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The purpose of this paper is to investigate some spectral properties of Sturm-Liouville type problems with interior singularities.
Some of the mathematical aspects necessary for developing our own technique are presented. By applying this technique we
construct some special solutions of the homogeneous equation and present a formula and the existence conditions of Green’s
function. Furthermore, based on these results and introducing operator treatment in adequateHilbert space, we derive the resolvent
operator and prove self-adjointness of the considered problem.

1. Introduction

For inhomogeneous linear systems, the basic superposition
principle says that the response to a combination of external
forces is the self-same combination of responses to the
individual forces. In a finite-dimensional system, any forcing
function can be decomposed into a linear combination of
unit impulse forces, each applied to a single component
of the system, and so the full solution can be written
as a linear combination of the solutions to the impulse
problems. This simple idea will be adapted to boundary
value problems governed by differential equations, where the
response of the system to a concentrated impulse force is
known as Green’s function. With Green’s function in hand,
the solution to the inhomogeneous system with a general
forcing function can be reconstructed by superimposing
the effects of suitably scaled impulses. Green’s function
method provides a powerful tool to solve linear problems
consisting of a differential equation (partial or ordinary, with,
possibly, an inhomogeneous term) and enough initial and/or
boundary conditions (also possibly inhomogeneous) so that
this problem has a unique solution. The history of Green’s
function dates back to 1828, when Green [1] published work
in which he sought solutions of Poisson’s equation ∇2𝑢 = 𝑓

for the electric potential 𝑢 defined inside a bounded volume
with specified boundary conditions on the surface of the
volume. He introduced a function now identified as what
Riemann later coined Green’s function. In 1877, Neumann
[2] embraced the concept of Green’s function in his study
of Laplace’s equation, particularly in the plane. He found
that the two-dimensional equivalent of Green’s function was
not described by singularity of the form 1/|𝑟 − 𝑟

0
| as in

the three-dimensional case but by a singularity of the form
log(1/|𝑟−𝑟

0
|). With the function’s success in solving Laplace’s

equation, other equations began to be solved using Green’s
function.The heat equation and Green’s function have a long
association with each other. After discussing heat conduction
in free space, the classic solutions of the heat equation in
rectangular, cylindrical, and spherical coordinates are offered.
In the case of the heat equation, Hobson [3] derived the free-
spaceGreen’s function for one, two and three dimensions, and
the French mathematician Appell [4] recognized that there
was a formula similar to Green’s for the one-dimensional
heat equation. Green’s function is particularly well suited for
wave problems with the detailed analysis of electromagnetic
waves in surface wave guides and water waves. The leading
figure in the development of Green’s function for the wave
equation was Kirchhoff [5], who used it during his study
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of the three-dimensional wave. Starting with Green’s second
formula, he was able to show that the three-dimensional
Green’s function is

𝑔 (𝑥, 𝑦, 𝑧, 𝑡 | 𝜉, 𝜂, 𝜍, 𝜏) =
𝛿 (𝑡 − 𝜏 − 𝑅/𝑐)

4𝜋𝑅
, (1)

where 𝑅 = √(𝑥 − 𝜉)
2
+ (𝑦 − 𝜂)

2
+ (𝑧 − 𝜍)

2.
The application of Green’s function to ordinary differ-

ential equations involving boundary-value problems began
with the work of Burkhardt [6]. Determination of Green’s
function is also possible using Sturm-Liouville theory. This
leads to series representation of Green’s function. Sturm-
Liouville problems which contained spectral parameter in
boundary conditions form an important part of the spectral
theory of boundary value problems. This type of problems
has a lot of applications in mechanics and physics (see [7–
9] and references cited therein). In the recent years, there has
been increasing interest in this kind of problems which also
may have discontinuities in the solution or its derivative at
interior points (see [10–18]). In this study, we will investigate
some spectral properties of the Sturm-Liouville differential
equation on two intervals:

L𝑦 := −𝑦

(𝑥) + 𝑞 (𝑥) 𝑦 (𝑥) = 𝜆𝑦 (𝑥) ,

𝑥 ∈ [𝑎, 𝑐) ∪ (𝑐, 𝑏]

(2)

on [𝑎, 𝑐) ∪ (𝑐, 𝑏], with eigenparameter-dependent boundary
conditions at the end points 𝑥 = 𝑎 and 𝑥 = 𝑏. One has,

𝜏
1
(𝑦) := 𝛼

10
𝑦 (𝑎) + 𝛼

11
𝑦

(𝑎) = 0, (3)

𝜏
2
(𝑦) := 𝛼

20
𝑦 (𝑏) − 𝛼

21
𝑦

(𝑏) + 𝜆 (𝛼



20
𝑦 (𝑏) − 𝛼



21
𝑦

(𝑏)) = 0

(4)

and the transmission conditions at the singular interior point
𝑥 = 𝑐

𝜏
3
(𝑦) := 𝛽

−

11
𝑦

(𝑐−) + 𝛽

−

10
𝑦 (𝑐−)

+ 𝛽
+

11
𝑦

(𝑐+) + 𝛽

+

10
𝑦 (𝑐+) = 0,

𝜏
4
(𝑦) := 𝛽

−

21
𝑦

(𝑐−) + 𝛽

−

20
𝑦 (𝑐−)

+ 𝛽
+

21
𝑦

(𝑐+) + 𝛽

+

20
𝑦 (𝑐+) = 0,

(5)

where the potential 𝑞(𝑥) is real continuous function in each
of the intervals [𝑎, 𝑐) and (𝑐, 𝑏] and has finite limits 𝑞(𝑐 ∓ 0),
𝜆 is a complex spectral parameter, 𝛼

𝑖𝑗
, 𝛽±
𝑖𝑗
, (𝑖 = 1, 2 and 𝑗 =

0, 1), and 𝛼


𝑖𝑗
(𝑖 = 2 and 𝑗 = 0, 1) are real numbers.

Our problem differs from the usual regular Sturm-
Liouville problem in the sense that the eigenvalue parameter
𝜆 is contained in both differential equation and boundary
conditions, and two supplementary transmission conditions
at one interior point are added to boundary conditions.
Such problems are connected with discontinuous material
properties, such as heat and mass transfer, vibrating string
problems when the string loaded additionally with points
masses, diffraction problems [8, 9], and varied assortment of

physical transfer problems. We develop our own technique
for the investigation of some spectral properties of this
problem. In particular, we construct the Green’s function
and adequate Hilbert space for self-adjoint realization of the
considered problem.

2. Some Basic Solutions and Green’s Function

Denote the determinant of the 𝑘th and 𝑗th columns of the
matrix

𝑇 = [
𝛽
+

10
𝛽
+

11
𝛽
−

10
𝛽
−

11

𝛽
+

20
𝛽
+

21
𝛽
−

20
𝛽
−

21

] (6)

by Δ
𝑘𝑗
(1 ≤ 𝑘 < 𝑗 ≤ 4). For self-adjoint realization in

adequate Hilbert space, everywhere below we will assume
that

Δ
12
> 0, Δ

34
> 0. (7)

With a view to construct the Green’s function we will define
two special solutions of (2) by our own technique as follows.
At first, consider the next initial-value problem on the left
interval [𝑎, 𝑐)

−𝑦

+ 𝑞 (𝑥) 𝑦 = 𝜆𝑦,

𝑦 (𝑎) = 𝛼
11
, 𝑦


(𝑎) = −𝛼

10
.

(8)

It is known that this problem has an unique solution 𝑢 =

𝜑
−
(𝑥, 𝜆) which is an entire function of 𝜆 ∈ C for each fixed

𝑥 ∈ [𝑎, 𝑐) (see, e.g., [19]). By applying the similar method of
[13], we can prove that (2) on the right interval (𝑐, 𝑏] has an
unique solution 𝑢 = 𝜑+(𝑥, 𝜆) satisfying the equalities

𝜑
+
(𝑐+, 𝜆) =

1

Δ
12

(Δ
23
𝜑
−
(𝑐−, 𝜆) + Δ

24

𝜕𝜑
−
(𝑐−, 𝜆)

𝜕𝑥
) , (9)

𝜕𝜑
+
(𝑐+, 𝜆)

𝜕𝑥
=

−1

Δ
12

(Δ
13
𝜑
−
(𝑐−, 𝜆) + Δ

14

𝜕𝜑
−
(𝑐−, 𝜆)

𝜕𝑥
) ,

(10)

which is also an entire function of the parameter 𝜆 for each
fixed 𝑥 ∈ [𝑐, 𝑏]. Consequently, the solution 𝑢 = 𝜑(𝑥, 𝜆)

defined by

𝜑 (𝑥, 𝜆) = {
𝜑
−
(𝑥, 𝜆) , 𝑥 ∈ [𝑎, 𝑐)

𝜑
+
(𝑥, 𝜆) , 𝑥 ∈ (𝑐, 𝑏]

(11)

satisfies (2) on whole [𝑎, 𝑐) ∪ (𝑐, 𝑏], the first boundary
condition of (3), and both transmission conditions (5).

By the same technique, we can define the solution by

𝜓 (𝑥, 𝜆) = {
𝜓
−
(𝑥, 𝜆) , 𝑥 ∈ [𝑎, 𝑐)

𝜓
+
(𝑥, 𝜆) , 𝑥 ∈ (𝑐, 𝑏]

(12)
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so that

𝜓
+
(𝑏, 𝜆) = 𝛼

21
+ 𝜆𝛼


21
,

𝜕𝜓
+
(𝑏, 𝜆)

𝜕𝑥
= 𝛼
20
+ 𝜆𝛼


20
, (13)

𝜓
−
(𝑐−, 𝜆) =

−1

Δ
34

(Δ
14
𝜓
+
(𝑐+, 𝜆) + Δ

24

𝜕𝜓
+
(𝑐+, 𝜆)

𝜕𝑥
) , (14)

𝜕𝜓
−
(𝑐−, 𝜆)

𝜕𝑥
=

1

Δ
34

(Δ
13
𝜓
+
(𝑐+, 𝜆) + Δ

23

𝜕𝜓
+
(𝑐+, 𝜆)

𝜕𝑥
) .

(15)

Consequently, 𝜓(𝑥, 𝜆) satisfies (2) on whole [𝑎, 𝑐) ∪ (𝑐, 𝑏], the
second boundary condition (4), and both transmission con-
dition (5). By using (9), (10), (14), and (15) and thewell-known
fact that the Wronskians 𝑤−(𝜆) := 𝑊[𝜑

−
(𝑥, 𝜆), 𝜓

−
(𝑥, 𝜆)] and

𝑤
+
(𝜆) := 𝑊[𝜑

+
(𝑥, 𝜆), 𝜓

+
(𝑥, 𝜆)] are independent of variable

𝑥, it is easy to show that Δ
12
𝑤
+
(𝜆) = Δ

34
𝑤
−
(𝜆). We will

introduce the characteristic function for the problems (2)–(5)
as

𝑤 (𝜆) := Δ
34
𝑤
−
(𝜆) = Δ

12
𝑤
+
(𝜆) . (16)

Similar to [13], we can prove that there are infinitely many
eigenvalues 𝜆

𝑛
, 𝑛 = 1, 2, . . . of the BVTP (2)–(5) which

coincide with the zeros of characteristic function 𝑤(𝜆).
Now, let us consider the nonhomogenous differential

equation

𝑦

+ (𝜆 − 𝑞 (𝑥)) 𝑦 = 𝑓 (𝑥) , (17)

on [𝑎, 𝑐) ∪ (𝑐, 𝑏] together with the same boundary and
transmission conditions (2)–(5), when 𝑤(𝜆) ̸= 0. We will
search the solution of this problem in the form (see, for
example, [13]):

𝑌 (𝑥, 𝜆) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

Δ
34
𝜓
−
(𝑥, 𝜆)

𝜔 (𝜆)

×∫

𝑥

𝑎

𝜑
−
(𝑦, 𝜆) 𝑓 (𝑦) 𝑑𝑦

+
Δ
34
𝜑
−
(𝑥, 𝜆)

𝜔𝜆

×∫

𝑐−

𝑥

𝜓
−
(𝑦, 𝜆) 𝑓 (𝑦) 𝑑𝑦

+𝑑
11
𝜑
−
(𝑥, 𝜆)

+𝑑
12
𝜓
−
(𝑥, 𝜆) , for 𝑥 ∈ [𝑎, 𝑐) ,

Δ
12
𝜓
+
(𝑥, 𝜆)

𝜔 (𝜆)

×∫

𝑥

𝑐+

𝜑
+
(𝑦, 𝜆) 𝑓 (𝑦) 𝑑𝑦

+
Δ
12
𝜑
+
(𝑥, 𝜆)

𝜔 (𝜆)

×∫

𝑏

𝑥

𝜓
+
(𝑦, 𝜆) 𝑓 (𝑦) 𝑑𝑦

+𝑑
21
𝜑
+
(𝑥, 𝜆)

+𝑑
22
𝜓
+
(𝑥, 𝜆) for 𝑥 ∈ (𝑐, 𝑏] ,

(18)

where 𝑑
𝑖𝑗
(𝑖, 𝑗 = 1, 2) are arbitrary constants. Putting in (3)–

(5) we have 𝑑
12
= 0, 𝑑

21
= 0,

𝑑
11
=

Δ
12

𝑤 (𝜆)
∫

𝑏

𝑐+

𝑓 (𝑦)𝜓
+
(𝑦, 𝜆) 𝑑𝑦,

𝑑
22
=

Δ
34

𝑤 (𝜆)
∫

𝑐−

𝑎

𝑓 (𝑦) 𝜑
−
(𝑦, 𝜆) 𝑑𝑦.

(19)

Now, by substituting these equalities in (18), the following
formula is obtained for the solution𝑌 = 𝑌

0
(𝑥, 𝜆) of (17) under

boundary and transmission conditions (3)–(5):

𝑌
0
(𝑥, 𝜆) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

Δ
34
𝜓
−
(𝑥, 𝜆)

𝜔 (𝜆)

×∫

𝑥

𝑎

𝜑
−
(𝑦, 𝜆) 𝑓 (𝑦) 𝑑𝑦

+
Δ
34
𝜑
−
(𝑥, 𝜆)

𝜔 (𝜆)

×∫

𝑐−

𝑥

𝜓
−
(𝑦, 𝜆) 𝑓 (𝑦) 𝑑𝑦

+
Δ
12
𝜑
−
(𝑥, 𝜆)

𝑤 (𝜆)

×∫

𝑏

𝑐+

𝑓 (𝑦)𝜓
+
(𝑦, 𝜆) 𝑑𝑦, for 𝑥 ∈ [𝑎, 𝑐) ,

Δ
12
𝜓
+
(𝑥, 𝜆)

𝜔 (𝜆)

×∫

𝑥

𝑐+

𝜑
+
(𝑦, 𝜆) 𝑓 (𝑦) 𝑑𝑦

+
Δ
12
𝜑
+
(𝑥, 𝜆)

𝜔 (𝜆)

×∫

𝑏

𝑥

𝜓
+
(𝑦, 𝜆) 𝑓 (𝑦) 𝑑𝑦

+
Δ
34
𝜓
+
(𝑥, 𝜆)

𝑤 (𝜆)

×∫

𝑐−

𝑎

𝑓 (𝑦) 𝜑
−
(𝑦, 𝜆) 𝑑𝑦 for 𝑥 ∈ (𝑐, 𝑏] .

(20)

From this formula, we find that the Green’s function of the
problem (2)–(5) has the form:

𝐺
0
(𝑥, 𝑦; 𝜆) =

{{{{{{{{

{{{{{{{{

{

𝜑 (𝑦, 𝜆) 𝜓 (𝑥, 𝜆)

𝜔 (𝜆)
, for 𝑎 ≤ 𝑦 ≤ 𝑥 ≤ 𝑏,

𝑥, 𝑦 ̸= 𝑐,

𝜑 (𝑥, 𝜆) 𝜓 (𝑦, 𝜆)

𝜔 (𝜆)
, for 𝑎 ≤ 𝑥 ≤ 𝑦 ≤ 𝑏,

𝑥, 𝑦 ̸= 𝑐,

(21)

and the solution (20) can be rewritten in the terms of this
Green’s function as

𝑌
0
(𝑥, 𝜆) = Δ

34
∫

𝑐−

𝑎

𝐺
0
(𝑥, 𝑦; 𝜆) 𝑓 (𝑦) 𝑑𝑦

+ Δ
12
∫

𝑏

𝑐+

𝐺
0
(𝑥, 𝑦; 𝜆) 𝑓 (𝑦) 𝑑𝑦.

(22)
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3. Construction of the Resolvent Operator by
means of Green’s Function in the Adequate
Hilbert Space

In this section, we define a linear operator 𝐴 in suitable
Hilbert space in such a way that the considered problem can
be interpreted as the eigenvalue problem of this operator. For
this, we assume that Δ

0
:= 𝛼
21
𝛼


20
−𝛼
20
𝛼


21
> 0 and introduce

a new inner product in the Hilbert space 𝐻 = (𝐿
2
[𝑎, 𝑐) ⊕

𝐿
2
(𝑐, 𝑏]) ⊕ C by

⟨𝐹, 𝐺⟩
1
:= Δ
34
∫

𝑐−

𝑎

𝑓 (𝑥) 𝑔 (𝑥)𝑑𝑥

+ Δ
12
∫

𝑏

𝑐+

𝑓 (𝑥) 𝑔 (𝑥)𝑑𝑥 +
Δ
12

Δ
0

𝑓
1
𝑔
1
,

(23)

for 𝐹 = (𝑓(𝑥), 𝑓
1
), 𝐺 = (𝑔(𝑥), 𝑔

1
) ∈ 𝐻.

Remark 1. Note that thismodified inner product is equivalent
to standard inner product of (𝐿

2
[𝑎, 𝑐)⊕𝐿

2
(𝑐, 𝑏])⊕C; so𝐻

1
=

(𝐿
2
[𝑎, 𝑐) ⊕ 𝐿

2
(𝑐, 𝑏] ⊕ C, ⟨⋅, ⋅⟩

1
) is also Hilbert space.

For convenience, denote

𝑇
𝑏
(𝑓) := 𝛼

20
𝑓 (𝑏) − 𝛼

21
𝑓

(𝑏) ,

𝑇


𝑏
(𝑓) := 𝛼



20
𝑓 (𝑏) − 𝛼



21
𝑓

(𝑏) ,

(24)

and define a linear operator

𝐴(L𝑓 (𝑥) , 𝑇


𝑏
(𝑓)) = (L𝑓, −𝑇

𝑏
(𝑓)) (25)

with the domain𝐷(𝐴) consisting of all elements (𝑓(𝑥), 𝑓
1
) ∈

𝐻
1
such that𝑓(𝑥) and𝑓(𝑥) are absolutely continuous in each

interval [𝑎, 𝑐) and (𝑐, 𝑏] and has a finite limit 𝑓(𝑐 ∓ 0) and
𝑓


1
(𝑐 ∓ 0), L𝑓 ∈ 𝐿

2
[𝑎, 𝑏], 𝜏

1
𝑓 = 𝜏

3
𝑓 = 𝜏

4
𝑓 = 0 and 𝑓

1
=

𝑇


𝑏
(𝑓).
Consequently the problems (2)–(5) can be written in the

operator form as

𝐴𝐹 = 𝜆𝐹,

𝐹 = (𝑓 (𝑥) , 𝑇


𝑏
(𝑓)) ∈ 𝐷 (𝐴)

(26)

in the Hilbert space 𝐻
1
. It is easy to see that the operator

𝐴 is well defined in 𝐻
1
. Let 𝐴 be defined as above and let

𝜆 not be an eigenvalue of this operator. For construction of
the resolvent operator 𝑅(𝜆, 𝐴) := (𝜆 − 𝐴)−1, we will solve the
operator equation

(𝜆 − 𝐴)𝑌 = 𝐹, (27)

for 𝐹 ∈ 𝐻
1
. This operator equation is equivalent to the

nonhomogeneous differential equation

𝑦

+ (𝜆 − 𝑞 (𝑥)) 𝑦 = 𝑓 (𝑥) , (28)

on [𝑎, 𝑐) ∪ (𝑐, 𝑏] subject to nonhomogeneous boundary
conditions and homogeneous transmission conditions

𝜏
1
(𝑦) = 𝜏

3
(𝑦) = 𝜏

4
(𝑦) = 0, 𝜏

2
(𝑦) = −𝑓

1
. (29)

Let 𝐼𝑚𝜆 ̸= 0. We already know that the general solution of
(28) has the form (18). Putting this general solution in (29)
yields

𝑑
11
=

Δ
12

𝜔 (𝜆)
∫

𝑏

𝑐+

𝜓
+
(𝑦, 𝜆) 𝑓 (𝑦) 𝑑𝑦 +

Δ
12
𝑓
1

𝜔 (𝜆)
,

𝑑
12
= 0, 𝑑

21
=
Δ
12
𝑓
1

𝜔 (𝜆)
,

𝑑
22
=

Δ
34

𝜔 (𝜆)
∫

𝑐−

𝑎

𝜑
−
(𝑦, 𝜆) 𝑓 (𝑦) 𝑑𝑦.

(30)

Thus, the problems (28)-(29) have a unique solution

𝑌 (𝑥, 𝜆) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

Δ
34
𝜓
−
(𝑥, 𝜆)

𝜔 (𝜆)

×∫

𝑥

𝑎

𝜑
−
(𝑦, 𝜆) 𝑓 (𝑦) 𝑑𝑦

+
Δ
34
𝜑
−
(𝑥, 𝜆)

𝜔 (𝜆)

×∫

𝑐−

𝑥

𝜓
−
(𝑦, 𝜆) 𝑓 (𝑦) 𝑑𝑦

+
Δ
12
𝜑
−
(𝑥, 𝜆)

𝜔 (𝜆)

×(∫

𝑏

𝑐+

𝜓
+
(𝑦, 𝜆) 𝑓 (𝑦) 𝑑𝑦

+𝑓
1
) for 𝑥 ∈ [𝑎, 𝑐)

Δ
12
𝜓
+
(𝑥, 𝜆)

𝜔 (𝜆)

×∫

𝑥

𝑐+

𝜑
+
(𝑦, 𝜆) 𝑓 (𝑦) 𝑑𝑦

+
Δ
12
𝜑
+
(𝑥, 𝜆)

𝜔 (𝜆)

×∫

𝑏

𝑥

𝜓
+
(𝑦, 𝜆) 𝑓 (𝑦) 𝑑𝑦

+
Δ
34
𝜓
+
(𝑥, 𝜆)

𝜔 (𝜆)

×∫

𝑐−

𝑎

𝜑
−
(𝑦, 𝜆) 𝑓 (𝑦) 𝑑𝑦

+
Δ
12
𝑓
1
𝜑
+
(𝑥, 𝜆)

𝜔 (𝜆)
, for 𝑥 ∈ (𝑐, 𝑏] .

(31)

Consequently,

𝑌 (𝑥, 𝜆) = 𝑌
0
(𝑥, 𝜆) + 𝑓

1
Δ
12

𝜑 (𝑥, 𝜆)

𝜔 (𝜆)
, (32)

where 𝐺
0
(𝑥, 𝜆) and 𝑌

0
(𝑥, 𝜆) are the same with (21) and (22),

respectively. From the equalities (13) and (21), it follows that

(𝐺
0
(𝑥, ⋅; 𝜆))



𝛽
=
𝜑 (𝑥, 𝜆)

𝜔 (𝜆)
. (33)
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By using (22), (31), and (33), we deduce that

𝑌 (𝑥, 𝜆) = Δ
34
∫

𝑐−

𝑎

𝐺
0
(𝑥, 𝑦; 𝜆) 𝑓 (𝑦) 𝑑𝑦

+ Δ
12
∫

𝑏

𝑐+

𝐺
0
(𝑥, 𝑦; 𝜆) 𝑓 (𝑦) 𝑑𝑦

+ 𝑓
1
Δ
12
(𝐺
0
(𝑥, ⋅; 𝜆))



𝛽
.

(34)

Consequently, the solution 𝑌(𝐹, 𝜆) of the operator equation
(27) has the form:

𝑌 (𝐹, 𝜆) = (𝑌 (𝑥, 𝜆) , (𝑌 (⋅, 𝜆))


𝛽
) . (35)

From (34) and (35), it follows that

𝑌 (𝐹, 𝜆) = (⟨𝐺
𝑥,𝜆
, 𝐹⟩
1
, (⟨𝐺
𝑥,𝜆
, 𝐹⟩
1
)


𝛽
) , (36)

where under Green’s vector 𝐺
𝑥,𝜆

we mean

𝐺
𝑥,𝜆

:= (𝐺
0
(𝑥, ⋅; 𝜆) , (𝐺

0
(𝑥, ⋅; 𝜆))



𝛽
) . (37)

Now, making use of (21), (34), (35), (36), and (37), we see that
if 𝜆 not an eigenvalue of operator 𝐴, then

𝑌 (𝐹, 𝜆) ∈ 𝐷 (𝐴) , for 𝐹 ∈ 𝐻
1
, (38)

𝑌 ((𝜆 − 𝐴) 𝐹, 𝜆) = 𝐹, for ∈ 𝐷 (𝐴) ,

‖𝑌 (𝐹, 𝜆)‖ ≤ |𝐼𝑚𝜆|
−1
‖𝐹‖ , for 𝐹 ∈ 𝐻

1
, 𝐼𝑚𝜆 ̸= 0.

(39)

Hence, each nonreal 𝜆 ∈ C is a regular point of an operator
𝐴 and

𝑅 (𝜆, 𝐴) 𝐹 = (⟨𝐺
𝑥,𝜆
, 𝐹⟩
1
, (⟨𝐺
𝑥,𝜆
, 𝐹⟩
1
)


𝛽
) , for 𝐹 ∈ 𝐻

1
.

(40)

Because of (38) and (40),

(𝜆 − 𝐴)𝐷 (𝐴) = (𝜆 − 𝐴)𝐷 (𝐴) = 𝐻
1
, for 𝐼𝑚𝜆 ̸= 0. (41)

Theorem 2. The Resolvent operator 𝑅(𝜆, 𝐴) is compact in the
Hilbert space𝐻

1
.

Proof. Let us define the operators B
𝜆
: 𝐿
2
[𝑎, 𝑐) ⊕ 𝐿

2
(𝑐, 𝑏] →

𝐿
2
[𝑎, 𝑐) ⊕ 𝐿

2
(𝑐, 𝑏], B̃

𝜆
: 𝐻
1
→ 𝐻
1
andC

𝜆
: 𝐻
1
→ 𝐻
1
by

B
𝜆
𝑓 := Δ

34
∫

𝑐−

𝑎

𝐺
0
(𝑥, 𝑦; 𝜆) 𝑓 (𝑦) 𝑑𝑦

+ Δ
12
∫

𝑏

𝑐+

𝐺
0
(𝑥, 𝑦; 𝜆) 𝑓 (𝑦) 𝑑𝑦,

B̃
𝜆
𝐹 := (B

𝜆
𝑓, (B
𝜆
𝑓)


𝑏
) ,

C
𝜆
𝐹 := (𝑓

1
Δ
12

𝜑 (𝑥, 𝜆)

𝜔 (𝜆)
, 𝑓
1
Δ
12

(𝜑 (⋅, 𝜆))


𝑏

𝜔 (𝜆)

) ,

(42)

respectively. Then we can expressed the resolvent operator
𝑅(𝜆, 𝐴) as 𝑅(𝜆, 𝐴) = B̃

𝜆
+ C
𝜆
. Since the linear operator B

𝜆

is compact in the Hilbert space 𝐿
2
[𝑎, 𝑐) ⊕ 𝐿

2
(𝑐, 𝑏], the linear

operator B̃
𝜆
is compact in theHilbert space𝐻

1
. Compactness

C
𝜆
in𝐻
1
is obvious.Therefore, the resolvent operator𝑅(𝜆, 𝐴)

is also compact in𝐻
1
.

4. Self-Adjoint Realization of the Problem

At first, we will prove the following lemmas.

Lemma 3. The domain 𝐷(𝐴) is dense in𝐻
1
.

Proof. Suppose that the element 𝐺 = (𝑔(𝑥), 𝑔
1
) ∈ 𝐻

1
is

orthogonal to 𝐷(𝐴). Denote by 𝐶∞
0
[𝑎, 𝑐) ⊕ 𝐶

∞

0
(𝑐, 𝑏] the set

of infinitely differentiable functions on [𝑎, 𝑐) ∪ (𝑐, 𝑏], each of
which vanishes on some neighborhoods of the end-points
𝑥 = 𝑎, 𝑥 = 𝑐, and 𝑥 = 𝑏. Since (𝑓(⋅), 0) ∈ 𝐷(𝐴) for
𝑓 ∈ 𝐶

∞

0
[𝑎, 𝑐) ⊕ 𝐶

∞

0
(𝑐, 𝑏], we have

Δ
34
∫

𝑐−

𝑎

𝑓 (𝑥) 𝑔 (𝑥)𝑑𝑥 + Δ
12
∫

𝑏

𝑐+

𝑓 (𝑥) 𝑔 (𝑥)𝑑𝑥 = 0, (43)

for all 𝑓 ∈ 𝐶
∞

0
[𝑎, 𝑐) ⊕ 𝐶

∞

0
(𝑐, 𝑏]. Since 𝑓 is arbitrary,

∫

𝑐−

𝑎

𝑓
1
(𝑥) 𝑔(𝑥)𝑑𝑥 = 0,

∫

𝑏

𝑐+

𝑓
2
(𝑥) 𝑔(𝑥)𝑑𝑥 = 0,

(44)

for all 𝑓
1
∈ 𝐶
∞

0
[𝑎, 𝑐] and 𝑓

2
∈ 𝐶
∞

0
[𝑐, 𝑏], respectively. Taking

into account that 𝐶∞
0
[𝑎, 𝑐] and 𝐶∞

0
[𝑐, 𝑏] are dense in 𝐿

2
[𝑎, 𝑐]

and 𝐿
2
[𝑐, 𝑏], respectively, we get that the function 𝑔(𝑥) is

equal to zero as element of 𝐿
2
[𝑎, 𝑐] ⊕ 𝐿

2
[𝑐, 𝑏]. By choosing

an element 𝐹
0
= (𝑓
0
(𝑥), 𝑇



𝑏
𝑓
0
) such that 𝑇

𝑏
𝑓
0
= 1 and putting

in ⟨𝐹
0
, 𝐺⟩
1
= 0, we have 𝑔

1
= 0. So 𝐺 = (0, 0). The proof is

completed.

Lemma 4. The linear operator 𝐴 is symmetric in the Hilbert
space𝐻

1
.

Proof. Let 𝐹 = (𝑓(𝑥), 𝑇


𝑏
(𝑓)), 𝐺 = (𝐺

1
(𝑥), 𝑇



𝑏
(𝑓)) ∈ 𝐷(𝐴). By

partial integration, we get

⟨𝐴𝐹, 𝐺⟩1 = Δ 34 ∫

𝑐−

𝑎

(L𝑓) (𝑥) 𝑔 (𝑥)𝑑𝑥

+ Δ
12
∫

𝑏

𝑐+

(L𝑓) (𝑥) 𝑔 (𝑥)𝑑𝑥 +
Δ
12

Δ
0

𝑇
𝑏
(𝑓) 𝑇


𝑏
(𝑔)

= ⟨𝐹, 𝐴𝐺⟩
1
+ Δ
34
𝑊(𝑓, 𝑔; 𝑐 − 0) − Δ

34
𝑊(𝑓, 𝑔; 𝑎)

+ Δ
12
𝑊(𝑓, 𝑔; 𝑏) − Δ

12
𝑊(𝑓, 𝑔; 𝑐 + 0)

+
Δ
12

Δ
0

(𝑇


𝑏
(𝑓) 𝑇
𝑏
(𝑔) − 𝑇

𝑏
(𝑓) 𝑇


𝑏
(𝑔)) .

(45)

From the definition of domain 𝐷(𝐴), we see easily that
𝑊(𝑓, 𝑔; 𝑎) = 0. The direct calculation gives

𝑇


𝑏
(𝑓) 𝑇
𝑏
(𝑔) − 𝑇

𝑏
(𝑓) 𝑇


𝑏
(𝑔) = −Δ

0
𝑊(𝑓, 𝑔; 𝑏) ,

𝑊 (𝑓, 𝑔; 𝑐 − 0) =
Δ
12

Δ
34

𝑊(𝑓, 𝑔; 𝑐 + 0) .

(46)
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Substituting these equalities in (45), we have

⟨𝐴𝐹, 𝐺⟩1 = ⟨𝐹, 𝐴𝐺⟩1, for every 𝐹, 𝐺 ∈ 𝐷 (𝐴) ; (47)

so the operator 𝐴 is symmetric in𝐻. The proof is completed.

Remark 5. By Lemma 4, all eigenvalues of the problems
(2)–(5) are real. Therefore, it is enough to investigate only
real-valued eigenfunctions. Taking in view this fact, we can
assume that the eigenfunctions are real-valued.

Corollary 6. If 𝜆
𝑛
and 𝜆

𝑚
are distinct eigenvalues of the

problems (2)–(5), then the corresponding eigenfunctions 𝑢
𝑛
(𝑥)

and 𝑢
𝑚
(𝑥) are orthogonal in the sense of the following equality:

Δ
34
∫

𝑐−

𝑎

𝑢 (𝑥) V (𝑥) 𝑑𝑥 + Δ
12
∫

𝑏

𝑐+

𝑢 (𝑥) V (𝑥) 𝑑𝑥

+
Δ
12

Δ
0

𝑇


𝑏
(𝑢) 𝑇


𝑏
(V) = 0.

(48)

Proof. Theproof is immediate from the fact that the eigenele-
ments (𝑢(𝑥), 𝑇

𝑏
(𝑢)) and (V(𝑥), 𝑇

𝑏
(V)) of the symmetric linear

operator 𝐴 are orthogonal in the Hilbert space𝐻
1
.

Theorem 7. The operator 𝐴 is self-adjoint in𝐻
1
.

Proof. It is clear that the symmetry of a densely defined 𝐴 is
equivalent to the condition ⟨𝐴𝐹, 𝐺⟩

1
= ⟨𝐹, 𝐴𝐺⟩

1
for all𝐹, 𝐺 ∈

𝐷(𝐴). Notice that this implies that 𝐴∗ ⊃ 𝐴. If, in addition,
we also have that 𝐷(𝐴∗) = 𝐷(𝐴), then 𝐴 is self-adjoint. Let
𝑈 ∈ 𝐷(𝐴

∗
). Then, by definition of 𝐴∗,

⟨𝐴𝑉,𝑈⟩1 = ⟨𝑉,𝐴
∗
𝑈⟩
1
, ∀𝑉 ∈ 𝐷 (𝐴) . (49)

Let𝜆
0
be any complex number forwhich 𝐼𝑚𝜆

0
̸= 0. From this,

it follows that

⟨(𝜆
0
𝐼 − 𝐴)𝑉,𝑈⟩

1
= ⟨𝑉, (𝜆

0
𝐼 − 𝐴
∗
)𝑈⟩
1
. (50)

Since any nonreal complex number is a regular point of𝐴, we
can define the vector 𝑈

0
∈ 𝐷(𝐴) as

𝑈
0
= 𝑅 (𝜆

0
, 𝐴) (𝜆

0
𝑈 − 𝐴

∗
𝑈) . (51)

Hence,

(𝜆
0
𝐼 − 𝐴)𝑈

0
= 𝜆
0
𝑈 − 𝐴

∗
𝑈. (52)

Inserting this in (50) and recalling that 𝐴 is symmetric and
𝑈
0
∈ 𝐷(𝐴), we have

⟨(𝜆
0
𝐼 − 𝐴)𝑉,𝑈⟩

1
= ⟨𝑉, (𝜆

0
𝐼 − 𝐴)𝑈

0
⟩
1

= ⟨𝑉, 𝜆
0
𝑈
0
⟩
1
− ⟨𝑉,𝐴𝑈

0
⟩
1

= ⟨𝜆
0
𝑉,𝑈
0
⟩
1
− ⟨𝐴𝑉,𝑈

0
⟩
1

= ⟨(𝜆
0
𝐼 − 𝐴)𝑉,𝑈

0
⟩
1
.

(53)

Consequently,

⟨(𝜆
0
𝐼 − 𝐴)𝑉,𝑈 − 𝑈

0
⟩
1
= 0 ∀𝑉 ∈ 𝐻

1
. (54)

Since 𝜆
0
is regular point of 𝐴, we can choose 𝑉 =

𝑅(𝜆
0
, 𝐴)(𝑈 − 𝑈

0
). Inserting this in the last equality yields

‖𝑈 − 𝑈
0
‖
1
= 0, and so 𝑈 = 𝑈

0
, and therefore, 𝑈 ∈ 𝐷(𝐴).

The proof is completed.

Remark 8. The main results of this study are derived in
modified Hilbert space under simple condition (7). We can
show that these conditions cannot be omitted. Indeed, let us
consider the next special case of the problems (2)–(5):

−𝑦

(𝑥) = 𝜆𝑦 (𝑥) , 𝑥 ∈ [−1, 0) ∪ (0, 1] ,

𝑦 (−1) = 0,

(𝜆 − 1) 𝑦

(−1) + 𝜆𝑦 (1) = 0,

𝑦 (0−) = 𝑦 (0+) ,

𝑦

(0−) = −𝑦


(0+) ,

(55)

for which the condition (7) is not valid (Δ
12
< 0). It is easy

to verify that the operator𝐴 corresponding to this problem is
not symmetric in the classic Hilbert space 𝐿

2
[𝑎, 𝑐)⊕𝐿

2
(𝑐, 𝑏]⊕

C under standard inner-product. Consider the following:

⟨𝐹, 𝐺⟩1 := ∫

𝑐

𝑎

𝑓 (𝑥) 𝑔 (𝑥)𝑑𝑥 + ∫

𝑏

𝑐

𝑓 (𝑥) 𝑔 (𝑥)𝑑𝑥 +
Δ
12

Δ
0

𝑓
1
𝑔
1
.

(56)

Moreover, it is well known that the standard Sturm-liouville
problems have infinitely many real eigenvalues. But it can be
shown by direct calculation that the problem (55) has only
one eigenvalue 𝜆 = 1.
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