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We establish the formulas of the maximal and minimal ranks of the quaternion Hermitian matrix expression 𝐶
4
− 𝐴
4
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∗
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where

𝑋 is a Hermitian solution to quaternion matrix equations 𝐴
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1
, 𝑋𝐵
1
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2
, and 𝐴

3
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3
= 𝐶
3
. As applications, we give a new

necessary and sufficient condition for the existence of Hermitian solution to the system of matrix equations 𝐴
1
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1
,𝑋𝐵
1
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,

𝐴
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∗

3
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3
, and 𝐴

4
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4
= 𝐶
4
, which was investigated by Wang and Wu, 2010, by rank equalities. In addition, extremal ranks of

the generalized Hermitian Schur complement 𝐶
4
− 𝐴
4
𝐴
∼

3
𝐴
∗

4
with respect to a Hermitian g-inverse 𝐴∼

3
of 𝐴
3
, which is a common

solution to quaternion matrix equations 𝐴
1
𝑋 = 𝐶

1
and𝑋𝐵

1
= 𝐶
2
, are also considered.

1. Introduction

Throughout this paper, we denote the real number field byR,
the complex number field by C, the set of all 𝑚 × 𝑛 matrices
over the quaternion algebra

H = {𝑎
0
+ 𝑎
1
𝑖 + 𝑎
2
𝑗 + 𝑎
3
𝑘 | 𝑖
2
= 𝑗
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2
= 𝑖𝑗𝑘 = −1, 𝑎

0
, 𝑎
1
, 𝑎
2
, 𝑎
3
∈ R}

(1)

by H𝑚×𝑛, the identity matrix with the appropriate size by 𝐼,
the column right space, the row left space of a matrix 𝐴 over
H by R(𝐴), N(𝐴), respectively, the dimension of R(𝐴) by
dimR(𝐴), a Hermitian g-inverse of a matrix 𝐴 by 𝑋 = 𝐴

∽

which satisfies 𝐴𝐴∽𝐴 = 𝐴 and 𝑋 = 𝑋
∗, and the Moore-

Penrose inverse of matrix𝐴 overH by𝐴† which satisfies four
Penrose equations 𝐴𝐴†𝐴 = 𝐴, 𝐴

†
𝐴𝐴
†
= 𝐴
†
, (𝐴𝐴

†
)
∗
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†
, and (𝐴
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†
)
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)
†. Moreover, 𝑅

𝐴
and 𝐿

𝐴
stand for the two

projectors 𝐿
𝐴

= 𝐼 − 𝐴
†
𝐴, 𝑅
𝐴

= 𝐼 − 𝐴𝐴
† induced by 𝐴.

Clearly,𝑅
𝐴
and 𝐿

𝐴
are idempotent, Hermitian and𝑅

𝐴
= 𝐿
𝐴
∗ .

By [1], for a quaternion matrix 𝐴, dimR(𝐴) = dimN(𝐴).
dimR(𝐴) is called the rank of a quaternion matrix 𝐴 and
denoted by 𝑟(𝐴).

Mitra [2] investigated the system of matrix equations

𝐴
1
𝑋 = 𝐶

1
, 𝑋𝐵

1
= 𝐶
2
. (2)

Khatri and Mitra [3] gave necessary and sufficient con-
ditions for the existence of the common Hermitian solution
to (2) and presented an explicit expression for the general
Hermitian solution to (2) by generalized inverses. Using the
singular value decomposition (SVD), Yuan [4] investigated
the general symmetric solution of (2) over the real number
field R. By the SVD, Dai and Lancaster [5] considered the
symmetric solution of equation

𝐴𝑋𝐴
∗
= 𝐶 (3)

over R, which was motivated and illustrated with an inverse
problem of vibration theory. Groß [6], Tian and Liu [7]
gave the solvability conditions for Hermitian solution and its
expressions of (3) over C in terms of generalized inverses,
respectively. Liu, Tian and Takane [8] investigated ranks
of Hermitian and skew-Hermitian solutions to the matrix
equation (3). By using the generalized SVD, Chang andWang
[9] examined the symmetric solution to the matrix equations

𝐴
3
𝑋𝐴
∗

3
= 𝐶
3
, 𝐴

4
𝑋𝐴
∗

4
= 𝐶
4 (4)
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over R. Note that all the matrix equations mentioned above
are special cases of

𝐴
1
𝑋 = 𝐶

1
, 𝑋𝐵
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= 𝐶
2
,
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∗

3
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3
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4
𝑋𝐴
∗

4
= 𝐶
4
.

(5)

Wang and Wu [10] gave some necessary and sufficient
conditions for the existence of the common Hermitian
solution to (5) for operators between Hilbert C∗-modules
by generalized inverses and range inclusion of matrices. In
view of the complicated computations of the generalized
inverses of matrices, we naturally hope to establish a more
practical, necessary, and sufficient condition for system (5)
over quaternion algebra to have Hermitian solution by rank
equalities.

As is known to us, solutions tomatrix equations and ranks
of solutions to matrix equations have been considered previ-
ously by many authors [10–34], and extremal ranks of matrix
expressions can be used to characterize their rank invariance,
nonsingularity, range inclusion, and solvability conditions
of matrix equations. Tian and Cheng [35] investigated the
maximal and minimal ranks of 𝐴 − 𝐵𝑋𝐶 with respect to 𝑋
with applications; Tian [36] gave the maximal and minimal
ranks of 𝐴

1
− 𝐵
1
𝑋𝐶
1
subject to a consistent matrix equation

𝐵
2
𝑋𝐶
2
= 𝐴
2
. Tian and Liu [7] established the solvability

conditions for (4) to have a Hermitian solution over C by
the ranks of coefficientmatrices.Wang and Jiang [20] derived
extreme ranks of (skew)Hermitian solutions to a quaternion
matrix equation 𝐴𝑋𝐴

∗
+ 𝐵𝑌𝐵

∗
= 𝐶. Wang, Yu and Lin

[31] derived the extremal ranks of 𝐶
4
− 𝐴
4
𝑋𝐵
4
subject to a

consistent system of matrix equations
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2
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3
𝑋𝐵
3
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3 (6)

over H and gave a new solvability condition to system

𝐴
1
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1
, 𝑋𝐵

1
= 𝐶
2
,

𝐴
3
𝑋𝐵
3
= 𝐶
3
, 𝐴

4
𝑋𝐵
4
= 𝐶
4
.

(7)

In matrix theory and its applications, there are many
matrix expressions that have symmetric patterns or involve
Hermitian (skew-Hermitian) matrices. For example,

𝐴 − 𝐵𝑋𝐵
∗
, 𝐴 − 𝐵𝑋 ± 𝑋

∗
𝐵
∗
,

𝐴 − 𝐵𝑋𝐵
∗
− 𝐶𝑌𝐶

∗
, 𝐴 − 𝐵𝑋𝐶 ± (𝐵𝑋𝐶)

∗
,

(8)

where 𝐴 = ±𝐴
∗
, 𝐵, and 𝐶 are given and 𝑋 and 𝑌 are

variable matrices. In recent papers [7, 8, 37, 38], Liu and Tian
considered some maximization and minimization problems
on the ranks of Hermitian matrix expressions (8).

Define a Hermitian matrix expression

𝑓 (𝑋) = 𝐶
4
− 𝐴
4
𝑋𝐴
∗

4
, (9)

where 𝐶
4
= 𝐶
∗

4
; we have an observation that by investigating

extremal ranks of (9), where 𝑋 is a Hermitian solution to a
system of matrix equations

𝐴
1
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1
, 𝑋𝐵

1
= 𝐶
2
, 𝐴

3
𝑋𝐴
∗

3
= 𝐶
3
. (10)

A new necessary and sufficient condition for system (5) to
have Hermitian solution can be given by rank equalities,
which is more practical than one given by generalized
inverses and range inclusion of matrices.

It is well known that Schur complement is one of themost
important matrix expressions in matrix theory; there have
been many results in the literature on Schur complements
and their applications [39–41]. Tian [36, 42] has investigated
the maximal and minimal ranks of Schur complements with
applications.

Motivated by the workmentioned above, we in this paper
investigate the extremal ranks of the quaternion Hermitian
matrix expression (9) subject to the consistent system of
quaternion matrix equations (10) and its applications. In
Section 2, we derive the formulas of extremal ranks of (9)
with respect to Hermitian solution of (10). As applications, in
Section 3, we give a new, necessary, and sufficient condition
for the existence of Hermitian solution to system (5) by
rank equalities. In Section 4, we derive extremal ranks of
generalized Hermitian Schur complement subject to (2). We
also consider the rank invariance problem in Section 5.

2. Extremal Ranks of (9) Subject to System (10)
Corollary 8 in [10] over Hilbert C∗-modules can be changed
into the following lemma over H.

Lemma 1. Let 𝐴
1
, 𝐶
1

∈ H𝑚×𝑛, 𝐵
1
, 𝐶
2

∈ H𝑛×𝑠, 𝐴
3

∈
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3
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𝐶
1
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3
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3
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𝐽
∗
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∗

3
; then the following statements are equivalent:

(1) the system (10) have a Hermitian solution,
(2) 𝐶
3
= 𝐶
∗

3
,

𝐴
1
𝐶
2
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𝐴
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∗

1
𝐶
2
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∗

2
𝐵
1
, (11)

𝑅
𝐴
1

𝐶
1
= 0, 𝑅

𝐹
𝐷 = 0, 𝑅

𝑀
𝐺 = 0, (12)

(3) 𝐶
3
= 𝐶
∗

3
; the equalities in (11) hold and

𝑟 [𝐴1 𝐶1] = 𝑟 (𝐴
1
) , 𝑟 [

𝐴
1
𝐶
1

𝐵
∗

1
𝐶
∗

2

] = 𝑟 [
𝐴
1

𝐵
∗

1

] ,

𝑟
[
[

[

𝐴
1
𝐶
1
𝐴
∗

3

𝐵
∗
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𝐶
∗

2
𝐴
∗

3

𝐴
3

𝐶
3

]
]

]
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𝐴
1

𝐵
∗

1

𝐴
3

]

]

.

(13)

In that case, the general Hermitian solution of (10) can be
expressed as

𝑋 = 𝐽 + 𝐿
𝐴
1

𝐿
𝐹
𝐽
∗
+ 𝐿
𝐴
1

𝐿
𝐹
𝑀
†
𝐺(𝑀
†
)
∗

𝐿
𝐹
𝐿
𝐴
1

+ 𝐿
𝐴
1

𝐿
𝐹
𝐿
𝑀
𝑉𝐿
𝐹
𝐿
𝐴
1
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𝐴
1

𝐿
𝐹
𝑉
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𝐿
𝐹
𝐿
𝐴
1

,

(14)

where 𝑉 is Hermitian matrix over H with compatible size.
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Lemma 2 (see Lemma 2.4 in [24]). Let 𝐴 ∈ H𝑚×𝑛, 𝐵 ∈

H𝑚×𝑘, 𝐶 ∈ H𝑙×𝑛, 𝐷 ∈ H𝑗×𝑘, and 𝐸 ∈ H𝑙×𝑖. Then the following
rank equalities hold:

(a) 𝑟(𝐶𝐿
𝐴
) = 𝑟 [ 𝐴

𝐶
] − 𝑟(𝐴),

(b) 𝑟 [ 𝐵 𝐴𝐿𝐶 ] = 𝑟 [ 𝐵 𝐴
0 𝐶

] − 𝑟(𝐶),

(c) 𝑟 [ 𝐶𝑅
𝐵
𝐴 ] = 𝑟 [ 𝐶 0

𝐴 𝐵
] − 𝑟(𝐵),

(d) 𝑟 [ 𝐴 𝐵𝐿𝐷
𝑅
𝐸
𝐶 0

] = 𝑟 [
𝐴 𝐵 0

𝐶 0 𝐸

0 𝐷 0

] − 𝑟(𝐷) − 𝑟(𝐸).

Lemma 2 plays an important role in simplifying ranks of
various block matrices.

Liu and Tian [38] has given the following lemma over a
field. The result can be generalized to H.

Lemma 3. Let 𝐴 = ±𝐴
∗
∈ H𝑚×𝑚, 𝐵 ∈ H𝑚×𝑛, and 𝐶 ∈ H𝑝×𝑚

be given; then

max
𝑋∈H𝑛×𝑝

𝑟 [𝐴 − 𝐵𝑋𝐶 ∓ (𝐵𝑋𝐶)
∗
]

= min{𝑟 [𝐴 𝐵 𝐶
∗
] , 𝑟 [

𝐴 𝐵

𝐵
∗
0
] , 𝑟 [

𝐴 𝐶
∗

𝐶 0
]} ,

min
𝑋∈H𝑛×𝑝

𝑟 [𝐴 − 𝐵𝑋𝐶 ∓ (𝐵𝑋𝐶)
∗
]

= 2𝑟 [𝐴 𝐵 𝐶
∗
] +max {𝑠

1
, 𝑠
2
} ,

(15)

where

𝑠
1
= 𝑟 [

𝐴 𝐵

𝐵
∗
0
] − 2𝑟 [

𝐴 𝐵 𝐶
∗

𝐵
∗
0 0

] ,

𝑠
2
= 𝑟 [

𝐴 𝐶
∗

𝐶 0
] − 2𝑟 [

𝐴 𝐵 𝐶
∗

𝐶 0 0
] .

(16)

IfR(𝐵) ⊆ R(𝐶
∗
),

max
𝑋

𝑟 [𝐴 − 𝐵𝑋𝐶 − (𝐵𝑋𝐶)
∗
] = min{𝑟 [𝐴 𝐶

∗
] , 𝑟 [

𝐴 𝐵

𝐵
∗
0
]} ,

max
𝑋

𝑟 [𝐴 − 𝐵𝑋𝐶 − (𝐵𝑋𝐶)
∗
] = min{𝑟 [𝐴 𝐶

∗
] , 𝑟 [

𝐴 𝐵

𝐵
∗
0
]} .

(17)

Now we consider the extremal ranks of the matrix
expression (9) subject to the consistent system (10).

Theorem 4. Let 𝐴
1
, 𝐶
1
, 𝐵
1
, 𝐶
2
, 𝐴
3
, and 𝐶

3
be defined as

Lemma 1,𝐶
4
∈ H𝑡×𝑡, and 𝐴

4
∈ H𝑡×𝑛.Then the extremal ranks

of the quaternionmatrix expression𝑓(𝑋) defined as (9) subject
to system (10) are the following:

max 𝑟 [𝑓 (𝑋)] = min {𝑎, 𝑏} , (18)

where

𝑎 = 𝑟

[
[
[
[

[

𝐶
4

𝐴
4

𝐶
∗

2
𝐴
∗

4
𝐵
∗

1

𝐶
1
𝐴
∗

4
𝐴
1

]
]
]
]

]

− 𝑟 [
𝐵
∗

1

𝐴
1

] ,

𝑏 = 𝑟

[
[
[
[
[
[
[
[

[

0 𝐴
∗

4
𝐴
∗

3
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0 0

𝐴
3

0 −𝐶
3

−𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐴
∗

3
−𝐶
∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1

0 −𝐶
1
𝐴
∗

3
−𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]

]

− 2𝑟[

[

𝐴
3

𝐵
∗

1

𝐴
1

]

]

,

(19)

min 𝑟 [𝑓 (𝑋)] = 2𝑟

[
[
[
[

[

𝐶
4

𝐴
4

𝐶
∗

2
𝐴
∗

4
𝐵
∗

1

𝐶
1
𝐴
∗

4
𝐴
1

]
]
]
]

]

+ 𝑟

[
[
[
[
[
[
[
[
[

[

0 𝐴
∗

4
𝐴
∗

3
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0 0

𝐴
3

0 −𝐶
3

−𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐴
∗

3
−𝐶
∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1

0 −𝐶
1
𝐴
∗

3
−𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]
]

]

− 2𝑟

[
[
[
[
[
[
[
[
[

[

0 𝐴
∗

4
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0

𝐴
3

0 −𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1

0 −𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]
]

]

.

(20)

Proof. By Lemma 1, the general Hermitian solution of the
system (10) can be expressed as

𝑋 = 𝐽 + 𝐿
𝐴
1

𝐿
𝐹
𝐽
∗
+ 𝐿
𝐴
1

𝐿
𝐹
𝑀
†
𝐺(𝑀
†
)
∗

𝐿
𝐹
𝐿
𝐴
1

+ 𝐿
𝐴
1

𝐿
𝐹
𝐿
𝑀
𝑉𝐿
𝐹
𝐿
𝐴
1

+ 𝐿
𝐴
1

𝐿
𝐹
𝑉
∗
𝐿
𝑀
𝐿
𝐹
𝐿
𝐴
1

,

(21)

where 𝑉 is Hermitian matrix over H with appropriate size.
Substituting (21) into (9) yields

𝑓 (𝑋) = 𝐶
4
− 𝐴
4
(𝐽 + 𝐿

𝐴
1

𝐿
𝐹
𝐽
∗

+ 𝐿
𝐴
1

𝐿
𝐹
𝑀
†
𝐺(𝑀
†
)
∗

𝐿
𝐹
𝐿
𝐴
1

)𝐴
∗

4

− 𝐴
4
𝐿
𝐴
1

𝐿
𝐹
𝐿
𝑀
𝑉𝐿
𝐹
𝐿
𝐴
1

𝐴
∗

4

− 𝐴
4
𝐿
𝐴
1

𝐿
𝐹
𝑉
∗
𝐿
𝑀
𝐿
𝐹
𝐿
𝐴
1

𝐴
∗

4
.

(22)
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Put

𝐶
4
− 𝐴
4
(𝐽 + 𝐿

𝐴
1

𝐿
𝐹
𝐽
∗
+ 𝐿
𝐴
1

𝐿
𝐹
𝑀
†
𝐺(𝑀
†
)
∗

𝐿
𝐹
𝐿
𝐴
1

)𝐴
∗

4
= 𝐴,

𝐽 + 𝐿
𝐴
1

𝐿
𝐹
𝐽
∗
+ 𝐿
𝐴
1

𝐿
𝐹
𝑀
†
𝐺(𝑀
†
)
∗

𝐿
𝐹
𝐿
𝐴
1

= 𝐽
󸀠
,

𝐴
4
𝐿
𝐴
1

𝐿
𝐹
𝐿
𝑀
= 𝑁,

𝐿
𝐹
𝐿
𝐴
1

𝐴
∗

4
= 𝑃;

(23)

then

𝑓 (𝑋) = 𝐴 − 𝑁𝑉𝑃 − (𝑁𝑉𝑃)
∗
. (24)

Note that𝐴 = 𝐴
∗ andR(𝑁) ⊆ R(𝑃

∗
). Thus, applying (17) to

(24), we get the following:

max 𝑟 [𝑓 (𝑋)] = max
𝑉

𝑟 (𝐴 − 𝑁𝑉𝑃 − (𝑁𝑉𝑃)
∗
)

= min{𝑟 [𝐴 𝑃
∗
] , 𝑟 [

𝐴 𝑁

𝑁
∗

0
]} ,

min 𝑟 [𝑓 (𝑋)] = min
𝑉

𝑟 (𝐴 − 𝑁𝑉𝑃 − (𝑁𝑉𝑃)
∗
)

= 2𝑟 [𝐴 𝑃
∗
] + 𝑟 [

𝐴 𝑁

𝑁
∗

0
] − 2𝑟 [

𝐴 𝑁

𝑃 0
] .

(25)

Now we simplify the ranks of block matrices in (25).
In view of Lemma 2, block Gaussian elimination, (11),

(12), and (23), we have the following:

𝑟 (𝐹) = 𝑟 (𝐵
∗

1
𝐿
𝐴
1

) = 𝑟 [
𝐵
∗

1

𝐴
1

] − 𝑟 (𝐴
1
) ,

𝑟 (𝑀) = 𝑟 (𝑆𝐿
𝐹
) = 𝑟 [

𝑆

𝐹
] − 𝑟 (𝐹)

= 𝑟 [

𝐴
3
𝐿
𝐴
1

𝐵
∗

1
𝐿
𝐴
1

] − 𝑟 (𝐹)

= 𝑟[

[

𝐴
3

𝐵
∗

1

𝐴
1

]

]

− 𝑟 (𝐴
1
) − 𝑟 (𝐹) ,

𝑟 [𝐴 𝑃
∗
] = 𝑟 [𝐶4 − 𝐴4𝐽𝐴

∗

4
𝑃
∗
]

= 𝑟 [
𝐶
4
− 𝐴
4
𝐽𝐴
∗

4
𝐴
4
𝐿
𝐴
1

0 𝐹
] − 𝑟 (𝐹)

= 𝑟[

[

𝐶
4
− 𝐴
4
𝐽𝐴
∗

4
𝐴
4

0 𝐵
∗

1

0 𝐴
1

]

]

− 𝑟 (𝐹) − 𝑟 (𝐴
1
)

= 𝑟
[
[
[

[

𝐶
4

𝐴
4

𝐶
∗

2
𝐴
∗

4
𝐵
∗

1

𝐶
1
𝐴
∗

4
𝐴
1

]
]
]

]

− 𝑟 [
𝐵
∗

1

𝐴
1

] ,

𝑟 [
𝐴 𝑁

𝑁
∗

0
] = 𝑟 [

𝐶
4
− 𝐴
4
𝐽
󸀠
𝐴
∗

4
𝐴
4
𝐿
𝐴
1

𝐿
𝐹
𝐿
𝑀

𝑅
𝑀
∗𝑅
𝐹
∗𝑅
𝐴
∗

1

𝐴
∗

4
0

]

= 𝑟

[
[
[
[
[
[

[

𝐶
4
− 𝐴
4
𝐽
󸀠
𝐴
∗

4
𝐴
4

0 0 0

𝐴
∗

4
0 𝐴
∗

3
𝐵
1
𝐴
∗

1

0 𝐴
3

0 0 0

0 𝐵
∗

1
0 0 0

0 𝐴
1

0 0 0

]
]
]
]
]
]

]

− 2𝑟 (𝑀) − 2𝑟 (𝐹) − 2𝑟 (𝐴
1
)

= 𝑟

[
[
[
[
[
[
[
[
[
[
[
[

[

𝐶
4

𝐴
4

0 0 0

𝐴
∗

4
0 𝐴
∗

3
𝐵
1
𝐴
∗

1

𝐴
3
𝐽
󸀠
𝐴
∗

4
𝐴
3

0 0 0

𝐵
∗

1
𝐽
󸀠
𝐴
∗

4
𝐵
∗

1
0 0 0

𝐴
1
𝐽
󸀠
𝐴
∗

4
𝐴
1

0 0 0

]
]
]
]
]
]
]
]
]
]
]
]

]

− 2𝑟[

[

𝐴
3

𝐵
∗

1

𝐴
1

]

]

= 𝑟

[
[
[
[
[
[
[
[
[

[

𝐶
4
𝐴
4

0 0 0

𝐴
∗

4
0 𝐴

∗

3
𝐵
1

𝐴
∗

1

0 𝐴
3

−𝐶
3

−𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

0 𝐵
∗

1
−𝐶
∗

2
𝐴
∗

3
−𝐶
∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

0 𝐴
1
−𝐶
1
𝐴
∗

3
−𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]
]

]

− 2𝑟[

[

𝐴
3

𝐵
∗

1

𝐴
1

]

]

= 𝑟

[
[
[
[
[
[
[
[
[

[

0 𝐴
∗

4
𝐴
∗

3
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0 0

𝐴
3

0 −𝐶
3

−𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐴
∗

3
−𝐶
∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1

0 −𝐶
1
𝐴
∗

3
−𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]
]

]

− 2𝑟[

[

𝐴
3

𝐵
∗

1

𝐴
1

]

]

,

𝑟 [
𝐴 𝑁

𝑃 0
] = 𝑟 [

𝐶
4
− 𝐴
4
𝐽
󸀠
𝐴
∗

4
𝐴
4
𝐿
𝐴
1

𝐿
𝐹
𝐿
𝑀

𝑅
𝐹
∗𝑅
𝐴
∗

1

𝐴
∗

4
0

]

= 𝑟

[
[
[
[
[
[
[
[
[
[

[

𝐶
4
𝐴
4

0 0

𝐴
∗

4
0 𝐵

1
𝐴
∗

1

0 𝐴
3
−𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

0 𝐵
∗

1
−𝐶
∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

0 𝐴
1
−𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]
]
]

]

− 𝑟[

[

𝐴
3

𝐵
∗

1

𝐴
1

]

]

− 𝑟 [
𝐵
∗

1

𝐴
1

]
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= 𝑟

[
[
[
[
[
[
[
[
[
[

[

0 𝐴
∗

4
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0

𝐴
3

0 −𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1

0 −𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]
]
]

]

− 𝑟
[
[

[

𝐴
3

𝐵
∗

1

𝐴
1

]
]

]

− 𝑟 [
𝐵
∗

1

𝐴
1

] .

(26)

Substituting (26) into (25) yields (18) and (20).

In Theorem 4, letting 𝐶
4
vanish and 𝐴

4
be 𝐼 with

appropriate size, respectively, we have the following.

Corollary 5. Assume that 𝐴
1
, 𝐶
1

∈ H𝑚×𝑛, 𝐵
1
,𝐶
2

∈

H𝑛×𝑠, 𝐴
3
∈ H𝑟×𝑛, and 𝐶

3
∈ H𝑟×𝑟 are given; then the maximal

and minimal ranks of the Hermitian solution 𝑋 to the system
(10) can be expressed as

max 𝑟 (𝑋) = min {𝑎, 𝑏} , (27)

where

𝑎 = 𝑛 + 𝑟 [
𝐶
∗

2

𝐶
1

] − 𝑟 [
𝐵
∗

1

𝐴
1

] ,

𝑏 = 2𝑛 + 𝑟

[
[
[
[

[

𝐶
3

𝐴
3
𝐶
2
𝐴
3
𝐶
∗

1

𝐶
∗

2
𝐴
∗

3
𝐶
∗

2
𝐵
1
𝐶
∗

2
𝐴
∗

1

𝐶
1
𝐴
∗

3
𝐶
1
𝐵
1
𝐶
1
𝐴
∗

1

]
]
]
]

]

− 2𝑟[

[

𝐴
3

𝐵
∗

1

𝐴
1

]

]

,

min 𝑟 (𝑋) = 2𝑟 [
𝐶
∗

2

𝐶
1

]

+ 𝑟
[
[
[

[

𝐶
3

𝐴
3
𝐶
2
𝐴
3
𝐶
∗

1

𝐶
∗

2
𝐴
∗

3
𝐶
∗

2
𝐵
1
𝐶
∗

2
𝐴
∗

1

𝐶
1
𝐴
∗

3
𝐶
1
𝐵
1
𝐶
1
𝐴
∗

1

]
]
]

]

− 2𝑟

[
[
[
[

[

𝐴
3
𝐶
2
𝐴
3
𝐶
∗

1

𝐶
∗

2
𝐵
1
𝐶
∗

2
𝐴
∗

1

𝐶
1
𝐵
1
𝐶
1
𝐴
∗

1

]
]
]
]

]

.

(28)

InTheorem 4, assuming that 𝐴
1
, 𝐵
1
, 𝐶
1
, and 𝐶

2
vanish,

we have the following.

Corollary 6. Suppose that the matrix equation 𝐴
3
𝑋𝐴
∗

3
= 𝐶
3

is consistent; then the extremal ranks of the quaternion matrix
expression 𝑓(𝑋) defined as (9) subject to 𝐴

3
𝑋𝐴
∗

3
= 𝐶
3
are the

following:

max 𝑟 [𝑓 (𝑋)]

= min
{

{

{

𝑟 [𝐶4 𝐴4] , 𝑟
[

[

0 𝐴
∗

4
𝐴
∗

3

𝐴
4
𝐶
4

0

𝐴
3

0 −𝐶
3

]

]

− 2𝑟 (𝐴
3
)
}

}

}

,

min 𝑟 [𝑓 (𝑋)] = 2𝑟 [𝐶4 𝐴4]

+ 𝑟[

[

0 𝐴
∗

4
𝐴
∗

3

𝐴
4
𝐶
4

0

𝐴
3

0 −𝐶
3

]

]

− 2𝑟[

[

0 𝐴
∗

4

𝐴
4
𝐶
4

𝐴
3

0

]

]

.

(29)

3. A Practical Solvability Condition for
Hermitian Solution to System (5)

In this section, we use Theorem 4 to give a necessary and
sufficient condition for the existence of Hermitian solution
to system (5) by rank equalities.

Theorem 7. Let 𝐴
1
, 𝐶
1

∈ H𝑚×𝑛, 𝐵
1
,𝐶
2

∈ H𝑛×𝑠, 𝐴
3

∈

H𝑟×𝑛, 𝐶
3
∈ H𝑟×𝑟, 𝐴

4
∈ H𝑡×𝑛, and 𝐶

4
∈ H𝑡×𝑡be given; then

the system (5) have Hermitian solution if and only if 𝐶
3
= 𝐶
∗

3
,

(11), (13) hold, and the following equalities are all satisfied:

𝑟 [𝐴4 𝐶4] = 𝑟 (𝐴
4
) , (30)

𝑟
[
[
[

[

𝐶
4

𝐴
4

𝐶
∗

2
𝐴
∗

4
𝐵
∗

1

𝐶
1
𝐴
∗

4
𝐴
1

]
]
]

]

= 𝑟[

[

𝐴
4

𝐵
∗

1

𝐴
1

]

]

, (31)

𝑟

[
[
[
[
[
[
[
[

[

0 𝐴
∗

4
𝐴
∗

3
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0 0

𝐴
3

0 −𝐶
3

−𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐴
∗

3
−𝐶
∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1

0 −𝐶
1
𝐴
∗

3
−𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]

]

= 2𝑟

[
[
[
[

[

𝐴
4

𝐴
3

𝐵
∗

1

𝐴
1

]
]
]
]

]

.

(32)

Proof. It is obvious that the system (5) have Hermitian
solution if and only if the system (10) haveHermitian solution
and

min 𝑟 [𝑓 (𝑋)] = 0, (33)

where 𝑓(𝑋) is defined as (9) subject to system (10). Let𝑋
0
be

aHermitian solution to the system (5); then𝑋
0
is aHermitian

solution to system (10) and𝑋
0
satisfies𝐴

4
𝑋
0
𝐴
∗

4
= 𝐶
4
. Hence,

Lemma 1 yields 𝐶
3

= 𝐶
∗

3
, (11), (13), and (30). It follows
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from

[
[
[
[
[
[

[

𝐼 0 0 0 0

0 𝐼 0 0 0

𝐴
3
𝑋
0
0 𝐼 0 0

𝐵
∗

1
𝑋
0
0 0 𝐼 0

𝐴
1
𝑋
0
0 0 0 𝐼

]
]
]
]
]
]

]

×

[
[
[
[
[
[
[

[

0 𝐴
∗

4
𝐴
∗

3
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0 0

𝐴
3

0 −𝐶
3

−𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐴
∗

3
−𝐶
∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1

0 −𝐶
1
𝐴
∗

3
−𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]

]

×

[
[
[
[
[

[

𝐼 −𝑋
0
𝐴
∗

4
0 0 0

0 𝐼 0 0 0

0 0 𝐼 0 0

0 0 0 𝐼 0

0 0 0 0 𝐼

]
]
]
]
]

]

=

[
[
[
[
[

[

0 𝐴
∗

4
𝐴
∗

3
𝐵
1
𝐴
∗

1

𝐴
4

0 0 0 0

𝐴
3

0 0 0 0

𝐵
∗

1
0 0 0 0

𝐴
1

0 0 0 0

]
]
]
]
]

]

(34)

that (32) holds. Similarly, we can obtain (31).
Conversely, assume that 𝐶

3
= 𝐶
∗

3
, (11), (13) hold; then by

Lemma 1, system (10) have Hermitian solution. By (20), (31)-
(32), and

𝑟

[
[
[
[
[
[
[

[

0 𝐴
∗

4
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0

𝐴
3

0 −𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1

0 −𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]

]

≥ 𝑟
[
[
[

[

𝐴
4

𝐴
3

𝐵
∗

1

𝐴
1

]
]
]

]

+ 𝑟[

[

𝐴
4

𝐵
∗

1

𝐴
1

]

]

(35)

we can get

min 𝑟 [𝑓 (𝑋)] ≤ 0. (36)

However,

min 𝑟 [𝑓 (𝑋)] ≥ 0. (37)

Hence (33) holds, implying that the system (5) have Hermi-
tian solution.

ByTheorem 7, we can also get the following.

Corollary 8. Suppose that 𝐴
3
, 𝐶
3
, 𝐴
4
, and 𝐶

4
are those in

Theorem 7; then the quaternion matrix equations 𝐴
3
𝑋𝐴
∗

3
=

𝐶
3
and 𝐴

4
𝑋𝐴
∗

4
= 𝐶
4
have common Hermitian solution if and

only if (30) hold and the following equalities are satisfied:

𝑟 [𝐴3 𝐶3] = 𝑟 (𝐴
3
) ,

𝑟 [

[

0 𝐴
∗

4
𝐴
∗

3

𝐴
4
𝐶
4

0

𝐴
3

0 −𝐶
3

]

]

= 2𝑟 [
𝐴
3

𝐴
4

] .

(38)

Corollary 9. Suppose that𝐴
1
,𝐶
1
∈ H𝑚×𝑛,𝐵

1
,𝐶
2
∈ H𝑛×𝑠, and

𝐴, 𝐵 ∈ H𝑛×𝑛 are Hermitian. Then 𝐴 and 𝐵 have a common

Hermitian g-inverse which is a solution to the system (2) if and
only if (11) holds and the following equalities are all satisfied:

𝑟
[
[

[

𝐴
1
𝐶
1
𝐴

𝐵
∗

1
𝐶
∗

2
𝐴

𝐴 𝐴

]
]

]

= 𝑟[

[

𝐴
1

𝐵
∗

1

𝐴

]

]

,

𝑟
[
[

[

𝐴
1
𝐶
1
𝐵

𝐵
∗

1
𝐶
∗

2
𝐵

𝐵 𝐵

]
]

]

= 𝑟[

[

𝐴
1

𝐵
∗

1

𝐵

]

]

,

(39)

𝑟

[
[
[
[
[
[
[

[

0 𝐵 𝐴 𝐵
1

𝐴
∗

1

𝐵 𝐵 0 0 0

𝐴 0 −𝐴 −𝐴𝐶
2

−𝐴𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐴 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1
0 −𝐶

1
𝐴 −𝐶

1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]

]

= 2𝑟

[
[
[
[

[

𝐵

𝐴

𝐵
∗

1

𝐴
1

]
]
]
]

]

. (40)

4. Extremal Ranks of Schur Complement
Subject to (2)

As is well known, for a given block matrix

𝑀 = [
𝐴 𝐵

𝐵
∗
𝐷
] , (41)

where 𝐴 and 𝐷 are Hermitian quaternion matrices with
appropriate sizes, then the Hermitian Schur complement of
𝐴 in𝑀 is defined as

𝑆
𝐴
= 𝐷 − 𝐵

∗
𝐴
∼
𝐵, (42)

where 𝐴∼ is a Hermitian g-inverse of 𝐴, that is, 𝐴∼ ∈ {𝑋 |

𝐴𝑋𝐴 = 𝐴,𝑋 = 𝑋
∗
}.

Now we use Theorem 4 to establish the extremal ranks
of 𝑆
𝐴
given by (42) with respect to 𝐴∼ which is a solution to

system (2).

Theorem 10. Suppose 𝐴
1
, 𝐶
1
∈ H𝑚×𝑛, 𝐵

1
, 𝐶
2
∈ H𝑛×𝑠, 𝐷 ∈

H𝑡×𝑡, 𝐵 ∈ H𝑛×𝑡, and 𝐴 ∈ H𝑛×𝑛 are given and system (2)
is consistent; then the extreme ranks of 𝑆

𝐴
given by (42) with

respect to 𝐴∼ which is a solution of (2) are the following:

max
𝐴
1
𝐴
∼

=𝐶
1

𝐴
∼

𝐵
1
=𝐶
2

𝑟 (𝑆
𝐴
) = min {𝑎, 𝑏} ,

(43)
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where

𝑎 = 𝑟[

[

𝐷 𝐵
∗

𝐶
∗

2
𝐵 𝐵
∗

1

𝐶
1
𝐵 𝐴
1

]

]

− 𝑟 [
𝐵
∗

1

𝐴
1

] ,

𝑏 = 𝑟

[
[
[
[
[
[

[

0 𝐵 𝐴 𝐵
1

𝐴
∗

1

𝐵
∗
𝐷 0 0 0

𝐴 0 −𝐴 −𝐴𝐶
2

−𝐴𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐴 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1
0 −𝐶

1
𝐴 −𝐶

1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]

]

− 2𝑟[

[

𝐴

𝐵
∗

1

𝐴
1

]

]

,

min
𝐴
1
𝐴
∼

=𝐶
1

𝐴
∼

𝐵
1
=𝐶
2

𝑟 (𝑆
𝐴
) = 2𝑟[

[

𝐷 𝐵
∗

𝐶
∗

2
𝐵 𝐵
∗

1

𝐶
1
𝐵 𝐴
1

]

]

+ 𝑟

[
[
[
[
[
[
[
[

[

0 𝐵 𝐴 𝐵
1

𝐴
∗

1

𝐵
∗
𝐷 0 0 0

𝐴 0 −𝐴 −𝐴𝐶
2

−𝐴𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐴 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1
0 −𝐶

1
𝐴 −𝐶

1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]

]

− 2𝑟

[
[
[
[
[
[
[
[

[

0 𝐵 𝐵
1

𝐴
∗

1

𝐵
∗
𝐷 0 0

𝐴 0 −𝐴𝐶
2

−𝐴𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1
0 −𝐶

1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]

]

.

(44)

Proof. It is obvious that

max
𝐴
1
𝐴
∼
=𝐶
1
,𝐴
∼
𝐵
1
=𝐶
2

𝑟 (𝐷 − 𝐵
∗
𝐴
∼
𝐵)

= max
𝐴
1
𝑋=𝐶
1
,𝑋𝐵
1
=𝐶
2
,𝐴𝑋𝐴=𝐴

𝑟 (𝐷 − 𝐵
∗
𝑋𝐵) ,

min
𝐴
1
𝐴
∼
=𝐶
1
,𝐴
∼
𝐵
1
=𝐶
2

𝑟 (𝐷 − 𝐵
∗
𝐴
∼
𝐵)

= min
𝐴
1
𝑋=𝐶
1
,𝑋𝐵
1
=𝐶
2
,𝐴𝑋𝐴=𝐴

𝑟 (𝐷 − 𝐵
∗
𝑋𝐵) .

(45)

Thus in Theorem 4 and its proof, letting 𝐴
3
= 𝐴
∗

3
= 𝐶
3
= 𝐴,

𝐴
4
= 𝐵
∗
, and 𝐶

4
= 𝐷, we can easily get the proof.

In Theorem 10, let 𝐴
1
, 𝐶
1
, 𝐵
1
, and 𝐶

2
vanish. Then we

can easily get the following.

Corollary 11. The extreme ranks of 𝑆
𝐴
given by (42) with

respect to 𝐴∼ are the following:

max
𝐴
∼

𝑟 (𝑆
𝐴
) = min

{

{

{

𝑟 [𝐷 𝐵
∗
] , 𝑟 [

[

0 𝐵 𝐴

𝐵
∗
𝐷 0

𝐴 0 −𝐴

]

]

− 2𝑟 (𝐴)
}

}

}

,

min
𝐴
∼

𝑟 (𝑆
𝐴
) = 2𝑟 [𝐷 𝐵

∗
] + 𝑟[

[

0 𝐵 𝐴

𝐵
∗
𝐷 0

𝐴 0 −𝐴

]

]

− 2𝑟[

[

0 𝐵

𝐵
∗
𝐷

𝐴 0

]

]

.

(46)

5. The Rank Invariance of (9)
As another application of Theorem 4, we in this section
consider the rank invariance of thematrix expression (9) with
respect to the Hermitian solution of system (10).

Theorem 12. Suppose that (10) have Hermitian solution; then
the rank of 𝑓(𝑋) defined by (9) with respect to the Hermitian
solution of (10) is invariant if and only if

𝑟

[
[
[
[
[
[
[
[

[

0 𝐴
∗

4
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0

𝐴
3

0 −𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1

0 −𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]

]

= 𝑟
[
[

[

𝐶
4

𝐴
4

𝐶
∗

2
𝐴
∗

4
𝐵
∗

1

𝐶
1
𝐴
∗

4
𝐴
1

]
]

]

+ 𝑟[

[

𝐴
3

𝐵
∗

1

𝐴
1

]

]

,

𝑟

[
[
[
[
[
[
[
[

[

0 𝐴
∗

4
𝐴
∗

3
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0 0

𝐴
3

0 −𝐶
3

−𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐴
∗

3
−𝐶
∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1

0 −𝐶
1
𝐴
∗

3
−𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]

]

+ 𝑟 [
𝐵
∗

1

𝐴
1

]

= 𝑟

[
[
[
[
[
[

[

0 𝐴
∗

4
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0

𝐴
3

0 −𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1

0 −𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]

]

+ 𝑟[

[

𝐴
3

𝐵
∗

1

𝐴
1

]

]

,

(47)

or

𝑟

[
[
[
[
[
[
[

[

0 𝐴
∗

4
𝐵
1

𝐴
∗

1

𝐴
4
𝐶
4

0 0

𝐴
3

0 −𝐴
3
𝐶
2
−𝐴
3
𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1

0 −𝐶
1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]

]

= 𝑟
[
[

[

𝐶
4

𝐴
4

𝐶
∗

2
𝐴
∗

4
𝐵
∗

1

𝐶
1
𝐴
∗

4
𝐴
1

]
]

]

+ 𝑟
[
[

[

𝐴
3

𝐵
∗

1

𝐴
1

]
]

]

.

(48)

Proof. It is obvious that the rank of 𝑓(𝑋) with respect to
Hermitian solution of system (10) is invariant if and only if

max 𝑟 [𝑓 (𝑋)] −min 𝑟 [𝑓 (𝑋)] = 0. (49)

By (49), Theorem 4, and simplifications, we can get (47)
and (48).
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Corollary 13. The rank of 𝑆
𝐴
defined by (42) with respect to

𝐴
∼ which is a solution to system (2) is invariant if and only if

𝑟

[
[
[
[
[
[

[

0 𝐵 𝐵
1

𝐴
∗

1

𝐵
∗
𝐷 0 0

𝐴 0 −𝐴𝐶
2

−𝐴𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1
0 −𝐶

1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]

]

= 𝑟[

[

𝐷 𝐵
∗

𝐶
∗

2
𝐵 𝐵
∗

1

𝐶
1
𝐵 𝐴
1

]

]

+ 𝑟[

[

𝐴

𝐵
∗

1

𝐴
1

]

]

,

𝑟

[
[
[
[
[
[
[
[

[

0 𝐵 𝐴 𝐵
1

𝐴
∗

1

𝐵
∗
𝐷 0 0 0

𝐴 0 −𝐴 −𝐴𝐶
2

−𝐴𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐴 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1
0 −𝐶

1
𝐴 −𝐶

1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]
]
]

]

+ 𝑟 [
𝐵
∗

1

𝐴
1

]

= 𝑟

[
[
[
[
[
[

[

0 𝐵 𝐵
1

𝐴
∗

1

𝐵
∗
𝐷 0 0

𝐴 0 −𝐴𝐶
2

−𝐴𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1
0 −𝐶

1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]

]

+ 𝑟[

[

𝐴

𝐵
∗

1

𝐴
1

]

]

,

(50)

or

𝑟

[
[
[
[
[
[

[

0 𝐵 𝐵
1

𝐴
∗

1

𝐵
∗
𝐷 0 0

𝐴 0 −𝐴𝐶
2

−𝐴𝐶
∗

1

𝐵
∗

1
0 −𝐶

∗

2
𝐵
1
−𝐶
∗

2
𝐴
∗

1

𝐴
1
0 −𝐶

1
𝐵
1
−𝐶
1
𝐴
∗

1

]
]
]
]
]
]

]

= 𝑟[

[

𝐷 𝐵
∗

𝐶
∗

2
𝐵 𝐵
∗

1

𝐶
1
𝐵 𝐴
1

]

]

+ 𝑟[

[

𝐴

𝐵
∗

1

𝐴
1

]

]

.

(51)
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