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Based on stress-deflection variational formulation, we propose a family of local projection-based stabilized mixed finite element
methods for Kirchhoff plate bending problems. According to the error equations, we obtain the error estimates of the approximation
to stress tensor in energy norm. And by duality argument, error estimates of the approximation to deflection in H1-norm are
achieved.Then we design an a posteriori error estimator which is closely related to the equilibrium equation, constitutive equation,
and nonconformity of the finite element spaces. With the help of Zienkiewicz-Guzmán-Neilan element spaces, we prove the
reliability of the a posteriori error estimator. And the efficiency of the a posteriori error estimator is proved by standard bubble
function argument.

1. Introduction

To design conforming finite element method for fourth-
order elliptic partial differential equation, it requires 𝐶1-
continuity finite element space which is arduous to con-
struct (cf. [1]). Alternatively, mixed finite element methods
are preferred because 𝐶0-continuity finite element space is
sufficient for deflection. Another advantage of mixed finite
element methods is that the stress orΔ𝑢 can be approximated
simultaneously.

One kind of mixed finite element methods is based
on Ciarlet-Raviart method whose unknowns are Δ𝑢 and
deflection 𝑢 (cf. [2]). Optimal convergence rate of the
approximation to 𝑢 and suboptimal convergence rate of
the approximation to Δ𝑢 of Ciarlet-Raviart method were
obtained in [3–5], and a posteriori error analysis was given
by [6]. It is worth to mention that mixed discontinuous
Galerkin method for biharmonic equation advanced in [7] is
on the basis of Ciarlet-Raviart method. Based on a first-order
system and using single face-hybridizable technique in [8],
Cockburn et al. derived a hybridizable and superconvergent
DG method in [9] which improved the convergence rate of
the approximation to Δ𝑢.

Another kind of mixed finite element methods for Kirch-
hoff plate bending problems is based on stress-deflection

formulation. Standard stress-deflection mixed finite element
methods require the finite element space for stress belonging
to H(div, Ω,S), which is substantially difficult to construct
since the tensor-valued function must be symmetric and
belong to H(div, Ω) simultaneously. As far as we know, the
only standard mixed finite element method of this kind
mentioned in [10] adopts composite element. Fortunately,
several H(div, Ω,S)-conforming elements have been devel-
oped in the last decade.Arnold andWinther designed the first
pure polynomial H(div, Ω,S)-conforming elements in two
dimensions in [11], which were extended to three dimensions
in [12, 13]. The vertex degrees of freedom are unavoidable
when using pure polynomial shape function spaces, which is
demonstrated in [11].With regard to this, Guzmán andNeilan
constructed H(div, Ω,S)-conforming elements by enriching
the polynomial shape function spaces with rational bubble
functions which can avoid vertex degrees of freedom in [14].
On the other hand, some efforts have been made to lower
the requirement of H(div, Ω,S)-conforming finite element
space for stress. Along this way, Hellan-Herrmann-Johnson
method raised in [15–17] is a wonderful mixed method for
plate bending problems whose convergence rates for both
variables are optimal. Behrens and Guzmán introduced a
new mixed method which is based on a system of first-
order equations and uses nonsymmetric finite element tensor
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space to approximate stress in [18]. And a hybrid technique is
used for this mixed method to reduce the globally coupled
degrees of freedom to only those associated with Lagrange
multipliers, which is very efficient in implementation. More-
over, a local postprocessing technique is used to produce
new approximation of 𝑢 with superconvergence rate. In
the context of DG methods, LCDG method using fully
discontinuous finite element space for stress devised in [19]
is also based on stress-deflection formulation.

In this paper, we propose a family of local projection-
based stabilized mixed finite element methods for problem
(1) based on the stress-deflection variational formulation.The
stress tensor will be approximated in Arnold-Winther ele-
ment spaces [11] which uses polynomial shape functions, and
deflectionwill be approximated in Lagrangian element spaces
[1, 20] in our mixed methods. To ensure the well-posedness
of ourmixedmethods, we use local projectionmethod which
has been widely used in Stokes equation (cf. [21, 22]), second-
order elliptic problems (cf. [23–25]), and fourth-order obsta-
cle problem (cf. [26]). According to the error equations, we
obtain that the convergence rate of the approximation to
stress tensor in energy norm is 𝑂(ℎmin{𝑚−1+𝛼,𝑘−1−𝛼}

). And by
duality argument, the convergence rate of the approximation
to deflection in𝐻1-norm is shown to be 𝑂(ℎmin{𝑚−1+2𝛼,𝑘−1}

).
An error estimator is proposed which is closely related to
the second-order system (equilibrium equation and consti-
tutive equation) and nonconformity of the finite element
spaces. Using the similar argument as in [6] by replac-
ing Hsieh-Clough-Tocher element space by Zienkiewicz-
Guzmán-Neilan element space proposed in [27], we prove
the reliability of the a posteriori error estimator with all
orders. However, by using Hsieh-Clough-Tocher element
space which includes the third-order polynomials, the a
posteriori error estimator is only proved to be reliable for
𝑘 = 2, 3 in [6]. Furthermore, efficiency of the a posteriori
error estimator is achieved by bubble function argument.

In the end of this section, let us describe the Kirchhoff
plate bending problem. Assume that a thin plate occupies
a bounded polygonal domain Ω ⊂ R2. The mathematical
model of this plate clamped on the boundary under a vertical
load 𝑓 ∈ 𝐿

2
(Ω) is governed by (cf. [28, 29])

C
−1
𝜎 = K (𝑢) inΩ,

∇ ⋅ (∇ ⋅ 𝜎) = −𝑓 inΩ,

𝑢 = 𝜕n𝑢 = 0 on 𝜕Ω,

(1)

where n is the unit outward normal to 𝜕Ω, ∇ is the usual
gradient operator, ∇⋅ stands for the divergence operator
acting on tensor-valued or vector-valued functions (cf. [29]),
and

𝜎 := (1 − ])K (𝑢) + ] tr (K (𝑢))I,

K (𝑢) := (K
𝑖𝑗
(𝑢))
2 × 2

,

K
𝑖𝑗
(𝑢) := −𝜕

𝑖𝑗
𝑢, 1 ≤ 𝑖, 𝑗 ≤ 2,

(2)

with I a second-order identity tensor, tr the trace operator
acting on second order tensors, and ] ∈ 𝐿

∞
(Ω) the Poisson

ratio satisfying inf
𝑥∈Ω

] > 0 and sup
𝑥∈Ω

] < 0.5. For simplicity
hereinafter, we introduce a symmetric and positive definite
operatorC defined as follows: for any second-order tensor 𝜏,

C𝜏 := (1 − ]) 𝜏 + ] tr (𝜏)I. (3)

Then it is easy to see that 𝜎 = CK(𝑢) and C−1𝜏 = (1/(1 −

]))𝜏 − (]/(1 − ]2))(tr 𝜏)I for any second-order tensor 𝜏. The
stress-deflection mixed variational formulation of problem
(1) given in [10] will be obtained as follows: find (𝜎, 𝑢) ∈

Σ × 𝑉 such that

𝑎 (𝜎, 𝜏) + 𝑏 (𝜏, 𝑢) = 0 ∀𝜏 ∈ Σ, (4)

−𝑏 (𝜎, V) = ∫
Ω

𝑓V 𝑑𝑥 ∀V ∈ 𝑉, (5)

where Σ := H(div, Ω,S), 𝑉 := 𝐻1
0
(Ω), and

𝑎 (𝜎, 𝜏) := ∫
Ω

C
−1
𝜎 : 𝜏 𝑑𝑥 ∀𝜎, 𝜏 ∈ Σ,

𝑏 (𝜏, V) := −∫
Ω

(∇ ⋅ 𝜏) ⋅ ∇V 𝑑𝑥 ∀𝜏 ∈ Σ, V ∈ 𝑉.

(6)

Here, the symbol : denotes the double dot product operation
of tensors.

The rest of this paper is organized as follows. A family of
local projection based stabilized mixed finite element meth-
ods based on stress-deflection variational formulation for
Kirchhoff plate bending problems is proposed in Section 2.
An a priori error analysis and a posteriori error analysis
for the stabilized mixed finite element methods are given in
Sections 3 and 4, respectively.

2. Stabilized Mixed Finite Element Methods

We will define a family of local projection based stabilized
mixed finite element methods for solving problem (1) based
on the stress-deflection variational formulation (4)-(5) in this
section. For this, we first introduce some notations frequently
used later on. Denote the space of all symmetric 2 × 2 tensor
by S. Given a bounded domain 𝐺 ⊂ R2 and a nonnegative
integer𝑚, let𝐻𝑚(𝐺) be the usual Sobolev space of functions
on 𝐺, and let H𝑚(𝐺,S) be the usual Sobolev space of
functions taking values in S. The corresponding norm and
seminorm are denoted, respectively, by ‖ ⋅ ‖

𝑚,𝐺
and | ⋅ |

𝑚,𝐺
. If

𝐺 is Ω, we abbreviate them by ‖ ⋅ ‖
𝑚
and | ⋅ |

𝑚
, respectively.

Let 𝐻𝑚
0
(𝐺) be the closure of 𝐶∞

0
(𝐺) with respect to the

norm ‖ ⋅ ‖
𝑚,𝐺

. We also denote by H(div, 𝐺,S) the Sobolev
space consisting of all L2(𝐺,S) functions whose divergence
is square-integrable. For an integer 𝑙 ≥ 0, 𝑃

𝑙
(𝐺) stands for the

set of all polynomials in𝐺with the total degree nomore than
𝑙, and P

𝑙
(𝐺,X) denotes the tensor or vector version of 𝑃

𝑙
(𝐺)

for X being S or R2, respectively. For any vector field v, the
symmetric part of the gradient of v be given by

𝜀 (v) := 1

2
(∇v + (∇v)𝑇) (7)

with (⋅)𝑇 meaning the transpose of the second-order tensor.
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Let {T
ℎ
}
ℎ>0

be a regular family of triangulations ofΩ (cf.
[1, 20]); ℎ := max

𝐾∈Tℎ
ℎ
𝐾
and ℎ

𝐾
:= diam(𝐾). Let E

ℎ
be the

union of all edges of the triangulation T
ℎ
and E𝑖

ℎ
the union

of all interior edges of the triangulationT
ℎ
. For any 𝑒 ∈ E

ℎ
,

denote by ℎ
𝑒
its length. Based on the triangulationT

ℎ
, let the

finite element spaces be given by

Σ
ℎ
:= {𝜏 ∈ Σ : 𝜏|

𝐾
∈ P
𝑘
(𝐾,S) ,∇ ⋅ 𝜏|

𝐾

∈ P
𝑘−2

(𝐾,R
2
) ∀ 𝐾 ∈ T

ℎ
} ,

𝑉
ℎ
:= {V ∈ 𝐻

1

0
(Ω) : v|

𝐾
∈ 𝑃
𝑘
(𝐾) ∀ 𝐾 ∈ T

ℎ
} ,

(8)

with 𝑘 ≥ 3. The so-called Arnold-Winther element space
Σ
ℎ
was designed by Arnold and Winther [11], which is the

first H(div, Ω,S)-conforming finite element space with pure
polynomials in two dimensions in history. For any 𝐾 ∈ T

ℎ
,

the degrees of freedom for Arnold-Winther element space Σ
ℎ

are given as follows [11]:
(i) the values of three components of 𝜏 at each vertex of

𝐾,
(ii) the values of the moments of degree at most 𝑘 − 2 of
𝜏n on each edge 𝑒 of𝐾,

(iii) the values of the moments ∫
𝐾
𝜏 : 𝜍 𝑑𝑥 for all 𝜍 ∈

N
𝑘−2

(𝐾),

where N
𝑘−2

(𝐾) := 𝜀(P
𝑘−2

(𝐾,R2)) +M
𝑘−2

(𝐾) with

M
𝑘−2

(𝐾) := {𝜏 ∈ P
𝑘
(𝐾,S) : ∇ ⋅ 𝜏 = 0 and 𝜏n = 0 on 𝜕𝐾} .

(9)

Given an integer 𝑙 ≥ 0, define the elementwise finite element
spaces

𝑋
𝑙
:= {V ∈ 𝐿

2
(Ω) : V|

𝐾
∈ 𝑃
𝑙
(𝐾) ∀𝐾 ∈ T

ℎ
} ,

X
𝑙
:= 𝑋
𝑙
× 𝑋
𝑙
.

(10)

Denote by 𝑄
𝑙
: 𝐿
2
(Ω) → 𝑋

𝑙
the elementwise 𝐿2 orthogonal

projection operator. And letQ
𝑙
be the vector version of 𝑄

𝑙
. It

follows from [11] that Arnold-Winther element space Σ
ℎ
has

the following property:
∇ ⋅ Σ
ℎ
= X
𝑘−2

. (11)

Now we can define a family of local projection based
stabilizedmixed finite elementmethods corresponding to the
mixed formulation (4)-(5) for problem (1) as follows: find
(𝜎
ℎ
, 𝑢
ℎ
) ∈ Σ
ℎ
× 𝑉
ℎ
such that

𝑎 (𝜎
ℎ
, 𝜏) + 𝑏 (𝜏, 𝑢

ℎ
) = 0 ∀𝜏 ∈ Σ

ℎ
, (12)

−𝑏 (𝜎
ℎ
, V) + 𝑐 (𝑢

ℎ
, V) = ∫

Ω

𝑓V 𝑑𝑥 ∀V ∈ 𝑉
ℎ
, (13)

where

𝑐 (𝑢, V)

:= ∑

𝐾∈Tℎ

ℎ
−2𝛼

𝐾
∫
𝐾

(∇𝑢 −Q
𝑘−2

(∇𝑢)) ⋅ (∇V −Q
𝑘−2

(∇V)) 𝑑𝑠

(14)

with 0 ≤ 𝛼 ≤ 1.

Next, let us illustrate the well-posedness of stabilized
mixed finite element method (12)-(13).

Theorem 1. Stabilized mixed finite element methods (12)-(13)
are uniquely solvable.

Proof. Since Σ
ℎ
and 𝑉

ℎ
are both finite dimensional, it is

enough to show that if 𝑓 = 0, then 𝜎
ℎ
= 0, 𝑢

ℎ
= 0. Taking

𝜏 = 𝜎
ℎ
in (12) and V = 𝑢

ℎ
in (13), and adding two equalities,

it follows that 𝑎(𝜎
ℎ
,𝜎
ℎ
) + 𝑐(𝑢

ℎ
, 𝑢
ℎ
) = 0. Thus 𝜎

ℎ
= 0 and

∇𝑢
ℎ
= Q
𝑘−2

(∇𝑢
ℎ
) ∈ X

𝑘−2
in Ω from the definition of 𝑎(⋅, ⋅)

and 𝑐(⋅, ⋅). Then (12) is reduced to

𝑏 (𝜏, 𝑢
ℎ
) = −∫

Ω

(∇ ⋅ 𝜏) ⋅ ∇𝑢
ℎ
𝑑𝑥 = 0 ∀𝜏 ∈ Σ

ℎ
. (15)

According to (11), we get ∇𝑢
ℎ
= 0, which means that 𝑢

ℎ
is

piecewise constant onT
ℎ
. Therefore, 𝑢

ℎ
= 0 for 𝑢

ℎ
∈ 𝐻
1

0
(Ω).

3. A Priori Error Analysis

In this section, we provide an a priori error analysis for
stabilized mixed finite element methods (12)-(13).

3.1. Preliminaries. For a function V ∈ 𝐿
2
(Ω) with V|

𝐾
∈

𝐻
𝑚
(𝐾) for all 𝐾 ∈ T

ℎ
, let ‖V‖

𝑚,ℎ
and |V|

𝑚,ℎ
be the usual

broken𝐻𝑚-type norm and seminorm of V:

‖V‖𝑚,ℎ = ( ∑

𝐾∈Tℎ

‖V‖
2

𝑚,𝐾
)

1/2

,

|V|𝑚,ℎ = ( ∑

𝐾∈Tℎ

|V|
2

𝑚,𝐾
)

1/2

.

(16)

If V is a vector-valued or tensor-valued function, the previous
symbols are defined in the similar manners. For a vector or
tensor v, its length |v| is (v ⋅v)1/2 or (v : v)1/2. Moreover, define
an energy norm for L2(Ω,S) and a seminorm for𝐻1

0
(Ω) as

‖𝜏‖
2

𝑎
:= 𝑎 (𝜏, 𝜏) ,

‖V‖
2

𝑐
:= 𝑐 (V, V) ∀𝜏 ∈ L2 (Ω,S) , V ∈ 𝐻1

0
(Ω) .

(17)

Throughout this paper, we also use “≲ ⋅ ⋅ ⋅” to mean that
“≤ 𝐶 ⋅ ⋅ ⋅,” where 𝐶 is a generic positive constant independent
of ℎ, whichmay take different values at different appearances.
And 𝐴 ≈ 𝐵means 𝐴 ≲ 𝐵 and 𝐵 ≲ 𝐴.

Let R
ℎ
: L2(Ω,S) → Σ

ℎ
∩ H1(Ω,S) be the Clément

interpolation operator introduced in [30]. Then we define an
interpolation operator Π

ℎ
: Σ → Σ

ℎ
based on the degrees
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of freedom of Arnold-Winther element space as follows (cf.
[11]): for any 𝜏 ∈ Σ,𝐾 ∈ T

ℎ
,

Π
ℎ
𝜏 (𝑝) = R

ℎ
𝜏 (𝑝) for all vertices𝑝 of𝐾,

∫
𝑒

(𝜏 −Π
ℎ
𝜏)n ⋅ v 𝑑𝑠 = 0

for all edges 𝑒 of𝐾 and v ∈ (𝑃
𝑘−2

(𝑒))
2

,

∫
𝐾

(𝜏 −Π
ℎ
𝜏) : 𝜍 𝑑𝑥 = 0 ∀𝜍 ∈ N

𝑘−2
(𝐾) .

(18)

For any 𝜏 ∈ Σ, by the definition ofΠ
ℎ
, it holds that (cf. [11])

∫
Ω

(∇ ⋅ (𝜏 −Π
ℎ
𝜏)) ⋅ v𝑑𝑥 = 0 ∀v ∈ X

𝑘−2
. (19)

Then we define the second interpolation operator 𝐼
ℎ
: 𝑉 ∩

𝐻
2
(Ω) → 𝑉

ℎ
in the following way (cf. [4, 5]): given 𝑤 ∈

𝑉 ∩ 𝐻
2
(Ω), for any element 𝐾 ∈ T

ℎ
, any vertex 𝑎 of 𝐾, and

any edge 𝑒 of 𝐾, 𝐼
ℎ
𝑤 ∈ 𝑉

ℎ
satisfies

𝐼
ℎ
𝑤 (𝑎) = 𝑤 (𝑎) ,

∫
𝑒

(𝑤 − 𝐼
ℎ
𝑤) V 𝑑𝑠 = 0 ∀V ∈ 𝑃

𝑘−2
(𝑒) ,

∫
𝐾

(𝑤 − 𝐼
ℎ
𝑤) V 𝑑𝑥 = 0 ∀V ∈ 𝑃

𝑘−3
(𝐾) .

(20)

According to Proposition 5.1 in [31] and (11), we have for all
𝑤 ∈ 𝑉 ∩ 𝐻

2
(Ω),

𝑏 (𝜏, 𝑤 − 𝐼
ℎ
𝑤) = 0 ∀𝜏 ∈ Σ

ℎ
. (21)

For simplicity, we still write 𝐼
ℎ
, Q
𝑘−2

and Π
ℎ
for 𝐼
ℎ
|
𝐾
,

Q
𝑘−2

|
𝐾

and Π
ℎ
|
𝐾
. The error estimates for interpolation

operators 𝐼
ℎ
, Q
𝑘−2

, and Π
ℎ
are summarized in the following

lemma (cf. [1, 4, 5, 11, 20, 31]).

Lemma 2. For all V ∈ 𝐻
𝑚+2

(𝐾), 𝜏 ∈ H𝑚(Ω,S) with 𝑚 a
nonnegative integer, and all 𝐾 ∈ T

ℎ
, one has the estimates

V − 𝐼ℎV
0,𝐾 + ℎ

1/2

𝐾

V − 𝐼ℎV
0,𝜕𝐾 + ℎ𝐾

V − 𝐼ℎV
1,𝐾

≲ ℎ
min{𝑚+1,𝑘}+1
𝐾

‖V‖m+2,𝐾,

∇V −Q
𝑘−2

(∇V)
0,𝐾 ≲ ℎ

min{𝑚+1,𝑘−1}
𝐾

‖V‖𝑚+2,𝐾,

𝜏 −Πℎ𝜏
0 + ℎ

∇ ⋅ (𝜏 −Πℎ𝜏)
0 ≲ ℎ

min{𝑚,𝑘}
‖𝜏‖𝑚.

(22)

For any V ∈ 𝐻
𝑚+2

(Ω) with 𝑚 a nonnegative integer, we
obtain from Lemma 2 and triangle inequality

∇ (𝐼ℎV) −Q
𝑘−2

(∇ (𝐼
ℎ
V))

0,𝐾

≤
∇ (V − 𝐼ℎV)

0,𝐾 +
Q𝑘−2 (∇ (V − 𝐼ℎV))

0,𝐾

+
∇V −Q

𝑘−2
(∇V)

0,𝐾

≤ 2
∇ (V − 𝐼ℎV)

0,𝐾 +
∇V −Q

𝑘−2
(∇V)

0,𝐾

≲ ℎ
min{𝑚+1,𝑘−1}
𝐾

|V|𝑚+2,𝐾,
(23)

𝐼ℎV


2

𝑐
= ∑

𝐾∈Tℎ

ℎ
−2𝛼

𝐾

∇ (𝐼ℎV)

−Q
𝑘−2

(∇ (𝐼
ℎ
V))
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0,𝐾

≲ ℎ
2 min{𝑚+1,𝑘−1}−2𝛼

‖V‖
2

𝑚+2
.

(24)

3.2. A Priori Error Analysis. Subtracting (12)-(13) from (4)-
(5), we obtain the following error equations:

𝑎 (𝜎 − 𝜎
ℎ
, 𝜏) + 𝑏 (𝜏, 𝑢 − 𝑢

ℎ
) = 0 ∀𝜏 ∈ Σ

ℎ
,

𝑏 (𝜎 − 𝜎
ℎ
, V) + 𝑐 (𝑢

ℎ
, V) = 0 ∀V ∈ 𝑉

ℎ
.

(25)

Using (21), the last error equations can be rewritten as

𝑎 (𝜎 − 𝜎
ℎ
, 𝜏) + 𝑏 (𝜏, 𝐼

ℎ
𝑢 − 𝑢
ℎ
) = 0 ∀𝜏 ∈ Σ

ℎ
, (26)

𝑏 (Π
ℎ
𝜎 − 𝜎
ℎ
, V) + 𝑐 (𝑢

ℎ
, V) = 𝑏 (Π

ℎ
𝜎 − 𝜎, V) ∀V ∈ 𝑉

ℎ
. (27)

Theorem 3. Assume that the solution (𝜎, 𝑢) for mixed for-
mulation (4)-(5) satisfies 𝜎 ∈ H𝑚(Ω,S) and 𝑢 ∈ 𝐻

𝑚+2
(Ω)

for some positive integer 𝑚, and let (𝜎
ℎ
, 𝑢
ℎ
) be the solution of

stabilized mixed finite element methods (12)-(13). Then

𝜎 − 𝜎ℎ
𝑎 +

𝑢ℎ
𝑐 ≲ ℎ

min{𝑚−1+𝛼,𝑘−1−𝛼}
(‖𝜎‖𝑚 + ‖𝑢‖𝑚+2) .

(28)

Proof. Choosing 𝜏 = Π
ℎ
𝜎 − 𝜎

ℎ
in (26) and V = 𝐼

ℎ
𝑢 − 𝑢
ℎ
in

(27), and subtracting (27) from (26), we get

𝑎 (𝜎 − 𝜎
ℎ
,Π
ℎ
𝜎 − 𝜎
ℎ
) − 𝑐 (𝑢

ℎ
, 𝐼
ℎ
𝑢 − 𝑢
ℎ
)

= 𝑏 (𝜎 −Π
ℎ
𝜎, 𝐼
ℎ
𝑢 − 𝑢
ℎ
) .

(29)

Then we have from (19)

𝑎 (Π
ℎ
𝜎 − 𝜎
ℎ
,Π
ℎ
𝜎 − 𝜎
ℎ
) + 𝑐 (𝑢

ℎ
, 𝑢
ℎ
)

= 𝑎 (Π
ℎ
𝜎 − 𝜎,Π

ℎ
𝜎 − 𝜎
ℎ
)

+ 𝑎 (𝜎 − 𝜎
ℎ
,Π
ℎ
𝜎 − 𝜎
ℎ
) + 𝑐 (𝑢

ℎ
, 𝑢
ℎ
)

= 𝑎 (Π
ℎ
𝜎 − 𝜎,Π

ℎ
𝜎 − 𝜎
ℎ
)

+ 𝑏 (𝜎 −Π
ℎ
𝜎, 𝐼
ℎ
𝑢 − 𝑢
ℎ
) + 𝑐 (𝑢

ℎ
, 𝐼
ℎ
𝑢)

= 𝑎 (Π
ℎ
𝜎 − 𝜎,Π

ℎ
𝜎 − 𝜎
ℎ
) + 𝑐 (𝑢

ℎ
, 𝐼
ℎ
𝑢)

− ∫
Ω

(∇ ⋅ (𝜎 −Π
ℎ
𝜎))

⋅ (∇ (𝐼
ℎ
𝑢 − 𝑢
ℎ
) −Q
𝑘−2

(∇ (𝐼
ℎ
𝑢 − 𝑢
ℎ
))) 𝑑𝑥.

(30)
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Using Cauchy-Schwarz inequality and triangle inequality,
Πℎ𝜎 − 𝜎ℎ



2

𝑎
+
𝑢ℎ



2

𝑐

≤
Πℎ𝜎 − 𝜎

𝑎
Πℎ𝜎 − 𝜎ℎ

𝑎 +
𝑢ℎ

𝑐
𝐼ℎ𝑢

𝑐

+ ℎ
𝛼∇ ⋅ (𝜎 −Πℎ𝜎)

0
𝐼ℎ𝑢 − 𝑢ℎ

𝑐

≤
Πℎ𝜎 − 𝜎

𝑎
Πℎ𝜎 − 𝜎ℎ

𝑎 +
𝑢ℎ

𝑐
𝐼ℎ𝑢

𝑐

+ ℎ
𝛼∇ ⋅ (𝜎 −Πℎ𝜎)

0 (
𝐼ℎ𝑢

𝑐 +
𝑢ℎ

𝑐) .

(31)

Thus
Πℎ𝜎 − 𝜎ℎ



2

𝑎
+
𝑢ℎ



2

𝑐
≤
Πℎ𝜎 − 𝜎



2

𝑎

+ 2
𝐼ℎ𝑢



2

𝑐
+ 2ℎ
2𝛼∇ ⋅ (𝜎 −Πℎ𝜎)



2

0
,

(32)

which together with triangle inequality, Lemma 2, and (24)
ends the proof.

Using the usual duality argument, we can additionally
derive error estimate of 𝑢

ℎ
in the 𝐻1(Ω)-norm. To this end,

we assume that Ω is a convex bounded polygonal domain
hereafter in the section. Let (�̃�, �̃�) be the solution of the
auxiliary problem:

𝑎 (𝜏, �̃�) + 𝑏 (𝜏, �̃�) = 0 ∀𝜏 ∈ Σ, (33)

−𝑏 (�̃�, V) = ∫
Ω

∇ (𝐼
ℎ
𝑢 − 𝑢
ℎ
) ⋅ ∇V 𝑑𝑥 ∀V ∈ 𝑉. (34)

Since Ω is convex, we know �̃� ∈ 𝐻
3
(Ω) ∩ 𝐻

2

0
(Ω) with the

bound (cf. [32, 33])

‖�̃�‖1 + ‖�̃�‖3 ≲
𝐼ℎ𝑢 − 𝑢ℎ

1. (35)

Denote by (�̃�
ℎ
, �̃�
ℎ
) the corresponding stabilized mixed finite

element solution:
𝑎 (�̃�
ℎ
, 𝜏) + 𝑏 (𝜏, �̃�

ℎ
) = 0 ∀𝜏 ∈ Σ

ℎ
,

−𝑏 (�̃�
ℎ
, V) + 𝑐 (�̃�

ℎ
, V) = ∫

Ω

∇ (𝐼
ℎ
𝑢 − 𝑢
ℎ
) ⋅ ∇V 𝑑𝑥 ∀V ∈ 𝑉

ℎ
.

(36)

As (26)-(27), we have the following error equations for
auxiliary problem:

𝑎 (�̃� − �̃�
ℎ
, 𝜏) + 𝑏 (𝜏, 𝐼

ℎ
�̃� − �̃�
ℎ
) = 0 ∀𝜏 ∈ Σ

ℎ
,

𝑏 (Π
ℎ
�̃� − �̃�
ℎ
, V) + 𝑐 (�̃�

ℎ
, V) = 𝑏 (Π

ℎ
�̃� − �̃�, V) ∀V ∈ 𝑉

ℎ
.

(37)

ByTheorem 3 and regularity (35), we also have
�̃� − �̃�ℎ

𝑎 +
�̃�ℎ

𝑐 ≲ ℎ
𝛼
(‖�̃�‖1 + ‖�̃�‖3) ≲ ℎ

𝛼𝐼ℎ𝑢 − 𝑢ℎ
1.

(38)

Lemma 4. Let Ω be a convex bounded polygonal domain.
Assume that the solution (𝜎, 𝑢) for mixed formulation (4)-(5)
satisfies 𝜎 ∈ H𝑚(Ω,S) and 𝑢 ∈ 𝐻

𝑚+2
(Ω) for some positive

integer𝑚; then

𝑏 (Π
ℎ
�̃� − �̃�, 𝐼

ℎ
𝑢 − 𝑢
ℎ
)

≲ ℎ
min{𝑚−1+2𝛼,𝑘−1}

(‖𝜎‖𝑚 + ‖𝑢‖𝑚+2)
𝐼ℎ𝑢 − 𝑢ℎ

1.

(39)

Proof. Taking V = 𝐼
ℎ
𝑢 − 𝑢
ℎ
in (37), it holds that

𝑏 (Π
ℎ
�̃� − �̃�, 𝐼

ℎ
𝑢 − 𝑢
ℎ
)

= 𝑏 (Π
ℎ
�̃� − �̃�
ℎ
, 𝐼
ℎ
𝑢 − 𝑢
ℎ
) + 𝑐 (�̃�

ℎ
, 𝐼
ℎ
𝑢 − 𝑢
ℎ
) .

(40)

On the other side, choosing 𝜏 = Π
ℎ
�̃� − �̃�
ℎ
in (26), we get

𝑏 (Π
ℎ
�̃� − �̃�
ℎ
, 𝐼
ℎ
𝑢 − 𝑢
ℎ
) = −𝑎 (𝜎 − 𝜎

ℎ
,Π
ℎ
�̃� − �̃�
ℎ
) . (41)

Then it follows from the last two equalities that

𝑏 (Π
ℎ
�̃� − �̃�,𝐼

ℎ
𝑢 − 𝑢
ℎ
)

= − 𝑎 (𝜎 − 𝜎
ℎ
,Π
ℎ
�̃� − �̃�
ℎ
) + 𝑐 (�̃�

ℎ
,𝐼
ℎ
𝑢 − 𝑢
ℎ
) .

(42)

According to Cauchy-Swarchz inequality, triangle inequality,
Lemma 2, (38), and regularity (35),

𝑏 (Π
ℎ
�̃� − �̃�, 𝐼

ℎ
𝑢 − 𝑢
ℎ
)

≤
𝜎 − 𝜎ℎ

𝑎
Πℎ�̃� − �̃�ℎ

𝑎 +
�̃�ℎ

𝑐
𝐼ℎ𝑢 − 𝑢ℎ

𝑐

≤
𝜎 − 𝜎ℎ

𝑎 (
Πℎ�̃� − �̃�

𝑎 +
�̃� − �̃�ℎ

𝑎)

+
�̃�ℎ

𝑐 (
𝐼ℎ𝑢

𝑐 +
𝑢ℎ

𝑐)

≲ ℎ
𝛼𝜎 − 𝜎ℎ

𝑎 (‖�̃�‖1 +
𝐼ℎ𝑢 − 𝑢ℎ

1)

+ ℎ
𝛼𝐼ℎ𝑢 − 𝑢ℎ

1 (
𝐼ℎ𝑢

𝑐 +
𝑢ℎ

𝑐)

≲ ℎ
𝛼𝐼ℎ𝑢 − 𝑢ℎ

1 (
𝜎 − 𝜎ℎ

𝑎 +
𝑢ℎ

𝑐 +
𝐼ℎ𝑢

𝑐) .

(43)

Therefore, the proof is finished from last inequality,
Theorem 3, and (24).

Theorem 5. Let Ω be a convex bounded polygonal domain.
Assume that the solution (𝜎, 𝑢) for mixed formulation (4)-(5)
satisfies 𝜎 ∈ H𝑚(Ω,S) and 𝑢 ∈ 𝐻

𝑚+2
(Ω) for some positive

integer 𝑚, and let (𝜎
ℎ
, 𝑢
ℎ
) be the solution of stabilized mixed

finite element methods (12)-(13). Then

𝑢 − 𝑢ℎ
1 ≲ ℎ

min{𝑚−1+2𝛼,𝑘−1}
(‖𝜎‖𝑚 + ‖𝑢‖𝑚+2) . (44)

Proof. Taking V = 𝐼
ℎ
𝑢 − 𝑢
ℎ
in (34), we have from Lemma 4

𝐼ℎ𝑢 − 𝑢ℎ


2

1
= −𝑏 (�̃�, 𝐼

ℎ
𝑢 − 𝑢
ℎ
)

= −𝑏 (�̃� −Π
ℎ
�̃�, 𝐼
ℎ
𝑢 − 𝑢
ℎ
) − 𝑏 (Π

ℎ
�̃�, 𝐼
ℎ
𝑢 − 𝑢
ℎ
)

≲ ℎ
min{𝑚−1+2𝛼,𝑘−1}

(‖𝜎‖𝑚 + ‖𝑢‖𝑚+2)
𝐼ℎ𝑢 − 𝑢ℎ

1

− 𝑏 (Π
ℎ
�̃�, 𝐼
ℎ
𝑢 − 𝑢
ℎ
) .

(45)

Choosing 𝜏 = Π
ℎ
�̃� in error equation (26), it holds that

−𝑏 (Π
ℎ
�̃�, 𝐼
ℎ
𝑢 − 𝑢
ℎ
) = 𝑎 (𝜎 − 𝜎

ℎ
,Π
ℎ
�̃�)

= 𝑎 (𝜎 − 𝜎
ℎ
,Π
ℎ
�̃� − �̃�) + 𝑎 (𝜎 − 𝜎

ℎ
, �̃�) .

(46)
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Picking 𝜏 = 𝜎 − 𝜎
ℎ
in (33) and using (21) and error equation

(25),

𝑎 (𝜎 − 𝜎
ℎ
, �̃�) = −𝑏 (𝜎 − 𝜎

ℎ
, �̃�)

= −𝑏 (𝜎 − 𝜎
ℎ
, �̃� − 𝐼

ℎ
�̃�) − 𝑏 (𝜎 − 𝜎

ℎ
, 𝐼
ℎ
�̃�)

= −𝑏 (𝜎 −Π
ℎ
𝜎, �̃� − 𝐼

ℎ
�̃�) + 𝑐 (𝑢

ℎ
, 𝐼
ℎ
�̃�) .

(47)

From the last two equalities and Cauchy-Swarchz inequality,

− 𝑏 (Π
ℎ
�̃�, 𝐼
ℎ
𝑢 − 𝑢
ℎ
)

≤
𝜎 − 𝜎ℎ

𝑎
Πℎ�̃� − �̃�

𝑎

+
∇ ⋅ (𝜎 −Πℎ𝜎)

0
∇ (�̃� − 𝐼ℎ�̃�)

0 +
𝑢ℎ

𝑐
𝐼ℎ�̃�

𝑐.

(48)

By (24), Lemma 2, Theorem 3, and regularity (35),

− 𝑏 (Π
ℎ
�̃�, 𝐼
ℎ
𝑢 − 𝑢
ℎ
)

≲ ℎ
min{𝑚+𝛼,𝑘−𝛼}

‖�̃�‖1 (‖𝜎‖𝑚 + ‖𝑢‖𝑚+2)

+ ℎ
min{𝑚+1,𝑘+1}

‖�̃�‖3‖𝜎‖𝑚

+ ℎ
min{𝑚+1,𝑘+1−2𝛼}

‖�̃�‖3 (‖𝜎‖𝑚 + ‖𝑢‖𝑚+2)

≲ ℎ
min{𝑚+𝛼,𝑘−𝛼}

(‖�̃�‖1 + ‖�̃�‖3) (‖𝜎‖𝑚 + ‖𝑢‖𝑚+2)

≲ ℎ
min{𝑚+𝛼,𝑘−𝛼}

(‖𝜎‖𝑚 + ‖𝑢‖𝑚+2)
𝐼ℎ𝑢 − 𝑢ℎ

1,

(49)

which together with (45) gives

𝐼ℎ𝑢 − 𝑢ℎ
1 ≲ ℎ

min{𝑚−1+2𝛼,𝑘−1}
(‖𝜎‖𝑚 + ‖𝑢‖𝑚+2) . (50)

Combined with triangle inequality and Lemma 2, we finish
the proof.

4. A Posteriori Error Analysis

In this section, we intend to investigate the a posteriori error
estimates of stabilized mixed finite element methods (12)-
(13).

4.1. Preliminaries. For any interior edge 𝑒 ∈ E𝑖
ℎ
, let 𝐾+ and

𝐾
− be the two adjacent triangles sharing edge 𝑒. Denote by

n+ and n− the unit outward normals to the common edge 𝑒 of
the triangles 𝐾+ and 𝐾−, respectively. For any vector-valued
function 𝜙, write 𝜙+ = 𝜙|

𝐾
+ and 𝜙− = 𝜙|

𝐾
− . Then define jump

on 𝑒 as follows:

[𝜙] = 𝜙
+
⋅ n+ + 𝜙− ⋅ n−. (51)

If an edge 𝑒 lies on the boundary 𝜕Ω, jump is defined by

[𝜙] = 𝜙 ⋅ n. (52)

Based on the triangulationT
ℎ
, let

𝑊:= {V ∈ 𝐻
1

0
(Ω) : V|

𝐾
∈ 𝐻
2
(𝐾) ∀𝐾 ∈ T

ℎ
} . (53)

And equip𝑊 with a broken energy norm as follows:

|‖V‖|
2
:= |V|
2

2,ℎ
+ ∑

𝑒∈Eℎ

ℎ
−1

𝑒
‖[∇V]‖

2

0,𝑒
∀V ∈ 𝑊. (54)

Define a seminorm for𝐻1
0
(Ω) as

‖V‖
2

�̃�
:= ∑

𝐾∈Tℎ

ℎ
2−4𝛼

𝐾

∇V −Q
𝑘−2

(∇V))


2

0,𝐾
∀V ∈ 𝐻

1

0
(Ω) .

(55)

For any 𝜏 ∈ Σ
ℎ
and V ∈ 𝑉

ℎ
, define error estimator as

𝜂
2

ℎ
(𝜏, V, 𝑓)

:= ∑

𝐾∈Tℎ

(ℎ
4

𝐾

𝑓 + ∇ ⋅ (∇ ⋅ 𝜏)


2

0,𝐾
+ ‖𝜏 −C (K (V))‖

2

0,𝐾
)

+ ∑

𝑒∈E𝑖
ℎ

ℎ
3

𝑒
‖[∇ ⋅ 𝜏]‖

2

0,𝑒
+ ∑

𝑒∈Eℎ

ℎ
−1

𝑒
‖[∇V]‖

2

0,𝑒
+ ‖V‖
2

�̃�
.

(56)

And the oscillation is defined as

osc2
ℎ
(𝑓) := ∑

𝐾∈Tℎ

ℎ
4

𝐾

𝑓 − 𝑄𝑙𝑓


2

0,𝐾
. (57)

For any vertex 𝑝 and edge 𝑒 of triangulation T
ℎ
, denote

T
𝑝
and T

𝑒
by the set of triangles in T

ℎ
sharing common

vertex 𝑝 and edge 𝑒, respectively. For any subset S ofT
ℎ
, let

|S| be the cardinalities of S. For any edge 𝑒 of triangulation
T
ℎ
, 𝜔
𝑒
means the union of elements inT

𝑒
.

To show the reliability of the error estimator introduced
previously, we need a𝐻2

0
(Ω)-conforming finite element space

and corresponding connection operator. Here we intend to
use the Zienkiewicz-Guzmán-Neilan finite element space
associated withT

ℎ
(cf. [1, 27]), by reason that the degrees of

freedom only involve the values and integrations of function
and first-order derivatives, no any higher-order derivatives.
For any 𝐾 ∈ T

ℎ
, denote by {𝑝

𝑖
}
3

𝑖=1
, {𝑒
𝑖
}
3

𝑖=1
the three

vertices and edges of 𝐾 and {𝜆
𝑖
}
3

𝑖=1
the three corresponding

barycentric coordinates such that 𝜆
𝑖
(𝑝
𝑗
) = 𝛿

𝑖𝑗
. Define the

triangle-bubble function and edge-bubble functions as

𝑏
𝐾
:= 𝜆
1
𝜆
2
𝜆
3
, 𝑏

𝑖
:= 𝜆
𝑖+1
𝜆
𝑖+2 (58)

for 𝑖 = 1, 2, 3, where 𝑖+1 and 𝑖+2 are taken as valuesmodulo 3,
respectively. Moreover, define rational edge bubble functions
as (𝑖 = 1, 2, 3)

𝐵
𝑖
:=
{

{

{

𝑏
𝐾
𝑏
𝑖

(𝜆
𝑖
+ 𝜆
𝑖+1
) (𝜆
𝑖
+ 𝜆
𝑖+2
)

for 0 ≤ 𝜆
𝑖
≤ 1, 0 ≤ 𝜆

𝑖+1
, 𝜆
𝑖+2

< 1,

0 otherwise.
(59)

Then the local and global Zienkiewicz-Guzmán-Neilan finite
element spaces given in [27] are

𝑈
𝐾
:= 𝑃
𝑘
(𝐾) + span {𝑏

𝑖
𝜆
𝑘−1

𝑖+1
}
3

𝑖=1
+ span {𝐵

𝑖
𝑄
(𝑖)

𝑘−2
(𝐾)}
3

𝑖=1
,

𝑈
ℎ
:= {𝑤 ∈ 𝐻

2

0
(Ω) : 𝑤|

𝐾
∈ 𝑈
𝐾
} ,

(60)
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where

𝑄
(𝑖)

𝑘−2
(𝐾)

:= {𝑤 ∈ 𝑃
𝑘−2

(𝐾) : ∫
𝐾

𝐵
𝑖
𝑤V 𝑑𝑥 = 0 ∀V ∈ 𝑃

𝑘−3
(𝐾)} .

(61)

In the case 𝑘 = 2, 𝑄(𝑖)
𝑘−2

(𝐾) is understood as 𝑃
0
(𝐾). The local

degrees of freedom are taken as

𝑤 (𝑝
𝑖
) ,∇𝑤 (𝑝

𝑖
) ∀ vertices𝑝

𝑖
,

∫
𝑒𝑖

𝑤V 𝑑𝑠 ∀V ∈ 𝑃
𝑘−3

(𝑒
𝑖
) ,

∫
𝐾

𝑤V 𝑑𝑥 ∀V ∈ 𝑃
𝑘−3

(𝐾) ,

∫
𝑒𝑖

𝜕
𝑛
𝑤V 𝑑𝑠 ∀V ∈ 𝑃

𝑘−2
(𝑒
𝑖
) .

(62)

Now we can construct a connection operator 𝐿
ℎ
: 𝑉
ℎ
→

𝑈
ℎ
by averaging (for details see [6, 34]) in the following way:

Given𝑤 ∈ 𝑉
ℎ
, for every interior vertex 𝑝, interior edge 𝑒, and

triangle 𝐾 of triangulationT
ℎ
,

𝐿
ℎ
𝑤 (𝑝) = 𝑤 (𝑝) , ∇𝐿

ℎ
𝑤 (𝑝) =

1


T
𝑝



∑

𝐾

∈T𝑝

∇ (𝑤|
𝐾
) (𝑝) ,

∫
𝑒

(𝑤 − 𝐿
ℎ
𝑤) V 𝑑𝑠 = 0 ∀V ∈ 𝑃

𝑘−3
(𝑒) ,

∫
𝐾

(𝑤 − 𝐿
ℎ
𝑤) V 𝑑𝑥 = 0 ∀V ∈ 𝑃

𝑘−3
(𝐾) ,

∫
𝑒

(
1

T𝑒


∑

𝐾

∈T𝑒

𝜕
𝑛
(𝑤|
𝐾
) − 𝜕
𝑛
(𝐿
ℎ
𝑤)) V 𝑑𝑠 = 0

∀V ∈ 𝑃
𝑘−2

(𝑒) ,

(63)

and for every vertex 𝑝, edge 𝑒 on 𝜕Ω,

𝐿
ℎ
𝑤 (𝑝) = 0, ∇𝐿

ℎ
𝑤 (𝑝) = 0, (64)

∫
𝑒

(𝐿
ℎ
𝑤) V 𝑑𝑠 = 0 ∀V ∈ 𝑃

𝑘−3
(𝑒) , (65)

∫
𝑒

𝜕
𝑛
(𝐿
ℎ
𝑤) V 𝑑𝑠 = 0 ∀V ∈ 𝑃

𝑘−2
(𝑒) . (66)

According to the similar arguments in [6, 34, 35], we can get
the following estimate for connection operator 𝐿

ℎ
:

V − 𝐿ℎV


2

2,ℎ
≲ ∑

𝑒∈Eℎ

ℎ
−1

𝑒
‖[∇V]‖

2

0,𝑒
∀V ∈ 𝑉

ℎ
. (67)

4.2. A Posteriori Error Analysis. First, let us consider the reli-
ability of the a posteriori error estimator. We will follow the
similar argument as in [6] by replacingHsieh-Clough-Tocher
element space byZienkiewicz-Guzmán-Neilan element space
proposed in [27].

Theorem 6. Let (𝜎, 𝑢) and (𝜎
ℎ
, 𝑢
ℎ
) be solutions of mixed for-

mulation (4)-(5) and stabilized mixed finite element methods
(12)-(13), respectively. Then

𝜎 − 𝜎ℎ
0 +


𝑢 − 𝑢ℎ


 +

𝑢ℎ
�̃� ≲ 𝜂ℎ (𝜎ℎ, 𝑢ℎ, 𝑓) . (68)

Proof. Letting 𝑤 = 𝑢 − 𝐿
ℎ
𝑢
ℎ
, then 𝑤 ∈ 𝐻

2

0
(Ω). Using

integration by parts, (5) and (13), we have

∫
Ω

(𝜎 − 𝜎
ℎ
) : K (𝑤) 𝑑𝑥

= −𝑏 (𝜎 − 𝜎
ℎ
, 𝑤)

= ∫
Ω

𝑓𝑤𝑑𝑥 + 𝑏 (𝜎
ℎ
, 𝑤)

= ∫
Ω

𝑓 (𝑤 − 𝐼
ℎ
𝑤) 𝑑𝑥 + 𝑏 (𝜎

ℎ
, 𝑤 − 𝐼

ℎ
𝑤) + 𝑐 (𝑢

ℎ
, 𝐼
ℎ
𝑤)

= ∑

𝐾∈Tℎ

∫
𝐾

(𝑓 + ∇ ⋅ (∇ ⋅ 𝜎
ℎ
)) (𝑤 − 𝐼

ℎ
𝑤) 𝑑𝑥

− ∑

𝑒∈E𝑖
ℎ

∫
𝑒

[∇ ⋅ 𝜎
ℎ
] (𝑤 − 𝐼

ℎ
𝑤) 𝑑𝑠 + 𝑐 (𝑢

ℎ
, 𝐼
ℎ
𝑤) .

(69)

Then by Cauchy-Swarchz inequality, Lemma 2, and (23), we
get

∫
Ω

(𝜎 − 𝜎
ℎ
) : K (𝑤) 𝑑𝑥

≲ ( ∑

𝐾∈Tℎ

ℎ
4

𝐾

𝑓 + ∇ ⋅ (∇ ⋅ 𝜎ℎ)


2

0,𝐾
)

1/2

|𝑤|2

+ ( ∑

𝑒∈E𝑖
ℎ

ℎ
3

𝑒

[∇ ⋅ 𝜎ℎ]


2

0,𝑒
)

1/2

|𝑤|2 +
𝑢ℎ

�̃�|𝑤|2.

(70)

It follows from Cauchy-Swarchz inequality, triangular
inequality, and (67) that

∫
Ω

(𝜎
ℎ
−C (K (𝐿

ℎ
𝑢
ℎ
))) : K (𝑤) 𝑑𝑥

≲
𝜎ℎ −C (K (𝐿

ℎ
𝑢
ℎ
))
0|𝑤|2

≲ (
𝜎ℎ −C (K

ℎ
(𝑢
ℎ
))
0 +

𝑢ℎ − 𝐿ℎ𝑢ℎ
2,ℎ) |𝑤|2

≲ (
𝜎ℎ −C (K

ℎ
(𝑢
ℎ
))
0

+( ∑

𝑒∈Eℎ

ℎ
−1

𝑒

[∇𝑢ℎ]


2

0,𝑒
)

1/2

)|𝑤|2,

(71)
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where K
ℎ
means the discrete version of K associated with

triangulation T
ℎ
. Combining the last two inequalities, we

obtain by the fact that 𝜎 = C(K(𝑢))

𝑢 − 𝐿ℎ𝑢ℎ


2

2
≲ ∫
Ω

(𝜎 − 𝜎
ℎ
) : K (𝑤) 𝑑𝑥

+ ∫
Ω

(𝜎
ℎ
−C (K (𝐿

ℎ
𝑢
ℎ
))) : K (𝑤) 𝑑𝑥

≲ 𝜂
ℎ
(𝜎
ℎ
, 𝑢
ℎ
, 𝑓)

𝑢 − 𝐿ℎ𝑢ℎ
2.

(72)

Thus, we have
𝑢 − 𝐿ℎ𝑢ℎ

2 ≲ 𝜂ℎ (𝜎ℎ, 𝑢ℎ, 𝑓) . (73)

Then triangular inequality and (67) imply

𝑢 − 𝑢ℎ
2,ℎ

≤
𝑢 − 𝐿ℎ𝑢ℎ

2 +
𝐿ℎ𝑢ℎ − 𝑢ℎ

2,ℎ

≲ 𝜂
ℎ
(𝜎
ℎ
, 𝑢
ℎ
, 𝑓) + ( ∑

𝑒∈Eℎ

ℎ
−1

𝑒

[∇𝑢ℎ]


2

0,𝑒
)

1/2

≲ 𝜂
ℎ
(𝜎
ℎ
, 𝑢
ℎ
, 𝑓) .

(74)

Together with triangular inequality, it holds that

𝜎 − 𝜎ℎ
0 ≤

𝜎 −C (K
ℎ
(𝑢
ℎ
))
0 +

𝜎ℎ −C (K
ℎ
(𝑢
ℎ
))
0

≲
𝑢 − 𝑢ℎ

2,ℎ +
𝜎ℎ −C (K

ℎ
(𝑢
ℎ
))
0

≲ 𝜂
ℎ
(𝜎
ℎ
, 𝑢
ℎ
, 𝑓) .

(75)

Finally, noting the fact [∇𝑢] = 0 on E
ℎ
, it follows from the

last two inequality that

𝜎 − 𝜎ℎ


2

0
+

𝑢 − 𝑢ℎ




2

=
𝜎 − 𝜎ℎ



2

0
+
𝑢 − 𝑢ℎ



2

2,ℎ
+ ∑

𝑒∈Eℎ

ℎ
−1

𝑒

[∇ (𝑢 − 𝑢ℎ)]


2

0,𝑒

=
𝜎 − 𝜎ℎ



2

0
+
𝑢 − 𝑢ℎ



2

2,ℎ
+ ∑

𝑒∈Eℎ

ℎ
−1

𝑒

[∇𝑢ℎ]


2

0,𝑒

≲ 𝜂
2

ℎ
(𝜎
ℎ
, 𝑢
ℎ
, 𝑓) ,

(76)

which together with the definition of 𝜂
ℎ
ends the proof.

Then, we study the efficiency of the a posteriori error
estimator by bubble function argument.

Lemma 7. Let (𝜎, 𝑢) and (𝜎
ℎ
, 𝑢
ℎ
) be solutions to mixed for-

mulation (4)-(5) and stabilized mixed finite element methods
(12)-(13), respectively. Then for all 𝐾 ∈ T

ℎ
,

ℎ
2

𝐾

𝑓 + ∇ ⋅ (∇ ⋅ 𝜎ℎ)
0,𝐾 ≲

𝜎 − 𝜎ℎ
0,𝐾 + ℎ

2

𝐾

𝑓 − 𝑄𝑙𝑓
0,𝐾.

(77)

Proof. Let 𝜓
𝐾
:= (𝑄

𝑙
𝑓 + ∇ ⋅ (∇ ⋅ 𝜎

ℎ
))𝑏
2

𝐾
. It is obvious that

𝜓
𝐾
∈ 𝐻
2

0
(𝐾) and

𝜓𝐾
0,𝐾 ≈

𝑄𝑙𝑓 + ∇ ⋅ (∇ ⋅ 𝜎ℎ)
0,𝐾. (78)

Using integration by parts and (5) with V = 𝜓
𝐾
, it follows that

∫
𝐾

(𝑓 + ∇ ⋅ (∇ ⋅ 𝜎
ℎ
)) 𝜓
𝐾
𝑑𝑥

= ∫
𝐾

𝑓𝜓
𝐾
𝑑𝑥 + 𝑏 (𝜎

ℎ
, 𝜓
𝐾
)

= 𝑏 (𝜎
ℎ
− 𝜎, 𝜓

𝐾
) = ∫
𝐾

(𝜎 − 𝜎
ℎ
) : K (𝜓

𝐾
) 𝑑𝑥.

(79)

Together with standard scaling argument, Cauchy-Swarchz
inequality, and inverse inequality, we have

𝑄𝑙𝑓 + ∇ ⋅ (∇ ⋅ 𝜎ℎ)


2

0,𝐾

≲ ∫
𝐾

(𝑄
𝑙
𝑓 + ∇ ⋅ (∇ ⋅ 𝜎

ℎ
)) 𝜓
𝐾
𝑑𝑥

= ∫
𝐾

(𝑓 + ∇ ⋅ (∇ ⋅ 𝜎
ℎ
)) 𝜓
𝐾
𝑑𝑥 + ∫

𝐾

(𝑄
𝑙
𝑓 − 𝑓)𝜓

𝐾
𝑑𝑥

= ∫
𝐾

(𝜎 − 𝜎
ℎ
) : K (𝜓

𝐾
) 𝑑𝑥 + ∫

𝐾

(𝑄
𝑙
𝑓 − 𝑓)𝜓

𝐾
𝑑𝑥

≲ (ℎ
−2

𝐾

𝜎 − 𝜎ℎ
0,𝐾 +

𝑓 − 𝑄𝑙𝑓
0,𝐾)

𝜓𝐾
0,𝐾,

(80)

which together with (78) shows

ℎ
2

𝐾

𝑄𝑙𝑓 + ∇ ⋅ (∇ ⋅ 𝜎ℎ)
0,𝐾 ≲

𝜎 − 𝜎ℎ
0,𝐾 + ℎ

2

𝐾

𝑓 − 𝑄𝑙𝑓
0,𝐾.

(81)

Therefore, we can obtain (77) by the last inequality and
triangular inequality.

Lemma 8. Let (𝜎, 𝑢) and (𝜎
ℎ
, 𝑢
ℎ
) be solutions to mixed for-

mulation (4)-(5) and stabilized mixed finite element methods
(12)-(13), respectively. Then for all 𝑒 ∈ E𝑖

ℎ
,

ℎ
3/2

𝑒

[∇ ⋅ 𝜎ℎ]
0,𝑒 ≲

𝜎 − 𝜎ℎ
0,𝜔𝑒

+ ℎ
2

𝑒

𝑓 − 𝑄𝑙𝑓
0,𝜔𝑒

. (82)

Proof. Let𝐾
1
, 𝐾
2
∈ T
ℎ
such that 𝑒 is common shared edge of

𝐾
1
and𝐾

2
, and define edge bubble function as (cf. [19, 36])

𝑏
𝑒
= {

(𝜆
𝐾1 ,1

𝜆
𝐾1 ,2

𝜆
𝐾2 ,1

𝜆
𝐾2 ,2

)
2

in𝜔
𝑒
,

0 inΩ \ 𝜔
𝑒
,

(83)

where 𝜆
𝐾1 ,𝑖

and 𝜆
𝐾2 ,𝑖

for 𝑖 = 1, 2 are barycentric coordinates
of𝐾
1
and𝐾

2
associated with two end points of 𝑒, respectively.

Set 𝐽
𝑒
:= [∇ ⋅ 𝜎

ℎ
]|
𝑒
. 𝐸
ℎ
(𝐽
𝑒
) is defined by extending the jump

𝐽
𝑒
to 𝜔
𝑒
constantly along the normal to 𝑒. Thus 𝐸

ℎ
(𝐽
𝑒
) is

a piecewise polynomial of degree 𝑘 − 2 on 𝜔
𝑒
and 𝜓

𝑒
:=

𝑏
2

𝑒
𝐸
ℎ
(𝐽
𝑒
) ∈ 𝐻

2

0
(𝜔
𝑒
). It is easy to check that

𝜓𝑒
0,𝜔𝑒

≲ ℎ
1/2

𝑒

𝐽𝑒
0,𝑒. (84)
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By standard scaling argument, integration by parts, and (5)
with V = 𝜓

𝑒
, it follows that

𝐽𝑒


2

0,𝑒

≲ ∫
𝑒

𝐽
𝑒
𝜓
𝑒
𝑑𝑠

= ∑

𝐾∈T𝑒

∫
𝐾

𝜓
𝑒
∇ ⋅ (∇ ⋅ 𝜎

ℎ
) 𝑑𝑥 − 𝑏 (𝜎

ℎ
, 𝜓
𝑒
)

= ∑

𝐾∈T𝑒

∫
𝐾

(𝑓 + ∇ ⋅ (∇ ⋅ 𝜎
ℎ
)) 𝜓
𝑒
𝑑𝑥 + 𝑏 (𝜎 − 𝜎

ℎ
, 𝜓
𝑒
)

= ∑

𝐾∈T𝑒

∫
𝐾

(𝑓 + ∇ ⋅ (∇ ⋅ 𝜎
ℎ
)) 𝜓
𝑒
𝑑𝑥

− ∑

𝐾∈T𝑒

∫
𝐾

(𝜎 − 𝜎
ℎ
) : K (𝜓

𝑒
) 𝑑𝑥.

(85)

Then from Cauchy-Schwarz inequality, (77), inverse inequal-
ity, and (84),

𝐽𝑒


2

0,𝑒

≲ ∑

𝐾∈T𝑒

(
𝑓 + ∇ ⋅ (∇ ⋅ 𝜎ℎ)

0,𝐾
𝜓𝑒

0,𝐾

+
𝜎 − 𝜎ℎ

0,𝐾
𝜓𝑒

2,𝐾)

≲ ∑

𝐾∈T𝑒

(ℎ
−2

𝐾

𝜎 − 𝜎ℎ
0,𝐾 +

𝑓 − 𝑄𝑙𝑓
0,𝐾)

𝜓𝑒
0,𝐾

≲ ℎ
1/2

𝑒

𝐽𝑒
0,𝑒 ∑

𝐾∈T𝑒

(ℎ
−2

𝐾

𝜎 − 𝜎ℎ
0,𝐾 +

𝑓 − 𝑄𝑙𝑓
0,𝐾) .

(86)

Therefore, we can conclude (82) by canceling ‖𝐽
𝑒
‖
0,𝑒

on both
sides and the fact that ℎ

𝑒
≈ ℎ
𝐾
.

Theorem 9. Let (𝜎, 𝑢) and (𝜎
ℎ
, 𝑢
ℎ
) be solutions for mixed for-

mulation (4)-(5) and stabilized mixed finite element methods
(12)-(13), respectively. Then

𝜂
ℎ
(𝜎
ℎ
, 𝑢
ℎ
, 𝑓) ≲

𝜎 − 𝜎ℎ
0 +


𝑢 − 𝑢ℎ


 +

𝑢ℎ
�̃� + osc

ℎ
(𝑓) .

(87)

Proof. Noting that 𝜎 = C(K(𝑢)), it follows from triangular
inequality that

𝜎ℎ −C (K (𝑢
ℎ
))
0,𝐾

≤
𝜎 − 𝜎ℎ

0,𝐾 +
C (K (𝑢)) −C (K (𝑢

ℎ
))
0,𝐾

≲
𝜎 − 𝜎ℎ

0,𝐾 +
𝑢 − 𝑢ℎ

2,𝐾.

(88)

Hence, the proof is finished by combining the last inequality,
(77), (82), and the definition of 𝜂

ℎ
(𝜎
ℎ
, 𝑢
ℎ
, 𝑓) and ‖|𝑢 − 𝑢

ℎ
|‖.
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