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Positive solutions for a kind of third-order multipoint boundary value problem under the nonresonant conditions and the resonant
conditions are considered. In the nonresonant case, by using the Leggett-Williams fixed point theorem, the existence of at least
three positive solutions is obtained. In the resonant case, by using the Leggett-Williams norm-type theorem due to O’Regan and
Zima, the existence result of at least one positive solution is established. It is remarkable to point out that it is the first time that the
positive solution is considered for the third-order boundary value problem at resonance. Some examples are given to demonstrate
the main results of the paper.

1. Introduction

Weconsider the existence of positive solutions for third-order
𝑚-point boundary value problem:

𝑥
󸀠󸀠󸀠

(𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) = 0, 𝑡 ∈ [0, 1] ,

𝑥
󸀠󸀠

(0) = 0, 𝑥
󸀠

(0) = 0, 𝑥 (1) =

𝑚−2

∑

𝑖=1

𝛽
𝑖
𝑥 (𝜉
𝑖
) ,

(1)

where 0 < 𝜉
1
< 𝜉
2
< ⋅ ⋅ ⋅ < 𝜉

𝑚−2
< 1, 0 ≤ 𝛽

𝑖
≤ 1, 𝑖 =

1, 2, . . . , 𝑚 − 2, ∑𝑚−2
𝑖=1

𝛽
𝑖
≤ 1, and 𝑓 ∈ 𝐶([0, 1] × [0,∞), 𝑅).

If condition ∑
𝑚−2

𝑖=1
𝛽
𝑖
= 1 holds, the problem is called

resonant boundary value problem or boundary value prob-
lem at resonance. Otherwise, the associated problem is called
nonresonant boundary value problem. Here, the condition
∑
𝑚−2

𝑖=1
𝛽
𝑖
= 1 is denoted by (1.2).

Third-order differential equations arise in a variety of
different areas of applied mathematics and physics, as the
deflection of a curved beam having a constant or varying
cross section, three-layer beam, and so on [1]. In recent
years, the existence of positive solutions for nonresonant two-
point or three-point boundary value problems (Bvp for short)
for nonlinear third-order ordinary differential equations has
been studied by several authors. For examples, Anderson [2]

established the existence of at least three positive solutions to
problem

−𝑥
󸀠󸀠󸀠

(𝑡) + 𝑓 (𝑥 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,

𝑥 (0) = 𝑥
󸀠
(𝑡
2
) = 𝑥
󸀠󸀠

(1) = 0,

(2)

where 𝑓 : 𝑅 → [0, +∞) is continuous and 1/2 ≤ 𝑡
2
< 1.

By using the well-known Guo-Krasnoselskĭi fixed point
theorem [3], Palamides and Smyrlis [4] proved that there
exists at least one positive solution for third-order three-point
problem:

𝑥
󸀠󸀠󸀠

(𝑡) = 𝑎 (𝑡) 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ (0, 1) ,

𝑥
󸀠󸀠
(𝜂) = 0, 𝑥 (0) = 𝑥 (1) = 0, 𝜂 ∈ (0, 1) .

(3)

For more existence results of positive solutions for boundary
value problems of third-order ordinary differential equations,
one can see [5–12] and references therein.

For resonant problem of second-order or higher-order
differential equations, many existence results of solutions
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have been established, see [13–25]. In [25], the authors
considered the problem

𝑥
󸀠󸀠󸀠

(𝑡) = 𝑓 (𝑡, 𝑥, 𝑥
󸀠
) + 𝑒 (𝑡) , 𝑡 ∈ (0, 1) ,

𝑥
󸀠

(0) = 0, 𝑥 (1) = 𝛽𝑥 (𝜂) , 𝑥 (0) =

𝑚−2

∑

𝑖=1

𝛼
𝑖
𝑥 (𝜉
𝑖
) .

(4)

By using the Mawhin continuation theorem, the existence
results of solutions are established under the resonant con-
dition 𝛽 = 1, ∑𝑚−2

𝑖=1
𝛼
𝑖
= 1, ∑𝑚−2

𝑖=1
𝛼
𝑖
𝜉
2

𝑖
= 0 and 𝛽 = 1/𝜂,

∑
𝑚−2

𝑖=1
𝛼
𝑖
= 1, ∑𝑚−2

𝑖=1
𝛼
𝑖
𝜉
2

𝑖
= 0, respectively.

It is well known that the problem of existence for positive
solution to nonlinear Bvp is very difficult when the resonant
case is considered. Only few works gave the approach in this
area for first- and second-order differential equations [26–31].
To our best knowledge, no paper deal with the existence result
of positive solution for resonant third-order boundary value
problems. Motivated by the approach in [27–29], we study
the existence of positive solution for problem (1) under the
nonresonant condition ∑

𝑚−2

𝑖=1
𝛽
𝑖
< 1 and resonant condition

∑
𝑚−2

𝑖=1
𝛽
𝑖
= 1, respectively. By using the Leggett-Williams fixed

point theorem and its generalization [28, 30], we establish the
existence results of positive solutions.The results obtained in
this paper are interesting because

(1) the results obtained in the nonresonant case are more
general than those established before;

(2) it is the first time that the positive solution is consid-
ered for third-order Bvp at resonance.

The rest of the paper is organized as follows. Some def-
initions and lemmas are given in Section 2. In Section 3, we
consider the nonresonant case for problem (1). In Section 4,
we discuss the existence of positive solution for problem (1)
with resonant condition (1.2). Finally, in Section 5, we give
some examples to illustrate the main results of the paper.

2. Background Definitions and Lemmas

For the convenience of the reader, we present here the
necessary definitions and two-fixed point theorems.

Let 𝑋, 𝑌 be real Banach spaces. A nonempty convex
closed set 𝐶 ⊂ 𝑋 is said to be a cone provided that

(1) 𝑎𝑥 ∈ 𝐶, for all 𝑥 ∈ 𝐶, 𝑎 ≥ 0,

(2) 𝑥, −𝑥 ∈ 𝐶 implies 𝑥 = 0.

Definition 1. The map 𝜓 is said to be a nonnegative continu-
ous concave functional on 𝐶 provided that 𝜓 : 𝐶 → +∞ is
continuous and

𝜓 (𝑡𝑥 + (1 − 𝑡) 𝑦) ≥ 𝑡𝜓 (𝑥) + (1 − 𝑡) 𝜓 (𝑦) , (5)

for all 𝑥, 𝑦 ∈ 𝐶 and 𝑡 ∈ [0, 1].

Definition 2. Let 0 < 𝑎 < 𝑏 be given and let 𝜓 be a
nonnegative continuous concave functional on the cone 𝐶.
Define the convex sets 𝐶

𝑟
and 𝐶(𝜓, 𝑎, 𝑏) by

𝐶
𝑟
= {𝑥 ∈ 𝐶 | ‖𝑥‖ < 𝑟} ,

𝐶 (𝜓, 𝑎, 𝑏) = {𝑥 ∈ 𝐶 | 𝑎 ≤ 𝜓 (𝑥) , ‖𝑥‖ ≤ 𝑏} .

(6)

Lemma 3 (the Leggett-Williams fixed point theorem [32]).
Let 𝑇 : 𝐶

𝑟
→ 𝐶

𝑟
be a completely continuous operator and

let 𝜓 be a nonnegative continuous concave functional on 𝐶

such that 𝜓(𝑥) ≤ ‖𝑥‖ for all 𝑥 ∈ 𝐶
𝑟
. Suppose that there exist

0 < 𝑎 < 𝑏 < 𝑑 ≤ 𝑐 such that

(H
1
) {𝑥 ∈ 𝐶(𝜓, 𝑏, 𝑑) | 𝜓(𝑥) > 𝑏} ̸=⌀ and 𝜓(𝑇𝑥) > 𝑏, for
𝑥 ∈ 𝐶(𝜓, 𝑏, 𝑑),

(H
2
) ‖𝑇𝑥‖ < 𝑎 for ‖𝑥‖ ≤ 𝑎,

(H
3
) 𝜓(𝑇𝑥) > 𝑏 for 𝑥 ∈ 𝐶(𝜓, 𝑏, 𝑐) with ‖𝑇𝑥‖ ≥ 𝑑.

Then, 𝑇 has at least three-fixed points 𝑥
1
, 𝑥
2
, and 𝑥

3
such that

󵄩
󵄩
󵄩
󵄩
𝑥
1

󵄩
󵄩
󵄩
󵄩
< 𝑎, 𝑏 < 𝜓 (𝑥

2
) ,

󵄩
󵄩
󵄩
󵄩
𝑥
3

󵄩
󵄩
󵄩
󵄩
> 𝑎, 𝜓 (𝑥

3
) < 𝑏.

(7)

Operator 𝐿 : dom 𝐿 ⊂ 𝑋 → 𝑌 is called a
Fredholm operator with index zero, that is, Im 𝐿 is closed and
dimKer 𝐿 = 𝑐𝑜𝑑𝑖𝑚 Im 𝐿 < ∞, which implies that there exist
continuous projections 𝑃 : 𝑋 → 𝑋 and 𝑄 : 𝑌 → 𝑌 such that
Im𝑃 = Ker 𝐿 and Ker𝑄 = Im 𝐿. Moreover, since dim Im𝑄 =

𝑐𝑜𝑑𝑖𝑚 Im 𝐿, there exists an isomorphism 𝐽 : Im𝑄 → Ker 𝐿.
Denote by 𝐿

𝑃
, the restriction of 𝐿 to Ker𝑃 ∩ dom 𝐿 to Im 𝐿

and its inverse by𝐾
𝑃
, so𝐾
𝑃
: Im 𝐿 → Ker𝑃∩ dom 𝐿 and the

coincidence equation 𝐿𝑥 = 𝑁𝑥 is equivalent to

𝑥 = (𝑃 + 𝐽𝑄𝑁) 𝑥 + 𝐾
𝑃
(𝐼 − 𝑄)𝑁𝑥. (8)

Denote 𝛾 : 𝑋 → 𝐶 to be a retraction, that is, a continuous
mapping such that 𝛾𝑥 = 𝑥 for all 𝑥 ∈ 𝐶 and

Ψ := 𝑃 + 𝐽𝑄𝑁 + 𝐾
𝑃
(𝐼 − 𝑄)𝑁,

Ψ
𝛾
:= Ψ ∘ 𝛾.

(9)

Lemma 4 (the Leggett-Williams norm-type theorem [27]).
Let C be a cone in𝑋, and let Ω

1
,Ω
2
be open bounded subsets

of𝑋withΩ
1
⊂ Ω
2
,𝐶∩(Ω

2
\Ω
1
) ̸= 0. Assume that 𝐿 : dom 𝐿 ⊂

𝑋 → 𝑌 is a Fredholm operator of index zero and

(C1) 𝑄𝑁 : 𝑋 → 𝑌 is continuous and bounded, 𝐾
𝑃
(𝐼 −

𝑄)𝑁 : 𝑋 → 𝑋 is compact on every bounded subset of
𝑋,

(C2) 𝐿𝑥 ̸= 𝜆𝑁𝑥 for all 𝑥 ∈ 𝐶 ∩ 𝜕Ω
2
∩ dom 𝐿 and 𝜆 ∈ (0, 1),

(C3) 𝛾maps subsets of Ω
2
into bounded subsets of C,

(C4) 𝑑
𝐵
([𝐼 − (𝑃 + 𝐽𝑄𝑁)𝛾]|ker𝐿,Ker 𝐿∩Ω2, 0) ̸= 0, where 𝑑

𝐵

stands for the Brouwer degree,
(C5) there exists 𝑢

0
∈ 𝐶 \ {0} such that ‖𝑥‖ ≤ 𝜎(𝑢

0
)‖Ψ𝑥‖ for

𝑥 ∈ 𝐶(𝑢
0
) ∩ 𝜕Ω

1
, where 𝐶(𝑢

0
) = {𝑥 ∈ 𝐶 : 𝜇𝑢

0
≤ 𝑥} for

some 𝜇 > 0 and 𝜎(𝑢
0
) such that ‖𝑥 + 𝑢

0
‖ ≥ 𝜎(𝑢

0
)‖𝑥‖

for every 𝑥 ∈ 𝐶,
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(C6) (𝑃 + 𝐽𝑄𝑁)𝛾(𝜕Ω
2
) ⊂ 𝐶,

(C7) Ψ
𝛾
(Ω
2
\ Ω
1
) ⊂ 𝐶,

then the equation 𝐿𝑥 = 𝑁𝑥 has a solution in the set
𝐶 ∩ (Ω

2
\ Ω
1
).

3. Positive Solution for
the Nonresonant Problem

In this section, we suppose that 𝑓 ∈ 𝐶([0, 1] ×

[0, +∞), [0, +∞)) and ∑
𝑚−2

𝑖=1
𝛽
𝑖
< 1. We begin with some

preliminary results. Consider the problem

𝑥
󸀠󸀠󸀠

(𝑡) + 𝑦 (𝑡) = 0, 𝑡 ∈ [0, 1] , (10)

𝑥
󸀠󸀠

(0) = 0, 𝑥
󸀠

(0) = 0, 𝑥 (1) =

𝑚−2

∑

𝑖=1

𝛽
𝑖
𝑥 (𝜉
𝑖
) . (11)

Lemma 5. Denote 𝜉
0
= 0, 𝜉

𝑚−1
= 1, 𝛽

0
= 𝛽
𝑚−1

= 0, then for
𝑦(𝑡) ∈ 𝐶[0, 1], problems (10) and (11) have the unique solution

𝑥 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) ∫

𝑠

0

𝑦 (𝜏) 𝑑𝜏 𝑑𝑠, (12)

where

𝐺 (𝑡, 𝑠) =

1

1 − ∑
𝑚−1

𝑘=0
𝛽
𝑘

×

{
{
{
{
{

{
{
{
{
{

{

(1 − 𝑠) +

𝑚−1

∑

𝑘=𝑖

𝛽
𝑘
(𝑠 − 𝜉
𝑘
) , 𝑡 ≤ 𝑠,

(1 − 𝑡) +

𝑖−1

∑

𝑘=0

𝛽
𝑘
(𝑡 − 𝑠) +

𝑚−1

∑

𝑘=𝑖

𝛽
𝑘
(𝑡 − 𝜉
𝑘
) , 𝑡 ≥ 𝑠,

(13)

for 𝜉
𝑖−1

< 𝑠 < 𝜉
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 − 1.

Proof. Integrating both sides of (10) and considering the
boundary condition 𝑥

󸀠󸀠
(0) = 0, we have

−𝑥
󸀠󸀠

(𝑡) = ∫

𝑡

0

𝑦 (𝑠) 𝑑𝑠. (14)

Let 𝐺(𝑡, 𝑠) be the Green function of problem

−𝑥
󸀠󸀠

(𝑡) = 0, (15)

𝑥
󸀠

(0) = 0, 𝑥 (1) =

𝑚−1

∑

𝑖=0

𝛽
𝑖
𝑥 (𝜉
𝑖
) . (16)

From (15), we can suppose that

𝐺 (𝑡, 𝑠) = {

𝐴 + 𝐵𝑡 𝑡 ≤ 𝑠, 𝜉
𝑖−1

< 𝑠 < 𝜉
𝑖
,

𝐶 + 𝐷𝑡 𝑡 ≥ 𝑠, 𝜉
𝑖−1

< 𝑠 < 𝜉
𝑖
.

(17)

For the definition and properties of the Green function
together with (16), we have

𝐴 + 𝐵𝑠 = 𝐶 + 𝐷𝑠,

𝐵 − 𝐷 = 1,

𝐵 = 0,

𝐶 + 𝐷 =

𝑖−1

∑

𝑘=0

𝛽
𝑘
(𝐴 + 𝐵𝜉

𝑘
) +

𝑚−1

∑

𝑘=𝑖

𝛽
𝑘
(𝐶 + 𝐷𝜉

𝑘
) .

(18)

Hence,

𝐴 =

1 − 𝑠 + ∑
𝑚−1

𝑘=𝑖
𝛽
𝑘
(𝑠 − 𝜉
𝑘
)

1 − ∑
𝑚−1

𝑖=0
𝛽
𝑖

,

𝐶 =

1 − ∑
𝑖−1

𝑘=0
𝛽
𝑘
𝑠 − ∑
𝑚−1

𝑘=𝑖
𝛽
𝑘
𝜉
𝑘

1 − ∑
𝑚−1

𝑖=0
𝛽
𝑖

,

𝐵 = 0, 𝐷 = −1.

(19)

Thus,

𝐺 (𝑡, 𝑠) =

1

1 − ∑
𝑚−1

𝑘=0
𝛽
𝑘

×

{
{
{
{
{

{
{
{
{
{

{

(1 − 𝑠) +

𝑚−1

∑

𝑘=𝑖

𝛽
𝑘
(𝑠 − 𝜉
𝑘
) , 𝑡 ≤ 𝑠,

(1 − 𝑡) +

𝑖−1

∑

𝑘=0

𝛽
𝑘
(𝑡 − 𝑠) +

𝑚−1

∑

𝑘=𝑖

𝛽
𝑘
(𝑡 − 𝜉
𝑘
) , 𝑡 ≥ 𝑠,

(20)

for 𝜉
𝑖−1

< 𝑠 < 𝜉
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 − 1.

Considering (14) together, we obtain that problems (10)
and (11) have the unique solution

𝑥 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) ∫

𝑠

0

𝑦 (𝜏) 𝑑𝜏 𝑑𝑠. (21)

Lemma 6. The function 𝐺(𝑡, 𝑠) established in Lemma 5 satis-
fies that 𝐺(𝑡, 𝑠) ≥ 0, 𝑡, 𝑠 ∈ [0, 1].

Proof. For 𝜉
𝑖−1

≤ 𝑠 ≤ 𝜉
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 − 1 and 𝑡 ≤ 𝑠,

(1 − 𝑠) +

𝑚−1

∑

𝑘=𝑖

𝛽
𝑘
(𝑠 − 𝜉
𝑘
) ≥

𝑚−1

∑

𝑘=𝑖

𝛽
𝑘
(1 − 𝜉

𝑘
) ≥ 0. (22)

For 𝜉
𝑖−1

≤ 𝑠 ≤ 𝜉
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 − 1 and 𝑡 ≥ 𝑠,

(1 − 𝑡) +

𝑖−1

∑

𝑘=0

𝛽
𝑘
(𝑡 − 𝑠) +

𝑚−1

∑

𝑘=𝑖

𝛽
𝑘
(𝑡 − 𝜉
𝑘
)

≥

𝑖−1

∑

𝑘=0

𝛽
𝑘
(1 − 𝑠) +

𝑚−1

∑

𝑘=𝑖

𝛽
𝑘
(1 − 𝜉

𝑘
) ≥ 0.

(23)

These ensures that 𝐺(𝑡, 𝑠) ≥ 0, 𝑡, 𝑠 ∈ [0, 1].
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Lemma 7. If 𝑦 ∈ 𝐶[0, 1] and 𝑦 ≥ 0, then the unique solution
𝑥 of problems (10) and (11) satisfy

min
0≤𝑡≤1

𝑥 (𝑡) ≥ 𝛾max
0≤𝑡≤1

𝑥 (𝑡) , (24)

where 𝛾 = (∑
𝑚−2

𝑖=1
𝛽
𝑖
(1 − 𝜉

𝑖
))/(1 − ∑

𝑚−2

𝑖=1
𝛽
𝑖
𝜉
𝑖
) > 0 is a constant.

Proof. For 𝑥󸀠󸀠󸀠(𝑡) = −𝑦(𝑡) ≤ 0, 𝑡 ∈ [0, 1], we get that 𝑥󸀠󸀠(𝑡) is
decreasing on [0, 1]. Then, the condition 𝑥

󸀠󸀠
(0) = 0 ensures

that have 𝑥
󸀠󸀠
(𝑡) ≤ 0, 𝑡 ∈ (0, 1). This together with 𝑥

󸀠
(0) =

0 𝑥(𝑡) is concave and decreasing on [0, 1]. Thus,

max
0≤𝑡≤1

𝑥 (𝑡) = 𝑥 (0) , min
0≤𝑡≤1

𝑥 (𝑡) = 𝑥 (1) . (25)

From the concavity of 𝑥(𝑡), we have

𝜉
𝑖
(𝑥 (1) − 𝑥 (0)) ≤ 𝑥 (𝜉

𝑖
) − 𝑥 (0) . (26)

Multiplying both sides with 𝛽
𝑖
and considering 𝑥(1) =

∑
𝑚−2

𝑖=1
𝛽
𝑖
𝑥(𝜉
𝑖
), we have

(1 −

𝑚−2

∑

𝑖=1

𝛽
𝑖
𝜉
𝑖
)𝑥 (1) ≥

𝑚−2

∑

𝑖=1

𝛽
𝑖
(1 − 𝜉

𝑖
) 𝑥 (0) . (27)

This completes the proof of Lemma 7.

Let Banach space 𝐸 = 𝐶[0, 1] be endowed with the
maximum norm. We define the cone 𝐶 ⊂ 𝐸 by

𝐶 = {𝑥 ∈ 𝐸 | 𝑥 (𝑡) ≥ 0, 𝑥
󸀠󸀠

(0) = 0, 𝑥
󸀠

(0) = 0,

𝑥 (1) =

𝑚−2

∑

𝑖=1

𝛽
𝑖
𝑥 (𝜉
𝑖
) , 𝑥 (𝑡) is concave on [0, 1]} .

(28)

Define the nonnegative continuous concave functional
𝜓 : 𝐶 → [0,∞) by

𝜓 (𝑥) = min
0≤𝑡≤1

𝑥 (𝑡) , 𝑥 ∈ 𝐶. (29)

Define the constants 𝜎, 𝛿 by

𝜎 =

1

max
0≤𝑡≤1

∫

1

0
𝑠𝐺 (𝑡, 𝑠) 𝑑𝑠

, 𝛿 = ∫

1

0

𝑠𝐺 (1, 𝑠) 𝑑𝑠. (30)

Theorem 8. Suppose that there exist constants 0 < 𝑎 < 𝑏 <

𝑏/𝛾 ≤ 𝑐 such that

(A1) 𝑓(𝑡, 𝑥) < 𝜎𝑎, (𝑡, 𝑥) ∈ [0, 1] × [0, 𝑎],
(A2) 𝑓(𝑡, 𝑥) > 𝑏/𝛿, (𝑡, 𝑥) ∈ [0, 1] × [𝑏, (𝑏/𝛾)],
(A3) 𝑓(𝑡, 𝑥) < 𝜎𝑐, (𝑡, 𝑥) ∈ [0, 1] × [0, 𝑐],

then problem (1) has at least three positive solutions 𝑥
1
, 𝑥
2
, and

𝑥
3
satisfying

󵄩
󵄩
󵄩
󵄩
𝑥
1

󵄩
󵄩
󵄩
󵄩
≤ 𝑎, 𝑏 < min

0≤𝑡≤1

𝑥
2
,

󵄩
󵄩
󵄩
󵄩
𝑥
3

󵄩
󵄩
󵄩
󵄩
> 𝑎 with min

0≤𝑡≤1

𝑥
3
< 𝑏.

(31)

Proof. We define operator 𝑇 : 𝐶 → 𝐸 by

𝑇𝑥 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) ∫

𝑠

0

𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏 𝑑𝑠. (32)

It is easy to check that 𝑇 : 𝐶 → 𝐶 and is completely
continuous.

Next, the conditions of Lemma 3 are checked. If 𝑥 ∈ 𝐶
𝑐
,

then ‖𝑥‖ ≤ 𝑐, and condition (A3) implies that

𝑓 (𝑡, 𝑥) ≤ 𝜎𝑐, 0 ≤ 𝑡 ≤ 1,

‖𝑇 (𝑥)‖ = max
0≤𝑡≤1

∫

1

0

𝐺 (𝑡, 𝑠) ∫

𝑠

0

𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏 𝑑𝑠

≤ max
0≤𝑡≤1

∫

1

0

𝑠𝐺 (𝑡, 𝑠) 𝑑𝑠 × 𝜎𝑐 ≤ 𝑐.

(33)

Thus, 𝑇 : 𝐶
𝑐
→ 𝐶
𝑐
. In the same way, we see that 𝑇 : 𝐶

𝑎
→

𝐶
𝑎
. Hence, condition (H

2
) of Lemma 3 is satisfied.

The fact that constant function 𝑥(𝑡) = (𝑏/𝛾) ∈

{𝐶(𝜓, 𝑏, (𝑏/𝛾)) | 𝜓(𝑥) > 𝑏} implies that {𝐶(𝜓, 𝑏, (𝑏/𝛾)) |

𝜓(𝑥) > 𝑏} ̸=Ø. If 𝑥 ∈ 𝐶(𝜓, 𝑏, (𝑏/𝛾)), from the assumption
(A2), 𝑓(𝑡, 𝑥) ≥ 𝑏/𝛿. Thus,

𝜓 (𝑇𝑥) = min
0≤𝑡≤1

∫

1

0

𝐺 (𝑡, 𝑠) ∫

𝑠

0

𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏 𝑑𝑠

= ∫

1

0

𝐺 (1, 𝑠) ∫

𝑠

0

𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏 𝑑𝑠

≥ ∫

1

0

𝑠𝐺 (1, 𝑠) 𝑑𝑠 ×

𝑏

𝛿

≥ 𝑏,

(34)

which ensures that condition (H
1
) of Lemma 3 is satisfied.

Finally, we show that condition (H
3
) of Lemma 3 also holds.

Suppose that 𝑥 ∈ 𝐶(𝜓, 𝑏, 𝑐) with ‖𝑇𝑥‖ > 𝑏/𝛾,

𝜓 (𝑇𝑥) = min
0≤𝑡≤1

𝑇𝑥 (𝑡) ≥ 𝛾 × ‖𝑇𝑥‖ > 𝛾 ×

𝑏

𝛾

= 𝑏. (35)

So, condition (H
3
) of Lemma 3 is satisfied. Thus, an appli-

cation of Lemma 3 implies that the nonresonant third-
order boundary value problem (1) has at least three positive
solutions 𝑥

1
, 𝑥
2
, and 𝑥

3
satisfying (31).

4. Positive Solution for Resonant Problem

In this section, the condition ∑
𝑚−2

𝑖=1
𝛽
𝑖
= 1 is considered.

Obviously, problem (1) is at resonance under this condition.
The norm-type Leggett-Williams fixed point theorem will be
used to establish the existence results of positive solution.We
define the Banach spaces 𝑋 = 𝑌 = 𝐶[0, 1] endowed with the
maximum norm.

Define linear operator 𝐿 : dom 𝐿 ⊂ 𝑋 → 𝑌, 𝐿𝑥 =

−𝑥
󸀠󸀠󸀠
(𝑡), 𝑡 ∈ [0, 1], where

dom 𝐿 = {𝑥 ∈ 𝑋 | 𝑥
󸀠󸀠󸀠

∈ 𝐶 [0, 1] , 𝑥
󸀠󸀠

(0) = 0,

𝑥
󸀠

(0) = 0, 𝑥 (1) =

𝑚−2

∑

𝑖=1

𝛽
𝑖
𝑥 (𝜉
𝑖
)} ,

(36)
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and𝑁 : 𝑋 → 𝑌 with

(𝑁𝑥) (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [0, 1] . (37)

It is obvious that Ker 𝐿 = {𝑥 ∈ dom 𝐿 : 𝑥(𝑡) ≡ 𝑐, 𝑡 ∈ [0, 1]}.
Denote the function 𝐺(𝑠), 𝑠 ∈ [0, 1] as follows:

𝐺 (𝑠) = (1 − 𝑠)
2
−

𝑚−1

∑

𝑖=𝑘

𝛽
𝑖
(𝜉
𝑖
− 𝑠)
2

, 𝜉
𝑘−1

≤ 𝑠 ≤ 𝜉
𝑘
,

𝑘 = 1, 2, . . . , 𝑚 − 1.

(38)

Note that 𝐺(𝑠) ≥ 0, 𝑠 ∈ [0, 1].
Denote the function 𝑈(𝑡, 𝑠) and positive number 𝜅 as

follows:

𝑈 (𝑡, 𝑠)

=

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

−

1

6

𝑠
3
+

1

2

𝑠
2
−

1

2

𝑠 +

1

6

+

4𝑡
3
+ 23

24 ∫

1

0
𝐺 (𝑠) 𝑑𝑠

𝐺 (𝑠) ,

0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

−

1

6

𝑠
3
−

1

2

𝑠 + 𝑠𝑡 −

1

2

𝑡
2
+

1

6

+

4𝑡
3
+ 23

24 ∫

1

0
𝐺 (𝑠) 𝑑𝑠

𝐺 (𝑠) ,

0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝜅 := min
{

{

{

1, min
𝑠∈[0,1]

∫

1

0
𝐺 (𝜏) 𝑑𝜏

𝐺 (𝑠)

, min
𝑡,𝑠∈[0,1]

1

𝑈 (𝑡, 𝑠)

}

}

}

.

(39)

Theorem 9. Assume that there exists positive constant 𝑅 ∈

(0,∞) such that𝑓 : [0, 1]×[0, 𝑅] → (−∞, +∞) is continuous
and satisfies the following conditions:

(S1) 𝑓(𝑡, 𝑥) ≥ −𝜅𝑥, for (𝑡, 𝑥) ∈ [0, 1] × [0, 𝑅],
(S2) 𝑓(𝑡, 𝑥) < 0 for [𝑡, 𝑥] ∈ [0, 1] × [(1 − (𝜅/2))𝑅, 𝑅],
(S3) there exists 𝑟 ∈ (0, 𝑅), 𝑡

0
∈ [0, 1], 𝑎 ∈ (0, 1],𝑀

1
< 𝑀 ∈

(0, 1) and continuous functions 𝑔 : [0, 1] → [0, +∞),
ℎ : (0, 𝑟] → [0, +∞) such that 𝑓(𝑡, 𝑥) ≥ 𝑔(𝑡)ℎ(𝑥),
[𝑡, 𝑥] ∈ [0, 1] × (0, 𝑟] and ℎ(𝑥)/𝑥

𝑎 is nonincreasing on
(0, 𝑟] with

ℎ (𝑟)

𝑟
𝑎

∫

1

0

𝑈 (𝑡
0
, 𝑠) 𝑔 (𝑠) 𝑑𝑠 ≥

1 −𝑀

𝑀
𝑎

, (40)

then problem (1) with resonant condition (1.2) has at least one
positive solution.

Proof. Firstly, we claim that

Im 𝐿 = {𝑦 ∈ 𝑌 | ∫

1

0

𝐺 (𝑠) 𝑦 (𝑠) 𝑑𝑠 = 0} . (41)

In fact, for each 𝑦 ∈ {𝑦 ∈ 𝑌 | ∫

1

0
𝐺(𝑠)𝑦(𝑠)𝑑𝑠 = 0}, we take

𝑥 (𝑡) = −

1

2

∫

𝑡

0

(𝑡 − 𝑠)
2
𝑦 (𝑠) 𝑑𝑠. (42)

It is easy to check that −𝑥󸀠󸀠󸀠(𝑡) = 𝑦(𝑡), 𝑥
󸀠󸀠
(0) = 0, 𝑥

󸀠
(0) = 0,

and 𝑥(1) = ∑
𝑚−2

𝑖=1
𝛽
𝑖
𝑥(𝜉
𝑖
), which means 𝑥(𝑡) ∈ dom 𝐿. Thus,

{𝑦 ∈ 𝑌 | ∫

1

0

𝐺 (𝑠) 𝑦 (𝑠) 𝑑𝑠 = 0} ⊂ Im 𝐿. (43)

On the other hand, for each 𝑦(𝑡) ∈ Im 𝐿, there exists 𝑥(𝑡) ∈

dom 𝐿,

−𝑥
󸀠󸀠󸀠

(𝑡) = 𝑦 (𝑡) , 𝑥
󸀠󸀠

(0) = 0, 𝑥
󸀠

(0) = 0,

𝑥 (1) =

𝑚−2

∑

𝑖=1

𝛽
𝑖
𝑥 (𝜉
𝑖
) .

(44)

Integrating both sides on [0, 𝑡], we have

𝑥 (𝑡) = −

1

2

∫

𝑡

0

(𝑡 − 𝑠)
2
𝑦 (𝑠) 𝑑𝑠 +

1

2

𝑥
󸀠󸀠

(0) 𝑡
2
+ 𝑥
󸀠

(0) 𝑡 + 𝑥 (0) .

(45)

Considering condition 𝑥
󸀠󸀠
(0) = 0, 𝑥

󸀠
(0) = 0, 𝑥(1) =

∑
𝑚−2

𝑖=1
𝛽
𝑖
𝑥(𝜉
𝑖
), and ∑

𝑚−1

𝑖=0
𝛽
𝑖
= 1, we conclude that

∫

1

0

(1 − 𝑠)
2
𝑦 (𝑠) 𝑑𝑠 −

𝑚−1

∑

𝑖=0

𝛽
𝑖
∫

𝜉𝑖

0

(𝜉
𝑖
− 𝑠)
2

𝑦 (𝑠) 𝑑𝑠 = 0, (46)

which equivalents to the conclusion that ∫1
0
𝐺(𝑠)𝑦(𝑠)𝑑𝑠 = 0.

So, we have

Im 𝐿 ⊂ {𝑦 ∈ 𝑌 | ∫

1

0

𝐺 (𝑠) 𝑦 (𝑠) 𝑑𝑠 = 0} . (47)

Thus,

Im 𝐿 = {𝑦 ∈ 𝑌 | ∫

1

0

𝐺 (𝑠) 𝑦 (𝑠) 𝑑𝑠 = 0} . (48)

Clearly, dim Ker 𝐿 = 1 and Im 𝐿 are closed. Next, we see that
𝑌 = 𝑌

1
⊕ Im 𝐿, where

𝑌
1
=

{

{

{

𝑦
1
| 𝑦
1
=

1

∫

1

0
𝐺 (𝑠) 𝑑𝑠

∫

1

0

𝐺 (𝑠) 𝑦 (𝑠) 𝑑𝑠, 𝑦 ∈ 𝑌

}

}

}

.

(49)

In fact, for each 𝑦(𝑡) ∈ 𝑌, we have

∫

1

0

𝐺 (𝑠) [𝑦 (𝑠) − 𝑦
1
] 𝑑𝑠 = 0. (50)

This shows that 𝑦−𝑦
1
∈ Im 𝐿. Since 𝑌

1
∩ Im 𝐿 = {0}, we have

𝑌 = 𝑌
1
⊕ Im 𝐿. Thus, 𝐿 is a Fredholm operator with index

zero.
Then, define the projections 𝑃 : 𝑋 → 𝑋,𝑄 : 𝑌 → 𝑌 by

𝑃𝑥 = ∫

1

0

𝑥 (𝑠) 𝑑𝑠,

𝑄𝑦 =

1

∫

1

0
𝐺 (𝑠) 𝑑𝑠

∫

1

0

𝐺 (𝑠) 𝑦 (𝑠) 𝑑𝑠.

(51)
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Clearly, Im𝑃 = Ker 𝐿, Ker𝑄 = Im 𝐿 and Ker𝑃 = {𝑥 ∈ 𝑋 :

∫

1

0
𝑥(𝑠)𝑑𝑠 = 0}. Note that for 𝑦 ∈ Im 𝐿, the inverse 𝐾

𝑃
of 𝐿
𝑃

is given by

(𝐾
𝑃
) (𝑦) = ∫

1

0

𝑘 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠, (52)

where

𝑘 (𝑡, 𝑠) =

{
{
{
{
{

{
{
{
{
{

{

−

1

6

𝑠
3
+

1

2

𝑠
2
−

1

2

𝑠 +

1

6

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

−

1

6

𝑠
3
−

1

2

𝑠 + 𝑠𝑡 −

1

2

𝑡
2
+

1

6

, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1.

(53)

In fact, it is easy to check that

𝐿 (𝐾
𝑃
) (𝑦) = (−∫

1

0

𝑘 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠)

󸀠󸀠󸀠

= 𝑦 (𝑡) , (54)

𝐾
𝑃
(𝐿) (𝑥) = ∫

𝑡

0

(−

1

6

𝑠
3
−

1

2

𝑠 + 𝑠𝑡 −

1

2

𝑡
2
+

1

6

) (−𝑥
󸀠󸀠󸀠

(𝑠)) 𝑑𝑠

+ ∫

1

𝑡

(−

1

6

𝑠
3
+

1

2

𝑠
2
−

1

2

𝑠 +

1

6

) (−𝑥
󸀠󸀠󸀠

(𝑠)) 𝑑𝑠

= 𝑥 (𝑡) .

(55)

Considering that 𝑓 can be extended continuously on [0, 1] ×

(−∞, +∞); condition (C1) of Lemma 4 is fulfilled.
Define the cone of nonnegative functions 𝐶 and subsets

of𝑋Ω
1
, Ω
2
by

𝐶 = {𝑥 ∈ 𝑋 : 𝑥 (𝑡) ≥ 0, 𝑡 ∈ [0, 1]} ,

Ω
1
= {𝑥 ∈ 𝑋 : 𝑟 > |𝑥 (𝑡)| > 𝑀‖𝑥‖ , 𝑡 ∈ [0, 1]} ,

Ω
2
= {𝑥 ∈ 𝑋 : |𝑥 (𝑡)| < 𝑅, 𝑡 ∈ [0, 1]} .

(56)

Clearly,Ω
1
andΩ

2
are bounded and open sets, furthermore

Ω
1
= {𝑥 ∈ 𝑋 : 𝑟 ≥ |𝑥 (𝑡)| ≥ 𝑀‖𝑥‖ , 𝑡 ∈ [0, 1]} ⊂ Ω

2
,

𝐶 ∩ Ω
2
\ Ω
1

̸=Ø.

(57)

Let the isomorphism 𝐽 = 𝐼 and (𝛾𝑥)(𝑡) = |𝑥(𝑡)| for 𝑥 ∈ 𝑋.
Then, it is easy to check that 𝛾 is a retraction andmaps subsets
ofΩ
2
into bounded subsets of𝐶, which means that condition

(C3) of Lemma 4 is satisfied.
Next, we confirm that (C2) of Lemma 4 holds. For this

purpose, suppose that there exists 𝑥
0
∈ 𝐶∩ 𝜕Ω

2
∩ dom 𝐿 and

𝜆
0
∈ (0, 1) such that 𝐿𝑥

0
= 𝜆
0
𝑁𝑥
0
. Then,

−𝑥
󸀠󸀠󸀠

0
(𝑡) = 𝜆

0
𝑓 (𝑡, 𝑥

0
) , (58)

for all 𝑡 ∈ [0, 1]. Thus,

𝑥
󸀠󸀠

0
(𝑡) = −𝜆

0
∫

𝑡

0

𝑓 (𝑠, 𝑥
0
(𝑠)) 𝑑𝑠,

𝑥
󸀠

0
(𝑡) = −𝜆

0
∫

𝑡

0

(𝑡 − 𝑠) 𝑓 (𝑠, 𝑥
0
(𝑠)) 𝑑𝑠.

(59)

Let 𝑥
0
(𝑡
0
) = ‖𝑥

0
‖ = 𝑅. We verify that 𝑡

0
̸= 0 and 𝑡

0
̸= 1. The

step is divided into three cases:

(1) we show that 𝑡
0

̸= 1. Suppose, on the contrary, that
𝑥
0
(𝑡) achieves maximum value 𝑅 only at 𝑡 = 1.

Then, 𝑥(1) = ∑
𝑚−2

𝑖=1
𝛽
𝑖
𝑥
0
(𝜉
𝑖
) in combination with

∑
𝑚−2

𝑖=1
𝛽
𝑖
= 1 yields that max

1≤𝑖≤𝑚−2
𝑥
0
(𝜉
𝑖
) ≥ 𝑅, which

is a contradiction,
(2) we show that 𝑡

0
̸= 0. Suppose, on the contrary, that

𝑥
0
(𝑡) achieves maximum value 𝑅 at 𝑡 = 0. Then,

𝑥
󸀠󸀠󸀠

0
(0) = −𝜆

0
𝑓 (0, 𝑅) > 0 (60)

which together with the condition 𝑥
󸀠󸀠
(0) = 𝑥

󸀠
(0) = 0 yield

that 𝑥(𝑡) is increasing near the point 𝑡 = 0. This contradicts
to the fact that 𝑥

0
(𝑡) achieves maximum value 𝑅 at 𝑡 = 0.

Thus, there exists 𝑡
0

∈ (0, 1) such that 𝑥
0
(𝑡
0
) = 𝑅 =

max
0≤𝑡≤1

𝑥
0
(𝑡). We may choose 𝜂 < 𝑡

0
nearest to 𝑡

0
with

𝑥
󸀠󸀠

0
(𝜂) = 0. From the mean value theory, we claim that there

exists 𝜉 ∈ (𝜂, 𝑡
0
) such that

𝑥
0
(𝜂) = 𝑥

0
(𝑡
0
) − 𝑥
󸀠

0
(𝜉) (𝑡
0
− 𝜂) . (61)

Here,

𝑥
󸀠

0
(𝜉) = − 𝜆

0
∫

𝜉

0

(𝜉 − 𝑠) 𝑓 (𝑠, 𝑥
0
) 𝑑𝑠

≤ 𝜆
0
𝜅∫

𝜉

0

(𝜉 − 𝑠) 𝑥
0
(𝑠) 𝑑𝑠

≤ 𝜆
0
𝜅𝑅∫

𝜉

0

(𝜉 − 𝑠) 𝑑𝑠 =

1

2

𝜉
2
𝜆
0
𝜅𝑅.

(62)

Thus,

𝑥
0
(𝜂) = 𝑥

0
(𝑡
0
) − 𝑥
󸀠

0
(𝜉) (𝑡
0
− 𝜂)

≥ 𝑅 −

1

2

𝜉
2
𝜆
0
𝜅 (𝑡
0
− 𝜂) 𝑅

≥ (1 −

𝜅

2

)𝑅.

(63)

Then,

0 ≥ 𝑥
󸀠󸀠

0
(𝑡
0
) − 𝑥
󸀠󸀠

0
(𝜂) = −𝜆

0
∫

𝑡0

𝜂

𝑓 (𝑠, 𝑥
0
(𝑠)) 𝑑𝑠, (64)

which contradict to condition (S2). Thus, (C2) holds.

Remark 10. The sign of third-order derivative of a function
𝑦(𝑡) at point 𝑡

0
cannot be confirmed even if 𝑡

0
is a maximal

value of 𝑦(𝑡). Thus, the method in [29] is not applicable
directly to problem (1). In our opinion, it is the key that the
conditions (S2) in this paper are stronger than that in [29].

For 𝑥 ∈ Ker 𝐿 ∩ Ω
2
, define

𝐻(𝑥, 𝜆) = 𝑥 − 𝜆 |𝑥| −

𝜆

∫

1

0
𝐺 (𝑠) 𝑑𝑠

∫

1

0

𝐺 (𝑠) 𝑓 (𝑠, |𝑥|) 𝑑𝑠,

(65)
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where 𝑥 = 𝑐 ∈ Ker 𝐿 ∩ Ω
2
and 𝜆 ∈ [0, 1]. Suppose that

𝐻(𝑥, 𝜆) = 0. In view of (S1), we obtain

𝑐 = 𝜆 |𝑐| +

𝜆

∫

1

0
𝐺 (𝑠) 𝑑𝑠

∫

1

0

𝐺 (𝑠) 𝑓 (𝑠, |𝑐|) 𝑑𝑠

≥ 𝜆 |𝑐| −

𝜆

∫

1

0
𝐺 (𝑠) 𝑑𝑠

∫

1

0

𝐺 (𝑠) 𝜅 |𝑐| 𝑑𝑠

= 𝜆 |𝑐| (1 − 𝜅) ≥ 0.

(66)

Hence,𝐻(𝑥, 𝜆) = 0 implies 𝑐 ≥ 0. Furthermore, if𝐻(𝑅, 𝜆) =

0, we get

0 ≤ 𝑅 (1 − 𝜆)∫

1

0

𝐺 (𝑠) 𝑑𝑠 = 𝜆∫

1

0

𝐺 (𝑠) 𝑓 (𝑠, 𝑅) 𝑑𝑠, (67)

contradicting to (S2). Thus, 𝐻(𝑥, 𝜆) ̸= 0 for 𝑥 ∈ 𝜕Ω
2
and 𝜆 ∈

[0, 1]. Therefore,

𝑑
𝐵
(𝐻 (𝑥, 0) ,Ker 𝐿 ∩ Ω

2
, 0) = 𝑑

𝐵
(𝐻 (𝑥, 1) ,Ker 𝐿 ∩ Ω

2
, 0)

= 𝑑
𝐵
(𝐼,Ker 𝐿 ∩ Ω

2
, 0) = 1.

(68)

This ensures

𝑑
𝐵
( [𝐼 − (𝑃 + 𝐽𝑄𝑁) 𝛾]

󵄨
󵄨
󵄨
󵄨Ker𝐿,Ker 𝐿 ∩ Ω

2
, 0)

= 𝑑
𝐵
(𝐻 (𝑥, 1) ,Ker 𝐿 ∩ Ω

2
, 0) ̸= 0.

(69)

Let 𝑥 ∈ Ω
2
\ Ω
1
and 𝑡 ∈ [0, 1]. From condition (S1), we see

(Ψ
𝛾
𝑥) (𝑡) = ∫

1

0

|𝑥 (𝑡)| 𝑑𝑡

+

1

∫

1

0
𝐺 (𝑠) 𝑑𝑠

∫

1

0

𝐺 (𝑠) 𝑓 (𝑠, |𝑥 (𝑠)|) 𝑑𝑠

+ ∫

1

0

𝑘 (𝑡, 𝑠)
[

[

𝑓 (𝑠, |𝑥 (𝑠)|) −

1

∫

1

0
𝐺 (𝑠) 𝑑𝑠

× ∫

1

0

𝐺 (𝜏) 𝑓 (𝜏, |𝑥 (𝜏)|) 𝑑𝜏
]

]

𝑑𝑠

= ∫

1

0

|𝑥 (𝑡)| 𝑑𝑡 + ∫

1

0

𝑈 (𝑡, 𝑠) 𝑓 (𝑠, |𝑥 (𝑠)|) 𝑑𝑠

≥ ∫

1

0

|𝑥 (𝑠)| 𝑑𝑠 − 𝜅∫

1

0

𝑈 (𝑡, 𝑠) |𝑥 (𝑠)| 𝑑𝑠

= ∫

1

0

(1 − 𝜅𝑈 (𝑡, 𝑠)) |𝑥 (𝑠)| 𝑑𝑠 ≥ 0.

(70)

Hence, Ψ
𝛾
(Ω
2
\ Ω
1
) ⊂ 𝐶. Moreover, for 𝑥 ∈ 𝜕Ω

2
, we have

(𝑃 + 𝐽𝑄𝑁) 𝛾𝑥 = ∫

1

0

|𝑥 (𝑠)| 𝑑𝑠

+

1

∫

1

0
𝐺 (𝑠) 𝑑𝑠

∫

1

0

𝐺 (𝑠) 𝑓 (𝑠, |𝑥 (𝑠)|) 𝑑𝑠

≥ ∫

1

0

(1 −

𝜅

∫

1

0
𝐺 (𝑠) 𝑑𝑠

𝐺 (𝑠)) |𝑥 (𝑠)| 𝑑𝑠 ≥ 0,

(71)

which means (𝑃 + 𝐽𝑄𝑁)𝛾(𝜕Ω
2
) ⊂ 𝐶. These ensure that (C6)

and (C7) of Lemma 4 hold.
At last, we confirm that (C5) is satisfied. Taking 𝑢

0
(𝑡) ≡ 1

on [0, 1], we see

𝑢
0
∈ 𝐶 \ {0} , 𝐶 (𝑢

0
) = {𝑥 ∈ 𝐶𝑥 (𝑡) > 0 on [0, 1]} , (72)

and we can take 𝜎(𝑢
0
) = 1. Let 𝑥 ∈ 𝐶(𝑢

0
) ∩ 𝜕Ω

1
, we have

𝑥 (𝑡) > 0, 𝑡 ∈ [0, 1] , 0 < ‖𝑥‖ ≤ 𝑟,

𝑥 (𝑡) ≥ 𝑀‖𝑥‖ on [0, 1] .

(73)

Therefore, in view of (S3), we obtain, for all 𝑥 ∈ 𝐶(𝑢
0
) ∩ 𝜕Ω

1
,

(Ψ𝑥) (𝑡
0
) = ∫

1

0

𝑥 (𝑠) 𝑑𝑠 + ∫

1

0

𝑈(𝑡
0
, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

≥ 𝑀‖𝑥‖ + ∫

1

0

𝑈 (𝑡
0
, 𝑠) 𝑔 (𝑠) ℎ (𝑥 (𝑠)) 𝑑𝑠

= 𝑀‖𝑥‖ + ∫

1

0

𝑈 (𝑡
0
, 𝑠) 𝑔 (𝑠)

ℎ (𝑥 (𝑠))

𝑥
𝑎
(𝑠)

𝑥
𝑎

(𝑠) 𝑑𝑠

≥ 𝑀‖𝑥‖ +

ℎ (𝑟)

𝑟
𝑎

∫

1

0

𝑈 (𝑡
0
, 𝑠) 𝑔 (𝑠)𝑀

𝑎

‖𝑥‖
𝑎
𝑑𝑠

≥ 𝑀‖𝑥‖ + (1 −𝑀) ‖𝑥‖ = ‖𝑥‖ .

(74)

So, ‖𝑥‖ ≤ 𝜎(𝑢
0
)‖Ψ𝑥‖, for all 𝑥 ∈ 𝐶(𝑢

0
) ∩ 𝜕Ω

1
, which means

(C5) of Lemma 4 holds.
Thus, by Lemma 4, we confirm that the equation 𝐿𝑥 =

𝑁𝑥 has a solution 𝑥 ∈ 𝐶 ∩ (Ω
2
\ Ω
1
), which implies that

nonlinear third-order multipoint boundary value problem
(1) with resonance condition (1.2) has at least one positive
solution.

5. Examples

In this section, we give two examples to illustrate the main
results of the paper. First, we consider the nonresonant four-
point boundary value problem

𝑥
󸀠󸀠󸀠

(𝑡) + 𝑓 (𝑡, 𝑥) = 0, 𝑡 ∈ (0, 1) ,

𝑥
󸀠󸀠

(0) = 0, 𝑥
󸀠

(0) = 0,

𝑥 (1) =

1

2

𝑥 (

1

3

) +

1

3

𝑥 (

2

3

) ,

(75)
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where

𝑓 (𝑡, 𝑥) =

{
{
{

{
{
{

{

1

100

𝑒
𝑡
+

𝑥
3

𝜋

, 0 < 𝑥 < 6,

1

100

𝑒
𝑡
+

216

𝜋

, 𝑥 ≥ 6.

(76)

Here, 𝛽
1
= 1/2, 𝛽

2
= 1/3, 𝜉

1
= 1/3, 𝜉

2
= 2/3, and

𝐺 (𝑡, 𝑠) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

−𝑠 +

11

3

, 𝑡 ≤ 𝑠, 0 ≤ 𝑠 ≤

1

3

,

−𝑡 +

11

3

, 𝑡 ≥ 𝑠, 0 ≤ 𝑠 ≤

1

3

,

−4𝑠 +

14

3

, 𝑡 ≤ 𝑠,

1

3

≤ 𝑠 ≤

2

3

,

−3𝑠 − 2𝑡 +

14

3

, 𝑡 ≥ 𝑠,

1

3

≤ 𝑠 ≤

2

3

,

6 − 6𝑠, 𝑡 ≤ 𝑠,

2

3

≤ 𝑠 ≤ 1,

6 − 𝑡 − 5𝑠, 𝑡 ≥ 𝑠,

2

3

≤ 𝑠 ≤ 1.

(77)

By a simply computation, we can get that

𝑚 =

143

162

, 𝛿 =

89

162

, 𝛾 =

8

11

. (78)

We choose 𝑎 = 1, 𝑏 = 4, and 𝑐 = 162. It is easy to check
that

(1) 𝑓(𝑡, 𝑥) < 143/162, [𝑡, 𝑥] ∈ [0, 1] × [0, 1],
(2) 𝑓(𝑡, 𝑥) > 648/89, [𝑡, 𝑥] ∈ [0, 1] × [4, 11/2],
(3) 𝑓(𝑡, 𝑥) < 143,[𝑡, 𝑥] ∈ [0, 1] × [0, 162].

Thus, all the conditions of Theorem 8 are satisfied. This
ensures that problem (75) has at least three positive solutions
𝑥
1
, 𝑥
2
, and 𝑥

3
satisfying

max
0≤𝑡≤1

𝑥
1
≤ 1, min

0≤𝑡≤1

𝑥
2
> 4,

max
0≤𝑡≤1

𝑥
3
> 1, min

0≤𝑡≤1

𝑥
3
< 4.

(79)

Next, we consider the resonant third-order four-point
boundary value problem

𝑥
󸀠󸀠󸀠

(𝑡) + (−

1

2

𝑡
2
+

1

2

𝑡 +

5

16

) (𝑥
2
− 4𝑥 +

11

5

)√𝑥
2
− 6𝑥 + 10

= 0, 𝑡 ∈ [0, 1] ,

𝑥
󸀠󸀠

(0) = 0, 𝑥
󸀠

(0) = 0, 𝑥 (0) = 𝑥 (

2

3

) ,

(80)

where 𝛽 = 1, 𝜉 = 2/3 and

𝑓 (𝑡, 𝑥) = (−

1

2

𝑡
2
+

1

2

𝑡 +

5

16

)

× (𝑥
2
− 4𝑥 +

11

5

)√𝑥
2
− 6𝑥 + 10.

(81)

Here,

𝐺 (𝑠) =

{
{

{
{

{

5

9

−

2

3

𝑠, 0 ≤ 𝑠 ≤

2

3

,

(1 − 𝑠)
2
,

2

3

≤ 𝑠 ≤ 1.

(82)

By a simple computation, we have

∫

1

0

𝐺 (𝑠) 𝑑𝑠 =

19

81

, 𝜅 =

19

45

, ∫

1

0

𝑈 (0, 𝑠) 𝑑𝑠 = 1.

(83)

Choose 𝑅 = 1, 𝑟 = 1/4, 𝑡
0
= 0, 𝑎 = 1, and𝑀 = 1/2.

We take

𝑔 (𝑡) = −

1

2

𝑡
2
+

1

3

𝑡 +

5

16

, 𝑡 ∈ [0, 1] ,

ℎ (𝑥) =
√𝑥
2
− 6𝑥 + 10, 𝑥 ∈ [0,

1

4

] .

(84)

Then,

7

48

≤ 𝑔 (𝑡) ≤

53

144

<

19

45

, 𝑡 ∈ [0, 1] ,

𝑥
2
− 4𝑥 +

11

5

≥ −𝑥, 𝑥 ∈ [0, 1] .

(85)

It is easy to check that

(1) 𝑓(𝑡, 𝑥) > −(19/45)𝑥, for all (𝑡, 𝑥) ∈ [0, 1] × [0, 1],

(2) 𝑓(𝑡, 𝑥) < 0, for all (𝑡, 𝑥) ∈ [0, 1] × [71/90, 1],

(3) 𝑓(𝑡, 𝑥) ≥ (101/80)(−(1/2)𝑡
2

+ (1/3)𝑡 + (5/

16))√𝑥
2
− 6𝑥 + 10 ≥ 𝑔(𝑡)ℎ(𝑥), [𝑡, 𝑥] ∈ [0, 1]×(0, 1/4]

and ℎ(𝑥)/𝑥 = √𝑥
2
− 6𝑥 + 10/𝑥

is nonincreasing on (0, 1/4] with

ℎ (𝑟)

𝑟
𝑎

∫

1

0

𝑈 (0, 𝑠) 𝑔 (𝑠) 𝑑𝑠 >

7√137

48

> 1 =

1 −𝑀

𝑀
𝑎

. (86)

Then, all conditions of Theorem 9 are satisfied. This ensures
that the resonant problem has at least one solution, positive
on [0, 1].

Remark 11. The established existence results of positive solu-
tions for third-order boundary value problems in [2, 3, 5–12],
for examples, are not applicable to the problem (75) or (5.2).
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