
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 524539, 10 pages
http://dx.doi.org/10.1155/2013/524539

Research Article
A Globally Convergent Line Search Filter SQP Method
for Inequality Constrained Optimization

Zhong Jin

Department of Mathematics, Shanghai Maritime University, Shanghai 201306, China

Correspondence should be addressed to Zhong Jin; asdjz1234@163.com

Received 17 February 2013; Revised 3 August 2013; Accepted 9 August 2013

Academic Editor: Jung-Fa Tsai

Copyright © 2013 Zhong Jin. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A line search filter SQPmethod for inequality constrained optimization is presented.This methodmakes use of a backtracking line
search procedure to generate step size and the efficiency of the filter technique to determine step acceptance. At each iteration, the
subproblem is always consistent, and it only needs to solve oneQP subproblem.Under somemild conditions, the global convergence
property can be guaranteed. In the end, numerical experiments show that the method in this paper is effective.

1. Introduction

In this paper, we consider the following nonlinear inequality
constrained optimization problem:

min 𝑓 (𝑥)

s.t. 𝑔𝑗 (𝑥) ≤ 0, 𝑗 ∈ 𝐼 = {1, 2, . . . , 𝑚} ,
(P)

where 𝑥 ∈ 𝑅𝑛, 𝑓 : 𝑅𝑛 → 𝑅, and 𝑔𝑗(𝑗 ∈ 𝐼) : 𝑅𝑛 → 𝑅1 are
assumed to be continuously differentiable.

It is well known that the sequential quadratic program-
ming (SQP) method is one of the most efficient methods
to solve problem (P). Because of its superlinear convergence
rate, it has been widely studied. See Boggs and Tolle [1]
for an excellent literature survey. In SQP methods, at each
iteration the search direction is generally obtained by solving
the subproblem as follows:

min ∇𝑓(𝑥𝑘)
𝑇
𝑑 +

1

2
𝑑𝑇𝐵𝑘𝑑

s.t. 𝑔𝑗 (𝑥𝑘) + ∇𝑔𝑗(𝑥𝑘)
𝑇
𝑑 ≤ 0, 𝑗 ∈ 𝐼 = {1, 2, . . . , 𝑚} ,

(1)

where 𝐵𝑘 ∈ 𝑅𝑛×𝑛 is a symmetric positive definite matrix.
However, the previous QP subproblem has a serious

shortcoming that constraints in (1) may be inconsistent. To

overcome this disadvantage, much attention has been paid
[2–7]. Burke and Han [2], Zhou [3], and J.-L. Zhang and X.-
S. Zhang [4] modified the constraints in subproblem (1) to
ensure that a revised QP subproblem is consistent, and their
methods are globally convergent. Burke and Han’s method
is just a conceptual method and cannot be implementable
practically, Zhou’s method is based on the exact line search,
and Zhang’s method focuses on the inexact line search. Fur-
thermore, Pantoja andMayne [5] presented a modification of
SQP algorithm by modifying both constraints and objective
function in (1), and the search direction is obtained by solving
a new QP subproblem which always has an optimal solution.
In addition, Liu and Li [6] and Liu and Zeng [7] proposed
SQP algorithms with cautious update criteria, which can be
considered as modifications of the SQP algorithm given in
[5].

In the previous methods [2–7], a penalty function is
always used as a merit function to test the acceptability of
the iterate points. However, as we all know, there are several
difficulties associated with the use of penalty function and
in particular with the choice of the penalty parameter. Too
low a choice may result in the loss of an optimal solution;
on the other hand, too large a choice damps out the effect
of the objective function. Therefore, filter method was first
introduced in trust region SQP method for constrained
nonlinear optimization problems by Fletcher and Leyffer [8],
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offering an alternative to merit functions, as a tool to
guarantee global convergence. Subsequently, global conver-
gences of filter SQP methods were established by Fletcher
et al. [9, 10]. Furthermore, Wächter and Biegler [11, 12]
presented line search filter methods for nonlinear equality
constrained programming, and the global convergence and
local convergence were given. The promising numerical
results of filter methods have led to a growing interest
in filter methods in recent years [13–26], in which trust
region strategy is used in [15, 26], and line search technique
is taken in others. It is noteworthy that, based on [2–4]
and line search filter technique, Su and Che [13] and Su
[14] presented modified SQP filter methods for inequality
constrained optimization. In Su’s methods, the subproblem
is always consistent, and the global convergence property is
obtained.

In this paper, derived from [5–7] and the filter tech-
nique, especially the filter line search technique provided
by Wächter and Biegler [11, 12], we propose a line search
filter SQP method for inequality constrained optimization.
This method has the following merits: it avoids using the
penalty function to guarantee global convergence and has
no requirement on initial point; at each iterate point the
subproblem is always consistent, and it only needs to solve
one QP subproblem; under some mild conditions, we prove
that the algorithm either terminates at a Karush-Kuhn-
Tucker (KKT) point within finite steps or generates an infinite
sequence whose at least one cluster is a KKT point; in the end,
numerical experiments show that our method is effective.

This paper is organized as follows. In the next section,
the structure of line search filter technique is discussed.
The algorithm is put forward in Section 3, and the global
convergence theory of the algorithm is presented in Section 4.
The numerical results for some typical examples are listed
in Section 5. Finally in Section 6, a brief discussion on the
proposed algorithm is given.

2. The Structure of Line Search
Filter Technique

In this section, we will present the structure of line search
filter technique and some related strategies. Instead of comb-
ing the objective function and constraint violation into a
single function, filter methods view nonlinear optimization
as a biobjective optimization problem that minimizes the
objective function and the constraint violation. Now we give
the structure of line search filter technique.

In the line search filter technique, after a search direction
𝑑𝑘 has been computed, a step size𝛼𝑘,𝑙 ∈ (0, 1] is determined in
order to obtain the trial iteration 𝑥𝑘(𝛼𝑘,𝑙) = 𝑥𝑘 + 𝛼𝑘,𝑙𝑑𝑘. More
precisely, for fixed constants 𝛾𝑓, 𝛾𝜃 ∈ (0, 1), a trial step size
𝛼𝑘,𝑙 provides sufficient reduction with respect to the current
point 𝑥𝑘 if

𝜃 (𝑥𝑘 (𝛼𝑘,𝑙)) ≤ (1 − 𝛾𝜃) 𝜃 (𝑥𝑘)

or 𝑓 (𝑥𝑘 (𝛼𝑘,𝑙)) ≤ 𝑓 (𝑥𝑘) − 𝛾𝑓𝜃 (𝑥𝑘) ,
(2)

where 𝜃(𝑥) is a constraint violation function. Similar to [18],
let 𝜃(𝑥𝑘) = max1≤𝑖≤𝑚[𝑔𝑖(𝑥𝑘)]+ and [⋅]+ = max{⋅, 0}.

For the sake of a simplified notation, the filter is defined
in this paper not as a list but as a setF𝑘 ⊆ [0,∞] × [−∞,∞]
containing all (𝜃, 𝑓) pairs that are prohibited in iteration 𝑘.
We say that a trial point 𝑥𝑘(𝛼𝑘,𝑙) is acceptable to the filter if its
(𝜃, 𝑓) pair does not lie in the taboo region, that is, if

(𝜃 (𝑥𝑘 (𝛼𝑘,𝑙)) , 𝑓 (𝑥𝑘 (𝛼𝑘,𝑙))) ∉ F𝑘. (3)

At the beginning of the algorithm, the filter is initialized
by F0 = {(𝜃, 𝑓) ∈ 𝑅2 : 𝜃 ≥ 𝑢}, where 𝑢 is a large
positive number. Throughout the optimization the filter is
then augmented in some iterations after the new iterate point
𝑥𝑘+1 has been accepted. For this, the following updating
formula is used:

F𝑘+1 = F𝑘⋃{(𝜃, 𝑓) ∈ 𝑅2 : 𝜃 ≥ (1 − 𝛾𝜃) 𝜃 (𝑥𝑘) ,

𝑓 ≥ 𝑓 (𝑥𝑘) − 𝛾𝑓𝜃 (𝑥𝑘)} .
(4)

Similar to the traditional strategy of the filter method,
to avoid the convergence to a feasible point but not an
optimal solution, we consider the following 𝑓-type switching
condition:

𝑚𝑘 (𝛼𝑘,𝑙) < 0, −𝑚𝑘 (𝛼𝑘,𝑙) > 𝛿[𝜃 (𝑥𝑘)]
𝑠𝜃 , (5)

where 𝑚𝑘(𝛼𝑘,𝑙) = 𝛼𝑘,𝑙∇𝑓(𝑥𝑘)
𝑇𝑑𝑘, 𝛿 > 0, and 𝑠𝜃 ∈ (0, 1).

When condition (5) holds, the step 𝑑𝑘 is a descent
direction for current objective function. Then, instead of
insisting on (2), the Armijo-type reduction condition is
employed as follows:

𝑓 (𝑥𝑘 (𝛼𝑘,𝑙)) ≤ 𝑓 (𝑥𝑘) + 𝜂𝑚𝑘 (𝛼𝑘,𝑙) , (6)

where 𝜂 ∈ (0, (1/2)) is a fixed constant. If (5) and (6) hold
for the accepted trial step size, we may call it an f -type point,
and accordingly this iteration is called an𝑓-type iteration. An
𝑓-type point should be accepted as 𝑥𝑘+1 without updating of
the filter; that is, F𝑘+1 = F𝑘, while if a trial point 𝑥𝑘(𝛼𝑘,𝑙)
does not satisfy the switching condition (5) but satisfies (2),
we call it an ℎ-type point (or accordingly an h-type iteration).
An ℎ-type point should be accepted as 𝑥𝑘+1 with updating of
the filter, and we denote the set of indices of those iterations
where filter has been augmented byA ⊂ N.

In our method, when ∇𝑓(𝑥𝑘)
𝑇𝑑𝑘 < 0, the line search

is performed. In the situation where no admissible step size
can be found, the method switches to a feasibility restoration
phrase, whose purpose is to find a new iterate point that
satisfies (2) and is also acceptable to the current filter by trying
to decrease the constraint violation. In order to detect the
situation where no admissible step size can be found and
the restoration phase has to be invoked, we approximate a
minimum desired step size using linear models of involved
functions. For this, we define that

𝛼min
𝑘 = min = {𝛾𝜃, −

𝛾𝑓𝜃 (𝑥𝑘)

∇𝑓(𝑥𝑘)
𝑇
𝑑𝑘

, −
𝛿[𝜃 (𝑥𝑘)]

𝑠𝜃

∇𝑓(𝑥𝑘)
𝑇
𝑑𝑘

} . (7)
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3. Description of the Algorithm

We will now proceed to propose a line search filter SQP
method for inequality constrained optimization and formally
describe the algorithmic details in this section.The proposed
algorithm consists of inner loops, and in the next section
we show that there is no endless loop and the method is
implementable and globally convergent.

In our algorithm, motivated by [5–7], the quadratic
subproblem (1) is replaced by the following problem:

min ∇𝑓(𝑥𝑘)
𝑇
𝑑 +

1

2
𝑑𝑇𝐵𝑘𝑑 + 𝑏𝑘𝑡

s.t. 𝑔𝑗 (𝑥𝑘) + ∇𝑔𝑗(𝑥𝑘)
𝑇
𝑑 ≤ 𝑡 𝑗 ∈ 𝐼,

0 ≤ 𝑡 ≤ 𝜃 (𝑥𝑘) ,

(8)

where 𝑏𝑘 is a positive parameter. Clearly, this subproblem
is always consistent and is a convex programming if 𝐵𝑘 is
positive semidefinite.

Let (𝑑𝑘, 𝑡𝑘) ∈ (𝑅𝑛, 𝑅1) be the solution of subproblem
(8). Then there exists a Lagrange multiplier (𝜆𝑘, 𝜐𝑘, ℎ𝑘) ∈

(𝑅𝑚, 𝑅1, 𝑅1) satisfying the following KKT system:

𝑔𝑗 (𝑥𝑘) + ∇𝑔𝑗(𝑥𝑘)
𝑇
𝑑𝑘 ≤ 𝑡𝑘 (𝑗 ∈ 𝐼) ,

0 ≤ 𝑡𝑘 ≤ 𝜃 (𝑥𝑘) ,

∇𝑓 (𝑥𝑘) + 𝐵𝑘𝑑𝑘 + ∑
𝑗∈𝐼

∇𝑔𝑗 (𝑥𝑘) (𝜆𝑘)𝑗 = 0,

𝑏𝑘 −
󵄩󵄩󵄩󵄩𝜆𝑘

󵄩󵄩󵄩󵄩1 − 𝜐𝑘 + ℎ𝑘 = 0,

(𝜆𝑘)𝑗 (𝑔𝑗 (𝑥𝑘) + ∇𝑔𝑗(𝑥𝑘)
𝑇
𝑑𝑘 − 𝑡𝑘) = 0 (𝑗 ∈ 𝐼) ,

𝜐𝑘𝑡𝑘 = 0, ℎ𝑘 (𝑡𝑘 − 𝜃 (𝑥𝑘)) = 0,

𝜆𝑘 ≥ 0, 𝜐𝑘 ≥ 0, ℎ𝑘 ≥ 0.

(9)

Now, the algorithm for solving the problem (P) can be
stated as follows.

Algorithm 1. Consider the following.

Step 1. Initialization: choose an initial point 𝑥1 ∈ 𝑅𝑛, an
initial filterF1, an initial parameter 𝑏1 > 0, a symmetric and
positive definite matrix 𝐵1 ∈ 𝑅𝑛×𝑛, 𝛿 > 0, and 𝑠𝜃 ∈ (0, 1).
Choose𝜌 ∈ (0, (1/2)), 𝛿1, 𝛿2 > 0, and 𝛾𝑓, 𝛾𝜃 ∈ (0, 1). Set 𝑘 = 1.

Step 2. Solve subproblem (8) with 𝑥𝑘, 𝐵𝑘, and 𝑏𝑘 to obtain
the solution (𝑑𝑘, 𝑡𝑘), and let (𝜆𝑘, V𝑘, ℎ𝑘) be the Lagrange
multiplier. Stop if 𝑑𝑘 = 0 and 𝑡𝑘 = 0.

Step 3. If 𝑑𝑘 = 0 but 𝑡𝑘 ̸= 0, set 𝑥𝑘+1 = 𝑥𝑘 andF𝑘+1 = F𝑘; go
to Step 6.

Step 4. If 𝑑𝑘 ̸= 0 and∇𝑓(𝑥𝑘)
𝑇𝑑𝑘 ≥ 0, go to Step 8. If 𝑑𝑘 ̸= 0 and

∇𝑓(𝑥𝑘)
𝑇𝑑𝑘 < 0, using backtracking line search consider the

following.

Step 4.1. Initial line search: set 𝑙 = 1 and 𝛼𝑘,𝑙 = 1.

Step 4.2. Compute a new trial point. If the trial step
size𝛼𝑘,𝑙 < 𝛼min

𝑘 , go to Step 8.Otherwise, compute new
trial point 𝑥𝑘(𝛼𝑘,𝑙) = 𝑥𝑘 + 𝛼𝑘,𝑙𝑑𝑘. Check acceptability
to the filter; if (𝜃(𝑥𝑘(𝛼𝑘,𝑙)), 𝑓(𝑥𝑘(𝛼𝑘,𝑙))) ∈ F𝑘, reject
the trial step size and go to Step 4.4.

Step 4.3. Check sufficient decrease with respect to
current iterate point.

4.3.1. Case I: condition (5) holds. If the Armijo
condition (6) holds, accept the trial step (that
is, an f -type iteration), and go to Step 4.5;
otherwise, go to Step 4.4.
4.3.2. Case II: condition (5) does not hold. If (2)
holds, accept the trial step (that is, an h-type
iteration), and go to Step 4.5; otherwise, go to
Step 4.4.

Step 4.4. Choose a new trial size 𝛼𝑘,𝑙+1 = 𝜌𝛼𝑘,𝑙. Set
𝑙 = 𝑙 + 1, and go to Step 4.2.
Step 4.5. Accept trial point. Set 𝛼𝑘 = 𝛼𝑘,𝑙 and 𝑥𝑘+1 =
𝑥𝑘(𝛼𝑘).

Step 5. Augment filter if it is necessary. If 𝑘 is not an f -type
iteration, augment the filter using (4); otherwise leave the
filter unchanged; that is, setF𝑘+1 = F𝑘.

Step 6. Update parameters. Compute 𝑎𝑘 by

𝑎𝑘 = min {
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
−1

,
󵄩󵄩󵄩󵄩𝜆𝑘

󵄩󵄩󵄩󵄩1 + 𝛿1} . (10)

Set

𝑏𝑘+1 = {
𝑏𝑘, if 𝑏𝑘 ≥ 𝑎𝑘,

𝑏𝑘 + 𝛿2, otherwise.
(11)

Step 7. Update 𝐵𝑘 to 𝐵𝑘+1. Go to Step 2 with 𝑘 replaced by
𝑘 + 1.

Step 8. Obtain a new point 𝑥𝑘+1 from a feasible restoration
phrase. Set 𝑘 = 𝑘 + 1, and go to Step 2.

Remark 2. The mechanisms of the filter could ensure that
(𝜃(𝑥𝑘), 𝑓(𝑥𝑘)) ∉ F𝑘.

Remark 3. The feasibility restoration phrase in Step 8 could
be any iterative algorithmwith the goal of finding a less infea-
sible point; for example, a nonlinear optimization algorithm
is applied to minimise 𝜃 such as Algorithm B in [14].

4. Global Convergence of Algorithm

In this section, we will show the proposed algorithm is well
defined and globally convergent under somemild conditions.
Then throughout this paper, we always assume that the
following assumptions hold.

Assumptions

(A1) The sequence {𝑥𝑘} remains in compacted subset 𝑋 ∈
𝑅𝑛.
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(A2) The functions 𝑓 and 𝑔𝑗, 𝑗 = 1, 2, . . . 𝑚, are twice
continuously differentiable.

(A3) For any 𝑥 ∈ 𝑋, the vectors {∇𝑔𝑗(𝑥), 𝑗 ∈ 𝐼(𝑥)} are
linearly independent, where 𝐼(𝑥) = {𝑗 ∈ 𝐼 | 𝑔𝑗(𝑥) =
𝜃(𝑥)}.

(A4) There exist two constants 𝑞 ≥ 𝑝 > 0 such that the
matrices sequence {𝐵𝑘} satisfy 𝑝‖𝑑‖2 ≤ 𝑑𝑇𝐵𝑘𝑑 ≤

𝑞‖𝑑‖2 for all 𝑘 and 𝑑 ∈ 𝑅𝑛.

The first lemma shows that there is no cycle between
Step 3 and Step 6 in Algorithm 1.

Lemma 4. Let {𝑥𝑘} and {𝑑𝑘} be generated by Algorithm 1. If
𝑑𝑘 = 0 and 𝑡𝑘 > 0, then there exists a finite positive integer 𝑟
such that 𝑑𝑘+𝑟 ̸= 0.

Proof. Suppose by contradiction that 𝑑𝑘+𝑟 = 0 and 𝑡𝑘+𝑟 > 0
for all 𝑟 ≥ 1 and some 𝑘 ∈ N. Then, we have 𝑥𝑘+𝑟 = 𝑥𝑘, and
hence 𝑡𝑘+𝑟 = 𝜃(𝑥𝑘+𝑟) = 𝜃(𝑥𝑘) = 𝑡𝑘 > 0 and V𝑘+𝑟 = 0. It follows
from (9) and (10) that

𝑏𝑘+𝑟 =
󵄩󵄩󵄩󵄩𝜆𝑘+𝑟

󵄩󵄩󵄩󵄩1 − ℎ𝑘+𝑟 <
󵄩󵄩󵄩󵄩𝜆𝑘+𝑟

󵄩󵄩󵄩󵄩1 + 𝛿1 = 𝑎𝑘+𝑟. (12)

This together with (11) implies that 𝑏𝑘+𝑟+1 = 𝑏𝑘+𝑟 + 𝛿2 for all
𝑟 ≥ 1. As a result, we have

𝑏𝑘+𝑟 󳨀→ +∞,

󵄩󵄩󵄩󵄩𝜆𝑘+𝑟
󵄩󵄩󵄩󵄩1 = 𝑏𝑘+𝑟 + ℎ𝑘+𝑟 󳨀→ +∞ as 𝑟 󳨀→ +∞.

(13)

Because 𝑥𝑘+𝑟 = 𝑥𝑘 for all 𝑟 ≥ 1, we denote 𝑥𝑘+𝑟 = 𝑥. So, we
get

0 < 𝑡𝑘 = lim
𝑟→+∞

𝑡𝑘+𝑟 = lim
𝑟→+∞

𝜃 (𝑥𝑘+𝑟) = 𝜃 (𝑥) ,

lim
𝑟→+∞

(𝑔𝑖 (𝑥𝑘+𝑟) + ∇𝑔𝑖(𝑥𝑘+𝑟)
𝑇
𝑑𝑘+𝑟)

= lim
𝑟→+∞

𝑔𝑖 (𝑥𝑘+𝑟) = 𝑔𝑖 (𝑥) < 𝜃 (𝑥) = 𝑡𝑘,

∀𝑖 ∉ 𝐼 (𝑥) .

(14)

Therefore, we claim that for all 𝑟 ≥ 1,

𝑔𝑖 (𝑥𝑘+𝑟) + ∇𝑔𝑖(𝑥𝑘+𝑟)
𝑇
𝑑𝑘+𝑟 < 𝑡𝑘+𝑟, ∀𝑖 ∉ 𝐼 (𝑥) . (15)

We also have by (9) and (15) that for all 𝑟 ≥ 1, (𝜆𝑘+𝑟)𝑖 = 0, for
all 𝑖 ∉ 𝐼(𝑥). This yields

∇𝑓 (𝑥𝑘+𝑟) + ∑
𝑗∈𝐼(𝑥)

∇𝑔𝑗 (𝑥𝑘+𝑟) (𝜆𝑘+𝑟)𝑗 = 0. (16)

Without loss of generality, we assume that lim𝑟→+∞ 𝜆𝑘+𝑟/

‖𝜆𝑘+𝑟‖1 = 𝜆̂. Dividing by ‖𝜆𝑘+𝑟‖1 in both sides of the last
equality and taking limits as 𝑟 → +∞, we obtain

∑
𝑗∈𝐼(𝑥)

𝜆̂𝑗∇𝑔𝑗 (𝑥) = 0, 𝜆̂𝑗 ≥ 0, 𝑗 ∈ 𝐼 (𝑥) . (17)

Moreover, there exists at least one 𝑗 ∈ 𝐼(𝑥) satisfying 𝜆̂𝑗 > 0.
This contradicts Assumption (A3).

The next lemma shows that the value of the parameter 𝑏𝑘
increased only a finite number of times.

Lemma 5. Let {𝑥𝑘} be an infinite sequence generated by
Algorithm 1; then there exists an integer 𝑘0 such that 𝑏𝑘 = 𝑏max
for all 𝑘 ≥ 𝑘0. In addition, 𝑏max = max{𝑏𝑘}.

Proof. The proof is by contradiction. Suppose that 𝑏𝑘 →
+∞, as 𝑘 → +∞. The step 6 of Algorithm 1 implies that
inequality

𝑏𝑘 < 𝑎𝑘 = min {
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
−1

,
󵄩󵄩󵄩󵄩𝜆𝑘

󵄩󵄩󵄩󵄩1 + 𝛿1} (18)

holds for infinitely many 𝑘. In addition, there exists a
subsequence satisfying

lim
𝑘𝑖→∞

󵄩󵄩󵄩󵄩󵄩𝑑𝑘𝑖
󵄩󵄩󵄩󵄩󵄩 = 0, lim

𝑘𝑖→∞

󵄩󵄩󵄩󵄩󵄩𝜆𝑘𝑖
󵄩󵄩󵄩󵄩󵄩1 = +∞. (19)

Without loss of generality, using Assumption (A1), we sup-
pose that 𝑥𝑘𝑖 → 𝑥 as 𝑘𝑖 → ∞. In a way similar to the proof
of Lemma 4, we can derive, for all sufficiently large 𝑘𝑖,

𝑔𝑗 (𝑥𝑘𝑖) + ∇𝑔𝑗(𝑥𝑘𝑖)
𝑇
𝑑𝑘𝑖 < 𝑡𝑘𝑖 , ∀𝑗 ∉ 𝐼 (𝑥) . (20)

By (9) we have that for all 𝑘𝑖 sufficiently large, (𝜆𝑘𝑖)𝑗 =
0, for all 𝑗 ∉ 𝐼(𝑥), which yields

∇𝑓 (𝑥𝑘𝑖) + 𝐵𝑘𝑖𝑑𝑘𝑖 + ∑
𝑗∈𝐼(𝑥)

∇𝑔𝑗 (𝑥𝑘𝑖) (𝜆𝑘𝑖)𝑗 = 0. (21)

We can also assume that lim𝑘𝑖→+∞ 𝜆𝑘𝑖/‖𝜆𝑘𝑖‖1 = 𝜆̂. Dividing
by ‖𝜆𝑘𝑖‖1 in both sides of the last equality and taking limits as
𝑘𝑖 → +∞, then

∑
𝑗∈𝐼(𝑥)

𝜆̂𝑗∇𝑔𝑗 (𝑥) = 0, 𝜆̂𝑗 ≥ 0, 𝑗 ∈ 𝐼 (𝑥) . (22)

Furthermore, there exists at least one 𝑗 ∈ 𝐼(𝑥) satisfying 𝜆̂𝑗 >
0. This contradicts Assumption (A3).

Because 𝑏𝑘 is increased only finitely many times, it is easy
to see that 𝑏max = max{𝑏𝑘}.

Lemma 6. The line search is actually performed; that is, our
method can generate 𝑑𝑘 such that ∇𝑓(𝑥𝑘)

𝑇d𝑘 < 0 at some
iteration.

Proof. The proof is by contradiction. Suppose that 𝑑𝑘 satis-
fying ∇𝑓(𝑥𝑘)

𝑇𝑑𝑘 < 0 cannot be generated and the current
iterate point cannot be changed as Step 3; then the iterate
points cannot be escaped from the feasibility restoration
phrase. Therefore, all points of {𝑥𝑘} are generated by the the
feasibility restoration phrase, which follows |A| = ∞. Now
we first prove that

lim
𝑘→∞

𝜃 (𝑥𝑘) = 0. (23)

Consider an infinite subsequence {𝑘𝑖} ofAwith 𝜃(𝑥𝑘𝑖) ≥ 𝜀
for some 𝜀 > 0. At each iteration 𝑘𝑖, (𝜃(𝑥𝑘𝑖), 𝑓(𝑥𝑘𝑖)) is added to
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the filter whichmeans that no other (𝜃, 𝑓) can be added to the
filter at a later stage within the area [𝜃(𝑥𝑘𝑖)−𝛾𝜃𝜃(𝑥𝑘𝑖), 𝜃(𝑥𝑘𝑖)]×
[𝑓(𝑥𝑘𝑖) − 𝛾𝑓𝜃(𝑥𝑘𝑖), 𝑓(𝑥𝑘𝑖)], and the area of each square is at
least 𝛾𝜃𝛾𝑓𝜀

2. By Assumption (A1), we have 0 ≤ 𝜃(𝑥) ≤ 𝜃max

and 𝑓min ≤ 𝑓(𝑥) ≤ 𝑓max, and then (𝜃, 𝑓) associated with the
filter are restricted toB = [0, 𝜃max] × [𝑓min, 𝑓max]. Hence,B
is completely covered by atmost a finite number of such areas,
which forms contradiction with the infinite subsequence {𝑘𝑖}
satisfying (3). This means that (23) is true.

We can see that (0, . . . , 0, 𝜃(𝑥𝑘))
𝑇 ∈ 𝑅𝑛+1 is a feasible point

of QP subproblem (8); then we get

∇𝑓(𝑥𝑘)
𝑇
𝑑𝑘 +

1

2
(𝑑𝑘)
𝑇
𝐵𝑘𝑑𝑘 + 𝑏𝑘𝑡𝑘 < 𝑏𝑘𝜃 (𝑥𝑘) . (24)

Because our method does not stop at Step 2, it holds that
(𝑑𝑘, 𝑡𝑘) 󴀀󴀂󴀠 (0, 0). By 0 ≤ 𝑡𝑘 ≤ 𝜃(𝑥𝑘), (23) implies that
lim𝑘→∞ 𝑡𝑘 = 0. With the facts (𝑑𝑘, 𝑡𝑘) 󴀀󴀂󴀠 (0, 0) and
lim𝑘→∞ 𝑡𝑘 = 0, we can assume that ‖𝑑𝑘‖ > 𝜖0 for some
𝜖0 > 0. Let 𝜖1 = 𝑝𝜖20/4𝑏max; (23) implies that for 𝑘 sufficiently
large enough it holds that 𝜃(𝑥𝑘) < 𝜖1, and then 𝑏𝑘𝜃(𝑥𝑘) ≤

(𝑝𝑏𝑘𝜖
2
0/4𝑏max) ≤ (1/4)(𝑑𝑘)

𝑇𝐵𝑘𝑑𝑘; thus,

∇𝑓(𝑥𝑘)
𝑇
𝑑𝑘 < −

1

2
(𝑑𝑘)
𝑇
𝐵𝑘𝑑𝑘 − 𝑏𝑘𝑡𝑘 + 𝑏𝑘𝜃 (𝑥𝑘)

< −
1

2
(𝑑𝑘)
𝑇
𝐵𝑘𝑑𝑘 + 𝑏𝑘𝜃 (𝑥𝑘)

≤ −
1

4
(𝑑𝑘)
𝑇
𝐵𝑘𝑑𝑘 ≤ −

𝑝𝜖20
4

< 0,

(25)

which is a contradiction.

Lemma 7. If 𝜃(𝑥𝑘) = 0, then 𝑚𝑘(𝛼) < 0 for all 𝛼 ∈ (0, 1]. In
addition, Θ𝑘 = min{𝜃 : (𝜃, 𝑓) ∈ F𝑘} > 0 for all 𝑘.

Proof. If 𝜃(𝑥𝑘) = 0, then (0, . . . , 0)𝑇 ∈ 𝑅𝑛+1 is a feasible point
of subproblem (8), so we get

𝑚𝑘 (𝛼)

𝛼
= ∇𝑓(𝑥𝑘)

𝑇
𝑑𝑘 ≤ −

1

2
(𝑑𝑘)
𝑇
𝐵𝑘𝑑𝑘 − 𝑏𝑘𝑡𝑘 < 0. (26)

For proof of second statement please see [11, Lemma 4].

Theorem 8. Suppose all stated assumptions hold. Then

lim
𝑘→∞

𝜃 (𝑥𝑘) = 0. (27)

Proof. Please see [11, Theorem 1].

Lemma 9. If Algorithm 1 generates an infinite sequence {𝑥𝑘},
then the sequence {𝑑𝑘} is bounded; that is to say, there exists a
constant 𝑀𝑑 > 0, such that for all 𝑘 ≥ 0,

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 ≤ 𝑀𝑑. (28)

Proof. We can see that (0, . . . , 0, 𝜃(𝑥𝑘))
𝑇 ∈ 𝑅𝑛+1 is a feasible

point of QP subproblem (8), so we get

∇𝑓(𝑥𝑘)
𝑇
𝑑𝑘 +

1

2
(𝑑𝑘)
𝑇
𝐵𝑘𝑑𝑘 + 𝑏𝑘𝑡𝑘 ≤ 𝑏𝑘𝜃 (𝑥𝑘) . (29)

FromTheorem 8, there exists a constant𝑀𝜃 such that 𝜃(𝑥𝑘) ≤
𝑀𝜃; thus,

−
󵄩󵄩󵄩󵄩∇𝑓 (𝑥𝑘)

󵄩󵄩󵄩󵄩 ⋅
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩 +
1

2
𝑝
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
2

≤ ∇𝑓(𝑥𝑘)
𝑇
𝑑𝑘 +

1

2
(𝑑𝑘)
𝑇
𝐵𝑘𝑑𝑘

+ 𝑏𝑘𝑡𝑘 ≤ 𝑏𝑘𝜃 (𝑥𝑘) ≤ 𝑏max𝑀𝜃,

(30)

which implies that {𝑑𝑘} is bounded; then, there exists a
constant 𝑀𝑑 > 0 such that

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩 ≤ 𝑀𝑑. (31)

Lemma 10. If {𝑥𝑘𝑖} is a subsequence of iterate points for which
‖𝑑𝑘𝑖‖ ≥ 𝜖with some constant 𝜖 > 0 independent of 𝑖, then there
exist constants 𝜖1, 𝜖2 > 0, such that

𝜃 (𝑥𝑘𝑖) ≤ 𝜖1 󳨐⇒ 𝑚𝑘𝑖 (𝛼) ≤ −𝜖2𝛼 (32)

for all 𝑖 and 𝛼 ∈ (0, 1].

Proof. We can see that (0, . . . , 0, 𝜃(𝑥𝑘𝑖))
𝑇 ∈ 𝑅𝑛+1 is a feasible

point of QP subproblem (8); then we get

∇𝑓(𝑥𝑘𝑖)
𝑇
𝑑𝑘𝑖 +

1

2
(𝑑𝑘𝑖)
𝑇
𝐵𝑘𝑖𝑑𝑘𝑖 + 𝑏𝑘𝑖𝑡𝑘𝑖 < 𝑏𝑘𝑖𝜃 (𝑥𝑘𝑖) . (33)

Let 𝜖1 = 𝑝𝜖2/4𝑏max; then 𝑏𝑘𝑖𝜃(𝑥𝑘𝑖) ≤ (𝑝𝑏𝑘𝑖𝜖
2/4𝑏max) ≤

(1/4)(𝑑𝑘𝑖)
𝑇𝐵𝑘𝑖𝑑𝑘𝑖 ; thus,

𝑚𝑘𝑖 (𝛼)

𝛼
= ∇𝑓(𝑥𝑘𝑖)

𝑇
𝑑𝑘𝑖

< −
1

2
(𝑑𝑘𝑖)
𝑇
𝐵𝑘𝑖𝑑𝑘𝑖 − 𝑏𝑘𝑖𝑡𝑘𝑖 + 𝑏𝑘𝑖𝜃 (𝑥𝑘𝑖)

< −
1

2
(𝑑𝑘𝑖)
𝑇
𝐵𝑘𝑖𝑑𝑘𝑖 + 𝑏𝑘𝑖𝜃 (𝑥𝑘𝑖)

≤ −
1

4
(𝑑𝑘𝑖)
𝑇
𝐵𝑘𝑖𝑑𝑘𝑖 ≤ −

𝑝𝜖2

4
.

(34)

Define 𝜖2 = 𝑝𝜖2/4; then it implies that 𝑚𝑘𝑖(𝛼) ≤ −𝜖2𝛼.

Lemma 11. Suppose that the filter is augmented only a finite
number of times; that is, |A| < ∞. Then

lim
𝑘→∞

𝑑𝑘 = 0. (35)

Proof. The proof of this lemma can be found in [11,
Lemma 8]. There the proof is stated for slightly different
circumstances, but it is easy to verify that it is still valid in
our context.

Lemma 12. There exists some constant 𝐶𝑓 > 0, such that

𝑓 (𝑥𝑘 + 𝛼𝑑𝑘) − 𝑓 (𝑥𝑘) − 𝑚𝑘 (𝛼) ≤ 𝐶𝑓𝛼
2󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
2
, (36)

for 𝛼 ∈ (0, 1].
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Proof. The inequality follows directly from the second order
Taylor expansion.

Lemma 13. Let {𝑥𝑘𝑖} be a subsequence with𝑚𝑘𝑖(𝛼) ≤ −𝛼𝜖2 for
some constant 𝜖2 > 0 independent of 𝑘𝑖 and for all 𝛼 ∈ (0, 1].
Then there exists some constant 𝛼 > 0 such that

𝑓 (𝑥𝑘𝑖 + 𝛼𝑑𝑘𝑖) − 𝑓 (𝑥𝑘𝑖) ≤ 𝜂𝑚𝑘𝑖 (𝛼) , (37)

for all 𝑘𝑖 and 𝛼 ≤ 𝛼.

Proof. Let 𝑀𝑑 and 𝐶𝑓 be the constants from Lemmas 9 and
12. It then follows from Lemma 12 for all 𝛼 ≤ 𝛼 with 𝛼 =
(1 − 𝜂)𝜖2/𝐶𝑓𝑀

2
𝑑 that

𝑓 (𝑥𝑘𝑖 + 𝛼𝑑𝑘𝑖) − 𝑓 (𝑥𝑘𝑖) − 𝑚𝑘𝑖 (𝛼)

≤ 𝐶𝑓𝛼
2󵄩󵄩󵄩󵄩󵄩𝑑𝑘𝑖

󵄩󵄩󵄩󵄩󵄩
2
≤ 𝛼 (1 − 𝜂) 𝜖2

≤ − (1 − 𝜂)𝑚𝑘𝑖 (𝛼) .

(38)

That is,

𝑓 (𝑥𝑘𝑖 + 𝛼𝑑𝑘𝑖) − 𝑓 (𝑥𝑘𝑖) ≤ 𝜂𝑚𝑘𝑖 (𝛼) . (39)

Lemma 14. Let {𝑥𝑘𝑖} be a subsequence with𝑚𝑘𝑖(𝛼) ≤ −𝛼𝜖2 for
some constant 𝜖2 > 0 independent of 𝑘𝑖 and for all 𝛼 ∈ (0, 1].
Then there exist constants 𝐶1, 𝐶(𝑥𝑘𝑖) > 0 so that

(𝜃 (𝑥𝑘𝑖 + 𝛼𝑑𝑘𝑖) , 𝑓 (𝑥𝑘𝑖 + 𝛼𝑑𝑘𝑖)) ∉ F𝑘𝑖 , (40)

for all 𝑘𝑖 and 𝛼 ≤ min{𝐶1, 𝐶(𝑥𝑘𝑖)}.

Proof. Let 𝑀𝑑, 𝐶𝑓 be the constants from Lemmas 9 and 12.
The mechanisms of Algorithm 1 ensure that

(𝜃 (𝑥𝑘𝑖) , 𝑓 (𝑥𝑘𝑖)) ∉ F𝑘𝑖 . (41)

DefineF(1)
𝑘𝑖

= {(𝜃, 𝑓) ∈ F𝑘𝑖 | 𝑓 > 𝑓(𝑥𝑘𝑖)},F
(2)

𝑘𝑖
= F𝑘𝑖 \

F
(1)

𝑘𝑖
, and 𝐶1 = min{1, 𝜖2/(𝑀

2
𝑑𝐶𝑓)}. For 𝛼 ≤ 𝐶1 we have 𝛼2 ≤

(𝛼𝜖2/𝑀
2
𝑑𝐶𝑓) ≤ (−𝑚𝑘𝑖(𝛼)/𝐶𝑓‖𝑑𝑘𝑖‖

2), or equivalently

𝑚𝑘𝑖 (𝛼) + 𝐶𝑓𝛼
2 󵄩󵄩󵄩󵄩󵄩𝑑𝑘𝑖

󵄩󵄩󵄩󵄩󵄩 ≤ 0, (42)

and it follows with (36) that

𝑓 (𝑥𝑘𝑖 + 𝛼𝑑𝑘𝑖) ≤ 𝑓 (𝑥𝑘𝑖) . (43)

So for 𝛼 ≤ 𝐶1 we have (𝜃(𝑥𝑘𝑖 + 𝛼𝑑𝑘𝑖), 𝑓(𝑥𝑘𝑖 + 𝛼𝑑𝑘𝑖)) ∉ F
(1)

𝑘𝑖
.

Let 𝜃min = min{𝜃 | 𝜃 ∈ F
(2)

𝑘𝑖
}; from (41) we know that

𝜃(𝑥𝑘𝑖) < 𝜃min. Therefore, there exists some constant 𝐶(𝑥𝑘𝑖)
such that for 𝛼 ≤ 𝐶(𝑥𝑘𝑖), it holds that 𝜃(𝑥𝑘𝑖 + 𝛼𝑑𝑘𝑖) < 𝜃min. So
for 𝛼 ≤ 𝐶(𝑥𝑘𝑖) we have (𝜃(𝑥𝑘𝑖 + 𝛼𝑑𝑘𝑖), 𝑓(𝑥𝑘𝑖 + 𝛼𝑑𝑘𝑖)) ∉ F

(2)

𝑘𝑖
.

Thereby for 𝛼 < min{𝐶1, 𝐶(𝑥𝑘𝑖)}, we have

(𝜃 (𝑥𝑘𝑖 + 𝛼𝑑𝑘𝑖) , 𝑓 (𝑥𝑘𝑖 + 𝛼𝑑𝑘𝑖)) ∉ F
(1)

𝑘𝑖
∪ F
(2)

𝑘𝑖
= F𝑘𝑖 . (44)

Lemma 15. Let {𝑥𝑘𝑖} be a subsequence with ‖𝑑𝑘𝑖‖ ≥ 𝜖 for some
constant 𝜖 > 0 independent of 𝑘𝑖. Then there exists𝐾 ∈ N such
that the filter is not augmented in iteration 𝐾; that is, 𝐾 ∉ A.

Proof. Since we have lim𝑖→∞ 𝜃(𝑥𝑘𝑖) = 0 by Theorem 8, it
follows from Lemma 10 that there exist constants 𝜖1, 𝜖2 > 0
such that

𝜃 (𝑥𝑘𝑖) ≤ 𝜖1, 𝑚𝑘𝑖 (𝛼) ≤ −𝛼𝜖2, (45)

for 𝑘𝑖 sufficiently large and 𝛼 ∈ (0, 1]. Without loss of
generality we can assume that (45) is valid for all 𝑘𝑖.

We can now apply Lemmas 13 and 14 to obtain the
constants 𝛼, 𝐶1, 𝐶(𝑥𝑘𝑖) > 0. As lim𝑖→∞ 𝜃(𝑥𝑘𝑖) = 0, choose
a constant 𝐶2 and a sufficiently large 𝐾 ∈ {𝑘𝑖} such that
𝐶(𝑥𝐾) > 𝐶2𝜃(𝑥𝐾) > 0 and

𝜃 (𝑥𝐾) < min{
𝛼

𝐶2
,
𝐶1
𝐶2

, [
𝜌𝐶2𝜖2

𝛿
]
1/(𝑠𝜃−1)

} . (46)

We note that (46) implies that

𝛿[𝜃 (𝑥𝐾)]
𝑠𝜃

𝜖2
< 𝜌𝐶2𝜃 (𝑥𝐾) , (47)

as well as

𝐶2𝜃 (𝑥𝐾) < min {𝛼, 𝐶1} . (48)

Now define

𝛽𝐾 = 𝐶2𝜃 (𝑥𝐾) = min {𝛼, 𝐶1, 𝐶2𝜃 (𝑥𝐾)} . (49)

Lemmas 13 and 14 then imply that a trial step size 𝛼𝐾,𝑙 ≤ 𝛽𝐾
satisfies

𝑓 (𝑥𝐾 (𝛼𝐾,𝑙)) ≤ 𝑓 (𝑥𝐾) + 𝜂𝑚𝐾 (𝛼𝐾,𝑙) ,

(𝜃 (𝑥𝐾 (𝛼𝐾,𝑙)) , 𝑓 (𝑥𝐾 (𝛼𝐾,𝑙))) ∉ F𝐾.
(50)

If we now denote with 𝛼𝐾,𝐿 the first step size satisfying (50),
the backtracking line search procedure in Step 4 then implies
that for 𝛼 ≥ 𝛼𝐾,𝑙

𝛼 ≥ 𝜌𝛽𝐾 = 𝜌𝐶2𝜃 (𝑥𝐾) >
𝛿[𝜃 (𝑥𝐾)]

𝑠𝜃

𝜖2
, (51)

and therefore for 𝛼 ≥ 𝛼𝐾,𝑙

𝛿[𝜃 (𝑥𝐾)]
𝑠𝜃 < 𝛼𝜖2 ≤ −𝑚𝐾 (𝛼) . (52)

This means that 𝛼𝐾,𝑙 and all previous trial step sizes are f -
step sizes. Hence the method does not switch to feasibility
restoration phrase in Step 4 for those trial step sizes. There-
fore, 𝛼𝐾,𝑙 is the accepted step size 𝛼𝐾 indeed. Since it satisfies
both the f -type switching conditions (5) and (6), the filter is
not augmented in iteration K.

Lemma 16. Suppose that the filter is augmented infinite
number of times; that is, |A| = ∞. Then

lim
𝑘→∞,𝑘∈A

𝑑𝑘 = 0. (53)
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Table 1: The detail information of the numerical results for feasible initial point.

No. n m NIT NOF NOG FV
hs001 2 1 35 88 65 2.394473𝑒 − 014

hs003 2 1 4 12 10 −4.440892𝑒 − 016

hs004 2 2 2 2 2 2.666667𝑒 + 000

hs005 2 4 6 14 12 −1.913222𝑒 + 000

hs012 2 1 5 12 11 −3.000000𝑒 + 001

hs033 3 6 3 4 3 −4.585786𝑒 + 000

hs035 3 4 7 15 13 1.111111𝑒 − 001

hs037 3 8 9 23 20 −3.456000𝑒 + 003

hs043 4 3 10 14 13 −4.399999𝑒 + 001

hs044 4 10 5 10 10 −1.500000𝑒 + 001

hs076 4 7 6 7 7 −4.681818𝑒 + 000

hs086 5 15 4 10 9 −3.234868𝑒 + 001

hs100 7 4 6 22 20 6.806301𝑒 + 002

hs110 10 20 5 12 12 −4.577847𝑒 + 001

hs113 10 8 12 16 15 2.430621𝑒 + 001

hs117 15 20 17 35 25 3.234868𝑒 + 001

hs118 15 59 21 42 36 6.648204𝑒 + 002

Table 2: The detail information of the numerical results for infeasible initial point.

No. n m NIT NOF NOG FV
hs002 2 1 9 34 30 5.042618𝑒 − 002

hs010 2 1 4 14 12 −1.000000𝑒 + 000

hs011 2 1 12 17 16 −8.498464𝑒 + 000

hs013 2 3 16 30 26 1.000021𝑒 + 000

hs015 2 3 3 15 13 3.065000𝑒 + 002

hs016 2 5 12 27 24 2.500000𝑒 − 001

hs017 2 5 11 26 23 1.000000𝑒 + 000

hs021 2 5 3 6 6 −9.995999𝑒 + 001

hs022 2 2 4 4 4 9.999999𝑒 − 001

hs023 2 9 6 12 11 2.000000𝑒 + 000

hs059 2 7 14 34 32 −6.749505𝑒 + 000

hs065 3 7 8 12 10 9.535282𝑒 − 001

hs096 6 16 34 113 104 1.561953𝑒 − 002

hs108 9 14 12 26 22 −8.660256𝑒 + 001

Proof. Suppose that lim𝑘→∞,𝑘∈A sup ‖𝑑𝑘‖ > 0. Then there
exist a subsequence {𝑥𝑘𝑗} of {𝑥𝑘, 𝑘 ∈ A} and a constant
𝜖 > 0, such that lim𝑗→∞ 𝜃(𝑥𝑘𝑗) = 0 and ‖𝑑𝑘𝑗‖ ≥ 𝜖 for
all 𝑘𝑗. Applying Lemma 15 to {𝑥𝑘𝑗}, we see that there is an
iteration 𝑘𝑗, in which the filter is not augmented; that is to
say, 𝑘𝑗 ∉ A. This contradicts the choice of {𝑥𝑘𝑗}, and then the
claim follows.

Although 0 ≤ 𝑡𝑘 ≤ 𝜃(𝑥𝑘) and Theorem 8 can imply that
lim𝑘→∞ 𝑡𝑘 = 0, the next lemma shows better result.

Lemma 17. Let {𝑥𝑘𝑖} be a subsequence with 𝑑𝑘𝑖 → 0; then
𝑡𝑘𝑖 = 0 for 𝑘𝑖 sufficiently large.

Proof. Consider that 𝑑𝑘𝑖 → 0 together with Lemma 5
implies for 𝑘 sufficiently large

𝑏𝑘𝑖 ≥ 𝑎𝑘𝑖 = min {
󵄩󵄩󵄩󵄩󵄩𝑑𝑘𝑖

󵄩󵄩󵄩󵄩󵄩
−1

,
󵄩󵄩󵄩󵄩󵄩𝜆𝑘𝑖

󵄩󵄩󵄩󵄩󵄩1 + 𝛿1} =
󵄩󵄩󵄩󵄩󵄩𝜆𝑘𝑖

󵄩󵄩󵄩󵄩󵄩1 + 𝛿1. (54)

On the other hand, we have from (9) that

𝑏𝑘𝑖 =
󵄩󵄩󵄩󵄩󵄩𝜆𝑘𝑖

󵄩󵄩󵄩󵄩󵄩1 + V𝑘𝑖 − ℎ𝑘𝑖 . (55)

Thereby, it holds that V𝑘𝑖 > ℎ𝑘𝑖 +𝛿1 > 0 for 𝑘𝑖 sufficiently large.
So we get 𝑡𝑘𝑖 = 0 for 𝑘𝑖 sufficiently large.

Theorem 18. Suppose that all stated assumptions hold; the
outcome of applying Algorithm 1 is one of the following.

(A) AKKT point of problem (P) is found (Algorithm 1 stops
at Step 2).
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Table 3: Comparison of our algorithm with two methods in [5, 7].

No. Pro. (n,m) FilterSQP1 CSQP JSQP
(NIT; NOF) (NIT; NOF) (NIT; NOF)

hs001 PBRT11 (2, 1) (35; 88) (332; 442) (627; 700)
hs002 PBRT12 (2, 1) (9; 34) (11; 119) F
hs003 QBRT11 (2, 1) (4; 12) (3; 3) (3; 3)
hs004 PBRT13 (2, 2) (2; 2) (2; 2) (2; 2)
hs005 GBRT11 (2, 4) (6; 14) (15; 32) (17; 35)
hs010 LQRT11 (2, 1) (4; 14) (2; 2) (2; 2)
hs011 QQRT12 (2, 1) (12; 17) F F
hs012 QQRT13 (2, 1) (5; 12) (2; 9) (3; 338)
hs013 QPRT11 (2, 3) (16; 30) (20; 20) F
hs015 PQRT11 (2, 3) (3; 15) (3; 33) (7; 498)
hs022 QQRT16 (2, 2) (3; 4) (7; 8) (7; 8)
hs100 PPRP17 (7, 4) (6, 22) (7; 120) (7; 7128)
hs108 QQRP16 (9, 14) (12; 26) (12; 12) (12; 28)

(B) All limit points are feasible, and there exists at least
one limit point 𝑥∗ of {𝑥𝑘} which is a KKT point for the
inequality constrained NLP (1); that is to say,

lim
𝑘→∞

𝜃 (𝑥𝑘) = 0, (56)

and there exists at least one subsequenceK such that

lim
𝑘→∞,𝑘∈K

𝑑𝑘 = lim
𝑘→∞,𝑘∈K

𝑡𝑘 = 0. (57)

Proof. (A) It is obviously true.
(B) Equation (56) follows from Theorem 8. In order to

show (57), we now distinguish it into two cases:

(i) if the filter is augmented only a finite number of times,
from Lemmas 11 and 17 we know every limit point is a
KKT point for the inequality constrained NLP (1), so
the claim is true,

(ii) if the filter is augmented infinite number of times,
from Lemmas 16 and 17 it holds that

lim
𝑘→∞,𝑘∈A

𝑑𝑘 = lim
𝑘→∞,𝑘∈A

𝑡𝑘 = 0. (58)

LetK = A; the claim is also true.

In a word, if Algorithm 1 generates an infinite sequence
of iterate {𝑥𝑘}, all limit points are feasible, and there exists at
least one limit point 𝑥∗ of {𝑥𝑘} which is a KKT point for the
inequality constrained NLP (1).

5. Numerical Experiments

In this section, we carry out some typical numerical exper-
iments based on Algorithm 1. In the whole process, the
program is coded inMATLAB7.0, andweuse its optimization
toolbox to solve the QP subproblem (8).

(1) During the numerical experiments, updating of 𝐵𝑘 is
done by the following dampedBFGS formula (see [27,
Chapter 18]):

𝐵𝑘+1 = 𝐵𝑘 −
𝐵𝑘𝑠𝑘(𝑠𝑘)

𝑇
𝐵𝑘

(𝑠𝑘)
𝑇
𝐵𝑘𝑠𝑘

+
𝑟𝑘(𝑟𝑘)

𝑇

(𝑠𝑘)
𝑇
𝑟𝑘

, (59)

where 𝑠𝑘 = 𝑥𝑘+1 − 𝑥𝑘, 𝑟𝑘 = 𝜃𝑘𝑦𝑘 + (1 − 𝜃𝑘)𝐵𝑘𝑠𝑘, 𝑦𝑘 =
∇𝑥𝐿(𝑥𝑘+1, 𝜆𝑘) − ∇𝑥𝐿(𝑥𝑘, 𝜆𝑘) and

𝜃𝑘 =
{{
{{
{

1 if (𝑠𝑘)
𝑇
𝑦𝑘 ≥ 0.2 (𝑠𝑘)

𝑇
𝐵𝑘𝑠𝑘,

0.8(𝑠𝑘)
𝑇
𝐵𝑘𝑠𝑘

(𝑠𝑘)
𝑇
𝐵𝑘𝑠𝑘 − (𝑠𝑘)

𝑇
𝑦𝑘

otherwise.

(60)

(2) The algorithm parameters are set as follows:

𝐵1 = 𝐸𝑛, 𝑏1 = 111, 𝑠𝜃 = 0.75,

𝛿 = 1, 𝛿1 = 10, 𝛿2 = 11,

𝜂 = 0.25, 𝜌 = 0.5, 𝛾𝑓 = 𝛾𝜃 = 0.01,

𝑢 = 1000.

(61)

(3) The stop criteria are ‖𝑑𝑘0‖ sufficiently small, where
𝑑𝑘0 = (𝑑𝑇𝑘 , 𝑡𝑘)

𝑇. In particular, the stop criteria of Step 2
are changed to

if 󵄩󵄩󵄩󵄩󵄩𝑑
𝑘
0

󵄩󵄩󵄩󵄩󵄩 ≤ 10−7, stop. (62)

(4) Now we report the numerical results over a set of
problems from [28], where no equality constraints
are contained and an initial point is provided for
each problem. In addition, we tested our algorithm
in two cases: a feasible initial point is provided for
each problem or an infeasible initial point is given.
These results are listed in Tables 1 and 2, respectively.
Because the quadratic subproblem (1) is modified
but the filter technique is not used in [5, 7] and the
filter technique is used but the quadratic subprob-
lem (1) is not modified in [18, 23], for the sake of
comparing equally, under the same initial points, we
select examples tested both in [5, 7] and examples
tested both in [18, 23] to do the comparisons. The
comparison numerical results among our algorithm
and two groups of methods are listed in Tables 3 and
4, respectively.

In Tables 1, 2, 3, and 4, the notations mean as follows:

(i) No.: the number of problems in [28],
(ii) Pro.: the name of problems in [28],
(iii) 𝑛: the number of variables,
(iv) 𝑚: the number of inequality constraints,
(v) NIT: the number of iterations,
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Table 4: Comparison of our algorithm with two methods in [18, 23].

No. The initial point Method NIT NOF NOG

hs012 (0, 0)
FilterSQP1 5 12 11
FilterSQP2 7 10 8
FilterSQP3 8 9 9

hs033 (0, 0, 3)
FilterSQP1 3 4 3
FilterSQP2 3 4 4
FilterSQP3 4 5 5

hs043 (0, 0, 0, 0)
FilterSQP1 10 14 13
FilterSQP2 11 19 12
FilterSQP3 13 15 14

hs065 (−5, 5, 0)
FilterSQP1 8 12 10
FilterSQP2 15 11 10
FilterSQP3 9 10 10

hs076 (0.5, 0.5, 0.5, 0.5)
FilterSQP1 6 7 7
FilterSQP2 6 7 7
FilterSQP3 6 7 7

hs113 (2, 3, 5, 5, 1, 2, 7, 3, 6, 10)
FilterSQP1 12 16 15
FilterSQP2 14 25 15
FilterSQP3 16 18 17

(vi) NOF: the number of evaluations of objective func-
tions,

(vii) NOG: the number of evaluations of objective function
gradient,

(viii) FV: the final value of the objective function,
(ix) 𝐹: it indicates the algorithm’s failure on the problem,
(x) FilterSQP1: our algorithm in this paper,
(xi) JSQP: the algorithm proposed in [5],
(xii) CSQP: the algorithm proposed in [7],
(xiii) FilterSQP2: the algorithm proposed in [18],
(xiv) FilterSQP3: the algorithm proposed in [23].

From Tables 1 and 2, we can see that our algorithm
executes well for these problems taken from [28]. Whenever
the initial point is feasible or not, the results are promising.
From the computation efficiency in Tables 3 and 4, we should
point out that our algorithm is competitive with some existed
SQP methods in terms of the number of iterations, for
example, [5, 7, 18, 23].

According to the forms of examples listed in these two
groups of papers, we show the numerical results by two
different representations in Tables 3 and 4. From Table 3, our
algorithm is competitive with the first group of methods, that
is, two methods in [5, 7]. Especially utilizing the algorithm in
this paper, the number of iterations for problem hs001 (i.e.,
PBRT11) is much smaller than ones in other two algorithms.
And the problem hs011 (i.e., QQRT12) converges to a good
approximate optimal solution with small iterations, while
algorithms CSQP and JSQP both fail on it. From Table 4,
our algorithm is also competitive with the second group of
methods, that is, two methods in [18, 23]. Although the filter

technique is taken in these three algorithms, the quadratic
subproblem (1) in [18, 23] may be inconsistent, while the
subproblem is always consistent, and it only needs to solve
one QP subproblem at each iteration in our algorithm, which
is simpler and can be applied much more conveniently.

All results summarized in Tables 1–4 show that our
algorithm is practical and effective.

6. Conclusion

In this paper, combining a modification strategy of QP
subproblem and the filter technique, we present a line search
filter SQP method for inequality constrained optimization.
This method can start with any arbitrary initial point rather
than a feasible initial point; it makes use of a backtracking line
search procedure to generate step size and the efficiency of the
filter technique to determine step acceptance; it only needs to
solve one QP subproblem at each iteration, and the subprob-
lem is always consistent. Under some mild conditions, the
method is well defined, and the global convergence property
is obtained. Many numerical experiments in Section 5 show
that our algorithm is effective.
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