 − 003 0 0 0

0.1 2.3974𝑒 − 002 1.0755𝑒 − 002 1.6289𝑒 − 003 6.5649𝑒 − 009 6.8945𝑒 − 014 6.1062𝑒 − 014

0.2 7.2706𝑒 − 003 1.6306𝑒 − 003 4.6111𝑒 − 003 4.5248𝑒 − 009 5.0071𝑒 − 014 4.8073𝑒 − 014

0.3 2.5780𝑒 − 003 4.6009𝑒 − 003 8.9332𝑒 − 003 3.6167𝑒 − 009 4.1522𝑒 − 014 3.7859𝑒 − 014

0.4 2.2427𝑒 − 003 7.2766𝑒 − 003 1.1642𝑒 − 002 3.2895𝑒 − 009 3.3973𝑒 − 014 3.0309𝑒 − 014

0.5 6.3782𝑒 − 003 1.0152𝑒 − 002 1.3160𝑒 − 002 2.2422𝑒 − 009 2.7311𝑒 − 014 2.4425𝑒 − 014

0.6 6.9801𝑒 − 003 1.1190𝑒 − 002 1.3796𝑒 − 002 2.4272𝑒 − 009 2.2649𝑒 − 014 1.9873𝑒 − 014

0.7 9.5374𝑒 − 003 1.1427𝑒 − 002 1.3807𝑒 − 002 1.1916𝑒 − 009 1.8097𝑒 − 014 1.6431𝑒 − 014

0.8 8.6910𝑒 − 003 1.1990𝑒 − 002 1.3398𝑒 − 002 1.8602𝑒 − 009 1.0991𝑒 − 014 1.3878𝑒 − 014

0.9 1.0169𝑒 − 002 1.1068𝑒 − 002 1.2680𝑒 − 002 4.0343𝑒 − 009 6.6391𝑒 − 014 1.8874𝑒 − 014

1.0 5.8131𝑒 − 003 8.4105𝑒 − 003 1.0482𝑒 − 002 2.2065𝑒 − 007 3.9901𝑒 − 012 8.3072𝑒 − 012

0 10.90.80.70.60.50.40.30.20.1
0

0.01
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0.07

𝑡

Integration Bessel (𝑁 = 4)

𝐸
(
𝑡
)

Integration Laguerre (𝑁 = 5)
Presented method (𝑁 = 4)
Presented method (𝑁 = 5)

Figure 1: The error histories of our method together with the
methods [11, 32] in Example 6.
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2
− 1.0𝑡 + 1.0.

(55)

An interesting comparison between our presented
method (PM) and the method of [11] in the absolute value
of the errors at the uniform mesh for 𝑁 = 8, 12, and 20 is
considered in Table 4. Moreover, the error histories in the
computational interval (0, 1) associated with our method
for 𝑁 = 4 and 5 together with the error history of the

method [11] (Bessel Integration) for 𝑁 = 4 and also the
error history of the method [32] (Laguerre Integration) for
𝑁 = 5 are depicted in Figure 1. From this figure one can see
the applicability and high accuracy of the presented method
with respect to the methods which are based on operational
matrices of integration such as [11, 32].

5. Conclusions

The aim of this paper is to present an indirect approach for
solving optimal control problems using truncated monomial
series together with the collocation method on a uniform
mesh. Our method applies an operational matrix of differen-
tiation which has more efficiency with respect to the integra-
tion ones.Operationalmatrices of differentiation have several
specific properties that other integration ones do not have
them. One of them is that through using differentiation ones,
we solve our problemdirectly and do not need to integrate the
dynamical system. Another property is that the fundamental
relations, which are based on differentiation matrices, are
the exact relations, meanwhile the methods which are based
on integration matrices impose the approximation to the
main problem. These properties are shown through several
numerical examples such as state-space analysis and specially
optimal control problems.
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