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Power flow study plays a fundamental role in the process of power system operation and planning. Of the several methods in
commercial power flow package, the Newton-Raphson (NR) method is the most popular one. In this paper, we numerically study
the convergence region of each power flow solution under the NR method. This study of convergence region provides insights of
the complexity of the NR method in finding power flow solutions. Our numerical studies confirm that the convergence region
of NR method has a fractal boundary and find that this fractal boundary of convergence regions persists under different loading
conditions. In addition, the convergence regions of NR method for power flow equations with different nonlinear load models are
also fractal.This fractal property highlights the importance of choosing initial guesses since a small variation of an initial guess near
the convergence boundary leads to two different power flow solutions. One vital variation of Newton method popular in power
industry is the fast decoupled power flow method whose convergence region is also numerically studied on an IEEE 14-bus test
system which is of 22-dimensional in state space.

1. Introduction

Since power flow calculation started in 1956 [1–3], a variety
of numerical methods have been developed for power flow
study, such as Gauss method [1], Newton method [4], and
fast decoupled method [5]. Over the past 20 years, Newton
method and its variations are widespread, utilized, and
enhanced [6–11]. Power flow study (or load flow study) is the
determination of steady-state conditions of a power system
for a specified power generation and load demand.The power
flow problem is the computation of voltage magnitude and
phase angle at each bus in a power systemunder the following
conditions:

(i) balanced three-phase steady-state conditions and the
system is in sinusoidal steady-state;

(ii) the transmission network is composed of constant,
linear, and lumped-parameter branches;

(iii) the specified real and reactive power demand at each
(load) bus;

(iv) the specified real power generation at each (genera-
tor) bus except one generator bus.

Power flow study is performed extensively both for sys-
tem planning purposes to analyze alternative plans of future
systems and for system operation purposes to evaluate differ-
ent operating conditions of existing systems. Indeed, power
flow study is used in transmission planning to check for
branch overloads, bus voltage problems. In static contingency
analysis, power flow study is used to assess the effect of branch
and/or generator outages. In transfer capability analysis,
(repetitive) power flow study is performed to calculate the
power transfer limits.

In the literature, there was little work on the study of
convergence regions of power flow solutions. The existing
relevant papers that the authors were able to identify were
mainly focused on the following aspects: power flow fractals
and truncated fractals on a 3-bus system [12–17], different
convergence regions under polar and rectangular expresses
Newton method [18]. This study of convergence regions
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provides insights to explain the reasons behind power flow
divergence and may lead to improving the robustness of
Newton power flow via some parameters adjustment.

In this paper, we numerically study the convergence
region of each power flow solution under the Newton-
Raphson (NR) method. One important variation of Newton
method popular in power industry is the fast decoupled
power flow method. We also numerically study the conver-
gence region of fast decoupled power flow method.

The key results presented in this paper are summarized as
follows.

(1) Our numerical studies on a larger system, IEEE 14-bus
test system, as comparedwith the 3-bus power system,
confirm that the convergence region of NR method
has a fractal boundary.

(2) The convergence region shrinks with the increase
in loading conditions. This property can be used to
explain the difficulty of Newton method in finding a
power flow solution under heavy loading conditions,
in addition to the numerical ill-condition.

(3) The fractal boundary of convergence regions persist
under different loading conditions (the lightly loaded
condition, the medium loaded condition, and the
heavily loaded condition).

(4) Convergence regions of NR method for power flow
equations with different loadmodels all reveal fractal.

(5) Convergence region of fast decoupled power flow
method also has a fractal boundary.

(6) The required number of iterations is large (i.e., greater
than 10) when the initial guesses are located near the
boundaries of convergence regions. It is interesting
to note that the region of convergence with different
required number of iterations is disconnected.

This fractal property highlights the importance of choos-
ing initial guesses since a small variation of an initial guess
near the convergence boundary leads to two different power
flow solutions. This fractal property persists under different
loading conditions. This study of convergence region pro-
vides insights of the complexity of the NR method as well as
the fast decoupled power flow method in finding power flow
solutions even for large-scale power systems. This study also
sheds lights on the difficulty of finding a power flow solution
of heavily-loaded power systems.

2. Convergence Region of Newton Method

Newton method is a locally convergent iterative method for
solving a set of nonlinear equations, which can be expressed
as

𝑓 (𝑥) = 0. (1)

Here 𝑓 : 𝑅𝑛 → 𝑅𝑛.
The Newton iteration can be expressed as

𝑓 (𝑥
𝑘
) = −𝐽 (𝑥

𝑘
) Δ𝑥
𝑘
, Δ𝑥

𝑘
= 𝑥
𝑘+1

− 𝑥
𝑘
, (2)

where

𝑥
𝑘
: state variables of the 𝑘th iteration;

𝑥
𝑘+1

: state variables of the (𝑘 + 1)th iteration;
Δ𝑥
𝑘
: error between 𝑥

𝑘+1
and 𝑥

𝑘
;

𝐽(𝑥
𝑘
): Jacobian matrix of 𝑥

𝑘
.

If the components of𝑓(𝑥) are differentiable, we define the
Jacobian matrix in (2) as

𝐽 (𝑥
𝑘
) = 𝑓󸀠 (𝑥

𝑘
) =

𝜕𝑓

𝜕𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥𝑘
. (3)

It is well known thatNewtonmethod is locally convergent
under the following assumptions [19].

Assumption 1. Equation (1) has a solution 𝑥∗.

Assumption 2. 𝑓󸀠 : Ω → 𝑅𝑛×𝑛 is Lipschitz continuous near
𝑥∗.

Assumption 3. 𝑓󸀠(𝑥∗) is nonsingular.

The classic convergence theorem is stated as follows.

Theorem 4 ((local convergence) [19]). If Assumption 1
through Assumption 3 hold and the initial guess 𝑥

0
is

sufficiently near 𝑥∗, then the Newton sequence exists (i.e.,
𝑓󸀠(𝑥
𝑛
) is nonsingular for all 𝑛 > 0) and converges to 𝑥∗ and

there is 𝐾 > 0 such that

󵄩󵄩󵄩󵄩𝑒
𝑛+1

󵄩󵄩󵄩󵄩 ≤ 𝐾
󵄩󵄩󵄩󵄩𝑒
𝑛

󵄩󵄩󵄩󵄩
2 (4)

for n sufficiently large, where the mismatch errors decrease
quadratically.

Assumption 3 assures that the singular Jacobian matrix
does not appear during iterations. By the same token, the
initial point and the singularity of Jacobian matrix do make
great effect on the convergence of Newton method. Starting
from an initial guess 𝑥

0
, the algebraic equations (1) are

iteratively solved. Generally, the Newton method converges
within a reasonable number. However, the Newton method
may diverge. To this end, the study of convergence region is
relevant.

2.1. Fractal Convergence Boundaries. The convergence region
of a power flow solution under the Newton method is the
region in the state space such that initial points starting from
this region can nicely converge, under the Newton method,
to a power flow solution. It is known that the boundaries
of convergence regions of power flow solutions obtained by
Newton method are a set that is analogous to the “Julia
set” [15–18]. These boundaries are known to have fractal
geometric features. Using initial points close to any of the
solutionswould result in a rapid convergence.However, using
initial points near the boundary of a convergence region,
the Newton method becomes unpredictable. In this study,
a region in state space in which the initial points do not
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converge (in a specified tolerance) to any power flow solution
is termed the divergence region of Newton method.

We consider a 𝑛-bus power system with m generators.
There exits three different types of buses: slack bus 1, 𝑃-𝑉 bus
(numbered from bus 2 to bus 𝑚), and 𝑃-𝑄 bus (numbered
from bus 𝑚 + 1 to bus 𝑛). The power flow equations defined
in polar coordination can be expressed as [2]

𝑓 (𝑥) = [
Δ𝑃
Δ𝑄

] = [
𝑃 (𝜃, 𝑉) + 𝑃

𝑑
− 𝑃
𝑔

𝑄 (𝜃, 𝑉) + 𝑄
𝑑

− 𝑄
𝑔

] = 0, (5)

where

𝑃
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(𝜃, 𝑉) = 𝑉

𝑖

𝑛

∑
𝑗=1

𝑉
𝑗

(𝐺
𝑖𝑗
cos 𝜃
𝑖𝑗

+ 𝐵
𝑖𝑗
sin 𝜃
𝑖𝑗
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) , 𝑖 = 𝑚 + 1 ⋅ ⋅ ⋅ 𝑛,

(6)

and 𝑃
𝑑

= {𝑃
𝑑𝑖

}, 𝑖 = 2 ⋅ ⋅ ⋅ 𝑛 are the active load powers of the
buses; 𝑃

𝑔
= {𝑃
𝑔𝑖

}, 𝑖 = 2 ⋅ ⋅ ⋅ 𝑚 are the real power output of the
generators; 𝜃 = {𝜃

𝑖
}, 𝑖 = 2 ⋅ ⋅ ⋅ 𝑛 are the voltage phase angles of

the buses;𝑉 = {𝑉
𝑖
}, 𝑖 = 𝑚+1 ⋅ ⋅ ⋅ 𝑛 are the voltagemagnitude of

the buses. Equation (7) characterizes the real power balance
at 𝑃-𝑉 buses and the real and reactive power at 𝑃-𝑄 buses.

TheNewton iteration for solving the power flow equation
(7) proceeds as follows:

[
Δ𝑃
Δ𝑄

] = −𝐽 [
Δ𝜃
Δ𝑉

] . (7)

The Jacobian matrix in (8) is

𝐽 =
[
[
[

[

𝜕Δ𝑃

𝜕𝜃

𝜕Δ𝑄

𝜕𝜃

𝜕Δ𝑃

𝜕𝑉

𝜕Δ𝑄

𝜕𝑉

]
]
]

]

. (8)

To study the stability of solutions, a dynamic system is
considered

𝑥̇ = −𝑓 (𝑥) , (9)

where 𝑥̇ = [ ̇𝜃 𝑉̇]
𝑇. It is evident that the solutions of

algebraic equation (7) correspond to the equilibrium points
of the ordinary differential equation defined in (9). A solution
of algebraic equation is exactly an equilibrium point of the
ordinary differential equation. For a power flow solution, it
is a stable equilibrium point of (9) if all of its eigenvalues lie
in the open left half plane while a type-1 equilibrium point of
(9) has exactly one eigenvalue that lies in the open right half
plane. Type-2 equilibrium points of (9) are similarly defined.

We study the convergence region of Newton method on
a modified 3-bus system shown in Figure 1. The modified 3-
bus system contains 2 𝑃-𝑉 buses and 1 slack bus, with bus 1
being selected as the slack bus, and the remaining buses, bus
2 and bus 3, are both 𝑃-𝑉 buses. Hence, there are only two
real power equations to be solved with two unknowns (the
voltage angles 𝜃

2
and 𝜃
3
).

PV

PV

2

3

1

𝜋

𝜋

𝜋

Figure 1: A modified 3-bus system.

Table 1: Multiple power flow solutions.

Equilibrium Color 𝜃
2

𝜃
3

Initial
numbers Stability

1 Blue 0.1191 0.1195 33703 Stable
2 Green −0.3151 3.0906 30430 Type-1
3 Red −1.8206 2.3522 16463 Type-2
4 Purple 3.0919 −0.3137 30432 Type-1
5 Yellow 2.3525 −1.8220 16364 Type-2
6 Sky-blue −3.0952 −3.0940 32587 Type-1

The power flow solutions obtained by using the Newton
method are summarized in Table 1. The color column in
Table 1 denotes the colors in the convergence regions and its
fractal boundaries are highlighted in Figure 2, which is a 2𝜋 −
𝑏𝑦 − 2𝜋 grid of initial conditions in 𝜃

2
and 𝜃
3
, representing

160,000 power flow solutions. The scale in each voltage angle
is 0 to 2𝜋 in radians. The blue region is the convergence
region of stable equilibrium point (SEP). The Newton power
flow method starting from the initial conditions in this
region all converges to the stable equilibrium point of (9).
The green, purple, and sky-blue regions correspond to those
initial conditions that converge to the three type-1 unstable
equilibrium points (UEP), at which one of the eigenvalues
of the Jacobian is positive and the other is negative. Finally,
the red and yellow parts are the convergence regions of two
type-2 equilibrium points, at which both eigenvalues are
negative. The numerical difference between pixels is 0.157 in
radians.

Note that there are regions in the state space in which
a small change in initial conditions results in a different
convergence region. The number of iterations required for
convergence is large in the fractal areas. Depending on
the maximum iteration number used in the power flow
program, these fractal areas may change. Note that due to
the singularity of Jacobian, the Newton power flow will not
converge from any initial condition at which the Jacobian is
singular or from a point that maps on to a point where the
Jacobian is singular.
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Figure 2: Convergence region of each power flow solution of a
modified 3-bus test system.

2.2. Required Number of Iterations for Initials in Region of
Convergence. The convergence of a Newton power flow has
strong relationship with the maximum iteration number and
the convergence threshold used in the computation. Newton
power flow method usually converges within 10 iterations.
For the study of required iterations starting from different
initial points, we perform numerical studies on the modified
3-bus system (see Figure 1) with the following parameters:

(i) threshold for iterations: 20;
(ii) threshold for convergence in power mismatch: 10−8.

Table 2 shows the required number of iterations starting
from different initial conditions. The initial points that
converge within 10 iterations constitute about 98.5%. Also,
the required iterations from initials that lie in or near fractal
boundaries are shown in Figure 3. The color-map in Figure 3
denotes the correspondence of colors with the required
iterations. As can be seen from the figure, the initial points
in convergence region can nicely converge with 10 iterations,
which are always less than 10 and the initial points which
require large iteration numbers all lie near the boundaries of
convergence regions.

3. Convergence Regions under
Different Conditions

In this section, the convergence regions on several conditions
are investigated via a modified 3-bus system and the IEEE 14-
bus system:

(i) base-case,
(ii) various loading conditions,
(iii) different load models (models representing load

demands).

For the modified 3-bus system, there are 2 𝑃-𝑉 buses and
1 slack bus. Hence the state variable 𝑥 in power flow equations
is a 2-dimensional vector, which means that the convergence

Table 2: Required Iterations starting from different initials.

Convergence iteration number Initial numbers
[0, 2] 235
(2, 4] 60197
(4, 6] 69038
(6, 8] 21945
(8, 10] 6162
(10, 12] 1776
(12, 14] 472
(14, 16] 140
(16, 18] 25
(18, 20] 9
>20 1
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Figure 3: The convergence region and the number of iterations
needed for the Newton method on (𝜃

2
, 𝜃
3
) plane.

region of themodified 3-bus system is 2-dimensional. For the
IEEE 14-bus system, it contains 4 𝑃-𝑉 buses, 9 𝑃-𝑄 buses,
and 1 slack bus. Hence the state variable is a 22-dimensional
vector, which means that the convergence region of IEEE 14-
bus system is 22-dimensional. For the sake of the visualization
of the convergence region, the same two-dimensional cross-
sections are selected to display convergence regions.Thebasic
data for study is listed as follows:

(i) horizon axis is the voltage angle 𝜃
2
in bus 2, and the

vertical axis is the voltage angle 𝜃
3
in bus 3;

(ii) the scale in each coordinate is from 0 to 2𝜋;
(iii) each figure is 2𝜋 − 𝑏𝑦 − 2𝜋 grid of initial conditions

on (𝜃
2
, 𝜃
3
) plane, representing 160,000 power flow

solutions.

3.1. Convergence Regions at Base-Case. Figure 4 shows the
convergence region of IEEE 14-bus system of the base case on
the (𝜃

2
, 𝜃
3
) plane.The blue region is the convergence region of

the SEP. The power flow starting from the initial conditions
in this region all converges to the stable equilibrium point.
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Table 3: Number of power flow solutions and fractal properties at different loading conditions.

Case name Loading condition Number of solutions Number of initials converged to SEP Fractal

3-bus Loading factor

1 6 33703 Yes
4.02 4 34743 Yes
5 2 90051 Yes
9.1 0 0 —

14-bus Loading factor

1 20 16274 Yes
2 8 16538 Yes
4 2 17125 Yes
5 0 0 —

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure 4: Convergence region of power flow solutions of the IEEE
14-bus system on (𝜃

2
, 𝜃
3
) plane.

The green region is the convergence region of one of the type-
1 equilibrium. The left colorized regions, like green, purple,
yellow, and so forth, are regions corresponding to those initial
conditions that converge to the corresponding equilibrium
points. Finally, the white parts in 2𝜋 − 𝑏𝑦 − 2𝜋 grid are the
divergence region, which occupies a great deal of area and is
much larger than that in the modified 3-bus system.

Thenumber of power flow solutions can be large.Wewere
able to find 20 power flow solutions for the base-case power
system of the IEEE 14-bus power system in the region which
is a 2𝜋 − 𝑏𝑦 − 2𝜋 on (𝜃

2
, 𝜃
3
) plane and find 6 power flow

solutions for the base-case power system of the modified 3-
bus system. As the loading conditions increase, the number
of power flow solutions decreases in pair, due to the saddle
node bifurcations [20–22]. The total number of power flow
solutions at each loading condition is summarized in Table 3.

3.2. Convergence Regions at Various Loading Conditions. We
next study the convergence region of each power flow solu-
tion under different loading conditions. Since the number of
power flow solutions decreases with the increase of loading
conditions, wemade efforts to trace each power flow solution.
The loading effect on the convergence region is simulated
via a loading factor 𝜆. Although the convergence regions
differ with different loading conditions, the fractals persist for
different loading conditions, which are shown in Figure 5.

Table 4: Power flow solutions on different loading conditions.

Loading factor
Power flow solutions

SEP UEP
theta2 theta3 theta2 theta3

6 0.7663 0.7689 2.5373 2.5433
7 0.9318 0.9350 2.3713 2.3777
8 1.1377 1.1416 2.1650 2.1714
9 1.5089 1.5140 1.7935 1.7994

However, the number of power flow solutions decreases
while the convergence region of SEP increases in size with
the increase of loading factor 𝜆, which is shown in Figure 5.
In other words, the number of power flow solutions decreases
when the loading conditions become heavier. During this
process of load increases, saddle node bifurcations occur
which brings about the solutions that vanished in pair, and
then at the end there are only two power flow solutions left
(one SEP and one type-1 UEP); finally these two power flow
solutions come together when the loading factor 𝜆 reaches
its bifurcation value at which these two power flow solutions
disappear due to the saddle node bifurcation (SNB).

Figure 6 shows the numbers of iterations required by the
Newton power flow method to converge to a power flow
solution under different loading conditions. The required
number of iterations for those initial points in convergence
region increases when the loading factor increases. It implies
that it is more difficult to converge when the system is in
heavy loading conditions. Moreover, the two solutions (cor-
responding to SEP and UEP of dynamical system) become
closer as the loading conditions get heavier, and they coincide
when the loading factor is 9 at which the saddle node
bifurcation occurs.

The power flow solutions are illustrated in Table 4 to give
a contrast. It is interesting to note that the coordinate of
stable power flow solutions is quite different from that of the
unstable power flow solutions.

3.3. Convergence Regions with Different LoadModels. Several
popular load models are used in the power flow analysis
to better reflect static load behaviors. They are (1) constant
power model 𝑃 = 𝑃

0
(the power does not change with the

movement of voltage magnitude); (2) constant impedance
𝑃 = 𝑃

0
𝑉2 (the power is direct proportion of the square of
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Figure 5: Convergence regions of modified 3-bus system on different loading conditions: (a) 𝜆 = 1; (b) 𝜆 = 4.02; (c) 𝜆 = 5.

voltage magnitude); (3) constant current 𝑃 = 𝑃
0
𝑉 (the power

is direct proportion of voltagemagnitude); (4)ZIPmodel (the
hybrid model of the above three models).

The polynomial equations for representing the ZIP load
model can be expressed as

𝑃
𝑑

= 𝑎
𝑝

𝑉2 + 𝑏
𝑝

𝑉 + 𝑐
𝑝

,

𝑄
𝑑

= 𝑎
𝑞
𝑉2 + 𝑏

𝑞
𝑉 + 𝑐
𝑞
,

(10)

where 𝑎
𝑝

+ 𝑏
𝑝

+ 𝑐
𝑝

= 1 and 𝑎
𝑞

+ 𝑏
𝑞

+ 𝑐
𝑞

= 1. The parameters
𝑎, 𝑏, and 𝑐 represent the proportions of constant impedance,
constant current, and constant power load, respectively. At
the base-case condition, all loads are modeled as constant
power. Table 5 lists ZIP load parameters, number of power
flow solutions, and sizes of convergence regions for different
load models.

The convergence regions of IEEE 14-bus system with
constant impedance, constant current, constant power, and
ZIP load models are plotted in Figure 7. One interesting
observation is that these convergence regions are similar in

shape with fractal boundaries. Nevertheless, the number of
power flow solutions is different amongdifferent loadmodels.
In accordance with the number of solutions with various
load models, the descending order is as follows: constant
impedance, constant current, ZIP and constant power, as is
shown in Table 5.

4. Convergence Regions of Fast Decoupled
Newton Method

Fast Decoupled Power Flow (FDPF) method is another pow-
erful power flow technique which is based on the property
that the variation of active power is mainly related to the
variation of voltage phase angles in buses and the variation
of reactive power with the variation of voltage magnitudes
in buses. FDPF was proposed on the basis of the following
numerical properties of practical power networks:

(i) usually 𝑟 ≪ 𝑥; therefore |𝐺
𝑖𝑗

| ≪ |𝐵
𝑖𝑗

|;
(ii) usually 𝜃

𝑖𝑗
is small, so sin 𝜃

𝑖𝑗
≈ 0.
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Table 5: Load parameters, the size of convergence region, number of power flow solutions, and fractal property for different load models.

Load model type Load parameters for all buses Number of solutions Number of initials
converged to SEP Fractal

a b c
Constant impedance 1 0 0 70 16495 Yes
Constant current 0 1 0 56 16493 Yes
Constant power 0 0 1 20 16274 Yes
ZIP 0.33 0.33 0.33 34 16486 Yes
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(b) 𝜆 = 7
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(c) 𝜆 = 8
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(d) 𝜆 = 9

Figure 6: Iteration numbers of Newton method for the modified 3-bus system with different load conditions on (𝜃
2
, 𝜃
3
) plane: (a) 𝜆 = 6;

(b) 𝜆 = 7; (c) 𝜆 = 8; (d) 𝜆 = 9.

The Jacobian matrix (see (9)) of Newton method is
approximated by the following:

𝐽 = [
𝐵󸀠 0
0 𝐵󸀠󸀠

] . (11)

The fast decoupled method solves the following equa-
tions:

Δ𝑃 = −𝐵󸀠Δ𝜃,

Δ𝑄 = −𝐵󸀠󸀠Δ𝑉.
(12)

Compared with Newton method, the FDPF method
brings about some merits: a smaller memory space and com-
putational speed. However, FDPF method has the following
issues:

(1) convergence rate is linear;
(2) it may diverge when one of the situations occurs:

(a) the line parameters have a high 𝑟/𝑥;
(b) the system is heavily loaded.
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Figure 7: Convergence region of IEEE 14-bus system with different load models on (𝜃
2
, 𝜃
3
) plane: (a) constant impedance load; (b) constant

current load; (c) constant power load; (d) ZIP load.
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Figure 8: The convergence region of FDPF for IEEE 14-bus system on (𝜃
2
, 𝜃
3
) plane.
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Figure 9: The convergence region and the number of iterations needed for the FDPF method for IEEE 14-bus system on (𝜃
2
, 𝜃
3
) plane.
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(a) 𝜆 = 1
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(c) 𝜆 = 5
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(d) 𝜆 = 8

Figure 10:The convergence region and the number of iterations needed for the FDPF method to converge at different loading conditions on
(𝜃
2
, 𝜃
3
) plane: (a) the lightly loaded condition, 𝜆 = 1; (b) 𝜆 = 3; (c) 𝜆 = 5; (d) the heavily loaded condition, 𝜆 = 8. From an initial condition,

the number of iterations required by the FDPF method increases with the increase of loading condition.
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(a) 𝑟/𝑥 = 0.01/0.12
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(b) 𝑟/𝑥 = 0.05/0.12
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(c) 𝑟/𝑥 = 0.10/0.12
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(d) 𝑟/𝑥 = 0.13/0.12

Figure 11: The convergence regions and the number of iterations required for the FDPF method to converge with different 𝑟/𝑥 ratios on the
(𝜃
2
, 𝜃
3
) plane: (a) 0.01/0.12; (b) 0.05/0.12; (c) 0.10/0.12; (d) 0.13/0.12. The convergence region decreases in size with the increase in the 𝑟/𝑥

ratios; rendering the FDPF method does not work well in the distribution power networks which have high 𝑟/𝑥 ratios.

Based on the above considerations, we numerically inves-
tigate the convergence regions of FDPF on the modified 3-
bus system and the IEEE 14-bus system. We first consider
the base-case, followed by various loading conditions and
followed by different 𝑟/𝑥 ratios.

4.1. Base-Case. Figure 8 shows the convergence region of
IEEE 14-bus system at the base case under the FDPF method
on the (𝜃

2
, 𝜃
3
) plane. The colors blue and white present the

initial points which converge to the power flow solution and
the initial points that diverge, respectively. Similar with the
convergence region of the Newton method, the convergence
region of the FDPF also has fractal boundary. While only
one power flow solution is obtained starting from different
initial points which is different from the Newton method
under which multiple solutions are reached.This implies that
the FDPF method is not appropriate for the computation of
multiple solutions.

The number of iterations needed for the FDPF method
to converge is shown in Figure 9. The color-map in Figure 9
denotes the required iteration numbers. As can be seen
from the figure, the initial points which lie near the power
flow solution will converge with small number of iterations,
while the initial points which lie near the boundary of the
convergence region require a large number of iterations or
even diverge.

4.2. Various Loading Conditions. Normally, the voltage angle
difference between two buses during a light loaded condition
is small. However, the increase in loading condition causes
a large voltage angle difference between two buses, which
may lead to a violation of an assumption needed in the FDPF
method. We next study the impact of loading conditions on
the convergence regions of FDPF method on the modified 3-
bus system. The loading effect on the convergence region is
studiedwith the help of a loading factor𝜆. Figure 10 shows the
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iteration numbers required by the FDPF method to converge
to a power flow solution.

It is obvious that starting from an initial condition
the number of iterations needed to converge to a solution
increases with the increase of the loading factor. All initial
points that converge to a power flow solution under the FDPF
within a maximum number of 30 of the base-case (𝜆 = 1)
are shown in Figure 10. As expected, the convergence region
shrinks significantly when the loading factor 𝜆 is 8, which
is near the load margin of the system in which many initial
points need the maximum number of iterations to converge
or diverge. This fact can serve to explain why the FDPF
method performs poorly during heavily-loaded conditions.

4.3. Different 𝑟/𝑥 Ratio. One condition used to derive the
FDPF method is that the resistance is much smaller than the
reactance of the transmission lines of the power system.With
the increment of 𝑟/𝑥 ratio, the numbers of iterations required
by the FDPFmethodwill increase.When the 𝑟/𝑥 ratio is high,
the FDPFmethod tends to diverge. We next study the impact
of 𝑟/𝑥 ratio on the convergence region of the FDPF method.

Figure 11 shows the number of iterations needed for the
FDPF method to converge to a solution with different 𝑟/𝑥
ratios. In the base case, the 𝑟/𝑥 ratio is 0.01/0.12; the number
of iterations required from different initial conditions for the
FDPF method is shown in Figure 11(a). Figures 11(b)–11(d)
show the number of iterations needed for the FDPF method
to converge with 5, 10, and 13 times of the 𝑟/𝑥 ratio of the base
case. It is manifest that the 𝑟/𝑥 ratio has great effect on the
convergence of FDPFmethod.These numerical studies agree
with the consensus that the FDPF method tends to diverge
when the 𝑟/𝑥 ratio is high.

5. Conclusion

This paper numerically studies the convergence region of
power flow solutions under the Newton method and the fast
decoupled power flow method which is a vital variation of
the Newton method. The simulation results of the Newton
method indicate that (1) the convergence regions of Newton
method have fractal boundary, and the initial points which
lie near the boundary of convergence regions require large
iteration numbers; (2) these fractal boundary of conver-
gence regions persists under different loading conditions
(the lightly-loaded condition, the medium-loaded condition,
and the heavily-loaded condition) and different load models
(constant power, constant current, constant impedance, and
ZIP); (3) the convergence region shrinks with the increase in
loading conditions, and the required number of iterations for
those initial points in convergence region increases when the
loading factor increases. The simulation results of the FDPF
method show that (1) the convergence region of the FDPF
also has fractal boundary, but multiple solutions cannot be
detected under the FDPFmethod; (2) the convergence region
shrinks with the increase of the loading condition; (3) the
numbers of iterations required by the FDPF method will
increase with the increment of the 𝑟/𝑥 ratio. These indicate
that the FDPF method does not have a good convergence

performance in heavy loading condition and high 𝑟/𝑥 ratio
condition.

These properties highlight the importance of choosing
initial guesses for the Newtonmethod and the FDPFmethod.
This study of convergence region provides insights of the
complexity of the NR method as well as the fast decoupled
Newton method in finding power flow solutions even for
large-scale power systems.This study also sheds lights on the
difficulty of finding a power flow solution of heavily-loaded
power systems. These properties may give some reference
to the application and enhancements of Newton power flow
method and fast decoupled power flow method.
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