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p-Fuzzy dynamical systems are variational systems whose dynamic is obtained by means of a Mamdani type fuzzy rule-based
system. In this paper, we will show the 1-dimensional p-fuzzy dynamical systems andwill present theorems that establish conditions
of existence and uniqueness of stationary points. Besides the obtained analytical results, we will present examples that illustrate and
confirm the obtained mathematical results.

1. Introduction

Variational equations or deterministic dynamical systems
(difference and differential equations) constitute a power-
ful tool for modeling when the state variables depend on
variations throughout time. The efficiency of a deterministic
model depends on knowledge of the relationships between
variables and their variations. In addition, in many situa-
tions such relations are only partially known; therefore, the
modeling with deterministic variational systems, or even
with stochastic ones, may not be adequate. In addition,
fuzzy systems derived from deterministic models, which
have subjectivity regarding some parameters, are not appro-
priate when we have only incomplete information of the
phenomenon being analyzed. Thus, the use of a rule-based
system can be adopted as an alternative formodeling partially
known phenomena or those carried with imprecision.

Fuzzy rule-based systems have been used with success in
some areas as control, decision taking, recognition systems,
and so forth. This success is due to its simplicity and
interrelation with humans way of reasoning. Fuzzy rule-
based systems are conceptually simple [1]. Such systems
are basically threefold: an input (fuzzifier), an inference
mechanism composed of a base of fuzzy rules together with

an inference method, and, finally, an output (defuzzifier) stage
(see Figure 1).

There are twomain types of fuzzy rule-based systems, the
Mamdani fuzzy systems and theTakagi-Sugeno fuzzy systems
[2]. The main characteristic of the Mamdani type systems
is that both the antecedent and consequent are expressed
by linguistic terms, while in the Takagi-Sugeno type systems
only the antecedent is expressed by linguistic terms and the
consequent is expressed by functions.

The Takagi-Sugeno fuzzy systems are more restrictive
than the Mamdani fuzzy systems because they require an a
priori function in the output. However, due to the existence
of theoretical methods for Takagi-Sugeno fuzzy systems
stability analysis [3–8], the latter has become more used. On
the other hand, Mamdani type systems are used as a “black
box” and are still criticized because they lack a study on its
stability [9, 10].

Fuzzy variational equations have been used in different
methods. Some attempts to contemplate subjectivity original
from aleatory processes such as Hukuhara’s derivative, differ-
ential inclusions, andZadeh’s extension [11] have been already
proposed. In thesemethods, the adopted process for studying
the variational systems is always derived from deterministic
classical systems.
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Figure 1: Architecture of a fuzzy rule-based system.

In this paper, we will present the p-fuzzy systems whose
dynamics is not based in formal concepts of variations orig-
inated from derivative or explicit differences or differential
inclusions. In the p-fuzzy dynamical systems the dynamic
(iterative process) is obtained by means of a Mamdani’s fuzzy
rule-based system. The main advantage of this method with
respect to the other ones is the simplicity of the involved
mathematics, just because the interactive method is supplied
by the Mamdani controller.

Formally, a p-fuzzy system in R𝑛 is a discrete dynamic
system:

𝑥
𝑘+1

= 𝐹 (𝑥
𝑘
) ,

𝑥
𝑜
given and 𝑥

𝑘
∈ R
𝑛

,

(1)

where the 𝐹 function is given by 𝐹(𝑥
𝑘
) = 𝑥

𝑘
+ Δ(𝑥

𝑘
) and

Δ(𝑥
𝑘
) ∈ R𝑛 is obtained by means of a fuzzy rule-based

system; that is, Δ(𝑥
𝑖
) is the defuzzification value of the rule-

based system. The architecture of a p-fuzzy system can be
visualized in Figure 2.

The name p-fuzzy dynamical systems or purely fuzzy was
chosen to differentiate it from other fuzzy systems given by
variational equations.

In this paper, we will focus on the one-dimensional p-
fuzzy systems, which are always associated with a Mamdani
fuzzy system, where the defuzzification method is the cen-
troid. We have chosen this method because it is widely used
and more general to deal with weight mean of linguistic
variables [12, pages 242, 243].

Analogous to the inhibited variational models in which
one has stationary solutions, our objective is to present results
that establish the necessary and sufficient conditions for the
existence of a stationary point.

Fuzzy rule-based 
systemxk Δ(xk)

Mathematical model
xk+1 = xk + Δ(xk)

Figure 2: Architecture of a p-fuzzy system.

1

x

AkAk−1Ai+1Ai

· · ·· · ·

A1 A2

Figure 3: Family of successive fuzzy subsets.

2. Preliminaries

In this section, we introduce the main concepts for the
development of the work presented in this paper.

2.1. Definitions

Definition 1 (support). Let 𝐴 be a fuzzy subset of 𝑋; the
support of𝐴, denoted supp(𝐴), is the crisp subset of𝑋whose
elements all have nonzero membership grades in 𝐴; that is,

supp (𝐴) = {𝑥 ∈ 𝑋;𝐴 (𝑥) > 0} . (2)

Definition 2 (𝛼-cut). An 𝛼-level set of a fuzzy subset𝐴 of𝑋 is
a crisp set denoted by [𝐴]𝛼 and defined by

(i) [𝐴]0 = supp(𝐴), (𝛼 = 0),
(ii) [𝐴]𝛼 = {𝑥 ∈ 𝑋;𝐴(𝑥) ≥ 𝛼}, if 𝛼 ∈ (0, 1].

Definition 3 (fuzzy number). A fuzzy number𝐴 is a fuzzy set
𝐴 ⊂ R satisfying the following conditions:

(i) [𝐴]𝛼 ̸= ⌀, ∀𝛼 ∈ [0, 1],
(ii) [𝐴]𝛼 is a closed interval, ∀𝛼 ∈ [0, 1],
(iii) the supp(𝐴) is bounded.

Definition 4. Consider a one-dimensional p-fuzzy system
given by (1).

Consider that 𝑥∗ is a stationary point of (1) if

𝐹 (𝑥
∗

) = 𝑥
∗

+ Δ (𝑥
∗

) = 𝑥
∗

⇐⇒ Δ(𝑥
∗

) = 0. (3)

Definition 5. Let {𝐴
𝑖
}
1≤𝑖≤𝑘

be any finite family of normal fuzzy
subsets associated with the fuzzy variable 𝑥. Assume that
{𝐴
𝑖
}
1≤𝑖≤𝑘

is a family of successive fuzzy subsets (Figure 3) if,

(i) supp(𝐴
𝑖
) ∩ supp(𝐴

𝑖+1
) ̸=⌀, for each 1 ≤ 𝑖 < 𝑘;



Journal of Applied Mathematics 3

n

m

c1 x xz1 zo z2c2

A∗

r s

Ai Ai+1

b 0 a

B

f

f−1(m) g−1(n)

g

R

CCR1: if x is Ai then Δ is
R2: if x is Ai+1 then Δ is B

Δ̂x

Δ

Figure 4: Mamdani’s inference process for 𝐴∗ of the type (𝐴
𝑖
, 𝐴 i+1) → (𝐶, 𝐵).

(ii) ⋂
𝑗=𝑖,𝑖+2

supp(𝐴
𝑗
) has at maximum only one element

for each 1 ≤ 𝑖 < 𝑘 − 1; that is, supp(𝐴
𝑖
) ∩

supp(𝐴
𝑖+2
) ̸= 𝜙, if and only if, max{𝑥 ∈ supp(𝐴

𝑖
)} =

min{𝑥 ∈ supp(𝐴
𝑖+2
)};

(iii) ⋃
𝑖=1,𝑘

supp(𝐴
𝑖
) = 𝑈, where 𝑈 is the domain of the

fuzzy variable 𝑥;

(iv) given 𝑧
1
∈ supp(𝐴

𝑖
) and 𝑧

2
∈ supp(𝐴

𝑖+1
), if 𝐴

𝑖
(𝑧
1
) =

1 and 𝐴
𝑖+1
(𝑧
2
) = 1, then necessarily 𝑧

1
< 𝑧
2
for each

1 ≤ 𝑖 < 𝑘.

Definition 6. Consider a family of successive fuzzy subsets
{𝐴
𝑖
}
1≤𝑖≤𝑘

that describe the antecedent of a fuzzy system
associated with the p-fuzzy system (1). We say that 𝐴∗ is an
equilibrium viable set of (1) if 𝐴∗ contains stationary points
of (1).

If for some 1 ≤ 𝑖 < 𝑘 there are 𝑧
1
, 𝑧
2
∈ [𝐴
𝑖
∪ 𝐴
𝑖+1
]
0 such

that Δ(𝑧
1
) ⋅ Δ(𝑧

2
) < 0, then 𝐴∗ is given by 𝐴∗ = [𝐴

𝑖
∩𝐴
𝑖+1
]
0.

If for all 𝑧
1
, 𝑧
2
∈ [𝐴
𝑖
∪ 𝐴
𝑖+1
]
0, 1 ≤ 𝑖 < 𝑘, Δ(𝑧

1
) ⋅ Δ(𝑧

2
) > 0,

then 𝐴∗ = [𝐴
𝑘
]
0.

A p-fuzzy system depends on the fuzzy system associated
with it, that is, it depends on the rule-base, on the infer-
ence method and on the defuzzification method used. In
Definition 6, a sufficient condition forΔ(𝑧

1
) ⋅Δ(𝑧
2
) < 0 is that

the p-fuzzy system be associated with a fuzzy system whose
rule-base in 𝐴∗ = [𝐴

𝑖
∪ 𝐴
𝑖+1
]
0 is of the type

𝑅
1
: if 𝑥 is 𝐴

𝑖
then Δ is 𝐵,

𝑅
2
: if 𝑥 is 𝐴

𝑖+1
then Δ is 𝐶,

where supp(𝐵) ⊂ R− and supp(𝐶) ⊂ R+ or vice versa.
When supp(𝐵) ⊂ R− and supp(𝐶) ⊂ R+ we have that the
equilibrium viable set 𝐴∗ is of the type (𝐴

𝑖
, 𝐴
𝑖+1
) → (𝐶, 𝐵).

If, on the other hand, we have that supp(𝐵) ⊂ R+ and
supp(𝐶) ⊂ R− we say that 𝐴∗ is of the type (𝐴

𝑖
, 𝐴
𝑖+1
) →

(𝐵, 𝐶).
To understand the dynamics of the p-fuzzy system we

need to understand how the rule-based system works more
specifically, given 𝑥 ∈ 𝐴

∗, how is Δ(𝑥) obtained? In the
following section we will describe this process.

2.2. Output Defuzzification of the Fuzzy System. Let 𝐴∗ =
[𝐴
𝑖
∩ 𝐴
𝑖+1
]
0

= [𝑐
1
, 𝑐
2
] be an equilibrium viable set of the

p-fuzzy system. To facilitate the notation, we will indicate

by 𝑟 the membership function of 𝐴
𝑖
, by 𝑠 the membership

function of 𝐴
𝑖+1

,

𝑧
1
= min
𝑥∈supp(𝐴𝑖)

{𝑟 (𝑥) = 1} , 𝑧
2
= max
𝑥∈supp(𝐴𝑖+1)

{𝑠 (𝑥) = 1} ,

(4)

and by 𝑓 and 𝑔 the membership functions of 𝐶 and 𝐷

(Figure 4), respectively. Assume that the p-fuzzy system, in
the equilibrium viable set 𝐴∗, is of the type (𝐴

𝑖
, 𝐴
𝑖+1
) →

(𝐶, 𝐵).
For each 𝑥 ∈ 𝐴

∗, Δ(𝑥) is the R region centroid abscise,
with R limited by the membership function of the fuzzy
output, Δ̂𝑥, (see Figure 4). Thus,

Δ (𝑥) = (∫

𝑓
−1
(𝑚)

𝑏

𝑡𝑓 (𝑡) 𝑑𝑡 + ∫

0

𝑓
−1
(𝑚)

𝑚𝑡𝑑𝑡 + ∫

𝑔
−1
(𝑛)

0

𝑛𝑡 𝑑𝑡

+∫

𝑎

𝑔
−1
(𝑛)

𝑡𝑔 (𝑡) 𝑑𝑡)

× (∫

𝑛

0

𝑔
−1

(𝑡) 𝑑𝑡 − ∫

𝑚

0

𝑓
−1

(𝑡) 𝑑𝑡)

−1

,

(5)

where (𝑛,𝑚) = (𝑟(𝑥), 𝑠(𝑥)). Equation (5) can be rewritten as

Δ (𝑥) =

ℎ
1
(𝑛) + ℎ

2
(𝑚)

𝐴 (𝑚, 𝑛)

, (6)

where

ℎ
1
(𝑛) = ∫

𝑔
−1
(𝑛)

0

𝑛𝑡 𝑑𝑡 + ∫

𝑎

𝑔
−1
(𝑛)

𝑡𝑔 (𝑡) 𝑑𝑡, (7)

ℎ
2
(𝑚) = ∫

𝑓
−1
(𝑚)

𝑏

𝑡𝑓 (𝑡) 𝑑𝑡 + ∫

0

𝑓
−1
(𝑚)

𝑚𝑡𝑑𝑡, (8)

𝐴 (𝑚, 𝑛) = ∫

𝑛

0

𝑔
−1

(𝑡) 𝑑𝑡 − ∫

𝑚

0

𝑓
−1

(𝑡) 𝑑𝑡. (9)

2.3. Preliminary Results. In this section, wewill present some
important technical results for the main demonstrations of
the theorems that establish sufficient conditions for unique-
ness and existence of the stationary point of the p-fuzzy
systems. Here, the presented results are technical enough
and are important only for demonstrating the theorems in
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the next section. Therefore, the reader will be able, without
loss of continuity, to skip them if desired.

The following results are referred to the equilibrium
viable set of the type (𝐴

𝑖
, 𝐴
𝑖+1
) → (𝐶, 𝐵) (Figure 4). From

now on, it will be assumed that the functions 𝑟, 𝑠, 𝑓, and 𝑔
(which represent themembership functions𝜇

𝐴𝑖
,𝜇
𝐴𝑖+1

,𝜇
𝐵
and

𝜇
𝐶
, resp.) are continuous.

Lemma 7. The function ℎ
1
(7) is increasing, and its range is

given by, 𝐼𝑚(ℎ
1
) = [0, ∫

𝑎

0

𝑡𝑔(𝑡)𝑑𝑡].

Proof. Since 𝑔 is continuous in [0, 𝑎] (𝑔−1 is limited in [0, 𝑎]),
then the function ℎ

1
is differentiable, and

ℎ
󸀠

1
(𝑛) = (∫

𝑔
−1
(𝑛)

0

𝑛𝑡 𝑑𝑡)

󸀠

+ (∫

𝑎

𝑔
−1
(𝑛)

𝑡𝑔 (𝑡) 𝑑𝑡)

󸀠

. (10)

Using the derivative properties,

ℎ
󸀠

1
(𝑛) = ∫

𝑔
−1
(𝑛)

0

𝑡𝑑𝑡 + 𝑛(∫

𝑔
−1
(𝑛)

0

𝑡𝑑𝑡)

󸀠

− (∫

𝑔
−1
(𝑛)

𝑎

𝑡𝑔 (𝑡) 𝑑𝑡)

󸀠

,

(11)

and using the chain rule and the fundamental theorem of
calculus, we obtain

ℎ
󸀠

1
(𝑛) = ∫

𝑔
−1
(𝑛)

0

𝑡𝑑𝑡 + 𝑛𝑔
−1

(𝑛) (𝑔
−1

)

󸀠

(𝑛)

− 𝑛𝑔
−1

(𝑛) (𝑔
−1

)

󸀠

(𝑛) .

(12)

Hence,

ℎ
󸀠

1
(𝑛) = ∫

𝑔
−1
(𝑛)

0

𝑡𝑑𝑡 =

(𝑔
−1

(𝑛))

2

2

> 0.
(13)

Therefore, ℎ
1
is increasing.

Since,

ℎ
1
(0) = ∫

𝑔
−1
(0)

0

0𝑡𝑑𝑡 + ∫

𝑎

𝑔
−1
(0)

𝑡𝑔 (𝑡) 𝑑𝑡 = ∫

𝑎

𝑎

𝑡𝑔 (𝑡) 𝑑𝑡 = 0,

ℎ
1
(1) = ∫

𝑔
−1
(1)

0

𝑡𝑑𝑡 + ∫

𝑎

𝑔
−1
(1)

𝑡𝑔 (𝑡) 𝑑𝑡 = ∫

𝑎

0

𝑡𝑔 (𝑡) 𝑑𝑡,

(14)

then 𝐼𝑚(ℎ
1
) = [0, ∫

𝑎

0

𝑡𝑔(𝑡)𝑑𝑡].

Lemma 8. The function ℎ
2
is decreasing, and its range is given

by 𝐼𝑚(ℎ
2
) = [∫

0

𝑏

𝑡𝑓(𝑡)dt, 0].

Proof. Analogous to the demonstration of Lemma 7.

Lemma 9. Let 𝜙 : 𝐼 = [𝑑
1
, 𝑑
2
] → R be a function of the class

𝐶
2. If 𝜙󸀠󸀠(𝑧) > 0, ∀𝑧 ∈ (𝑑

1
, 𝑑
2
) and 𝜙(𝑑

1
) < 0, then 𝜙 has at

maximum one root in 𝐼.

1

k

b f−1(k) 0 −f−1(k)

g−1(k)

−b a

f g

Figure 5: System p-fuzzy output with 𝑔(𝑡) > 𝑓(−𝑡).

Proof of Lemma 9. Assume there are 𝑧
1
, 𝑧
2
∈ 𝐼 (𝑧

1
< 𝑧
2
) such

that 𝜙(𝑧
1
) = 𝜙(𝑧

2
) = 0. Since 𝜙󸀠󸀠(𝑧) > 0, we have that 𝜙 is not

constant. Hence, by Rolle’s Theorem, ∃𝑐 ∈ (𝑧
1
, 𝑧
2
) such that

𝜙
󸀠

(𝑐) = 0. Hence 𝑐 is a minimum point, because 𝜙󸀠󸀠(𝑐) > 0.
But, 𝜙(𝑑

1
) < 0 ⇒ 𝜙(𝑐) > 0. Since 𝜙 is continuous ∃𝑧

𝑜
∈

(𝑧
1
, 𝑧
2
) such that 𝜙(𝑐) > 𝜙(𝑧

𝑜
) > 0, it is nonsense! Therefore

𝜙 has at maximum one root.

Lemma 10. If 𝑔(𝑡) > 𝑓(−𝑡), ∀𝑡 ∈ [0, −𝑏], then 𝑔−1(𝑘) >

−𝑓
−1

(𝑘)∀𝑘 ∈ [0, 1].

Proof. The proof is simple (see Figure 5).

Lemma 11. If 𝑔(𝑡) > 𝑓(−𝑡), ∀𝑡 ∈ [0, −𝑏] then for𝑚, 𝑛 ∈ [0, 1]
with𝑚 ≤ 𝑛 one has that

Δ (𝑥) =

ℎ
1
(𝑛) + ℎ

2
(𝑚)

𝐴 (𝑚, 𝑛)

> 0. (15)

Proof. The proof is simple.

Lemma 12. If 𝑔(𝑡) < 𝑓(−𝑡), ∀𝑡 ∈ [0, 𝑎], and𝑚, 𝑛 ∈ [0, 1] 𝑚 ≥

𝑛, then Δ(𝑥) < 0.

Proof. It is analogous to the proof of Lemma 11.

3. Stationary Point

In this section, we will enunciate and prove a theorem that
guarantees the existence of at least one stationary point for
each equilibrium viable set of the p-fuzzy system. For this,
we will use again Figure 4 tomotivate the presented results in
this section.

Theorem 13 (existence). Let 𝑆 be a p-fuzzy system and 𝐴∗ an
equilibrium viable set of 𝑆 of the type (𝐴

𝑖
, 𝐴
𝑖+1
) → (𝐶, 𝐵).

Then, there is at least one stationary point of 𝑆 in 𝐴∗. That is,
∃𝑥
∗

∈ 𝐴
∗ such that Δ(𝑥∗) = 0.
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Proof. Given 𝑥 ∈ 𝐴∗, fromDefinition 4, then 𝑥 is a stationary
point if and only if

Δ (𝑥) = 0 ⇐⇒ ℎ
1
(𝑛) + ℎ

2
(𝑚) = 0. (16)

If 𝜇
𝐴𝑖
(𝑐
1
) = 0, then

Δ (𝑐
1
) = ℎ
1
(𝜇
𝐴𝑖
(𝑐
1
)) + ℎ

2
(𝜇
𝐴𝑖+1

(𝑐
1
)) = ℎ

1
(0) + ℎ

2
(0) = 0,

(17)

and, therefore 𝑐
1
is a stationary point. If 𝜇

𝐴𝑖+1
(𝑐
2
) = 0 one has

that Δ(𝑐
2
) = 0; hence 𝑐

2
is a stationary point. Now, assume

that 𝜇
𝐴𝑖
(𝑐
1
) > 0 and 𝜇

𝐴𝑖+1
(𝑐
2
) > 0. Since 𝜇

𝐴𝑖+1
(𝑐
1
) = 0,

then from Lemmas 7 and 8 one has that ℎ
1
(𝜇
𝐴𝑖
(𝑐
1
)) > 0 and

ℎ
2
(𝜇
𝐴𝑖+1

(𝑐
1
)) = 0. Therefore

Δ (𝑐
1
) = ℎ
1
(𝜇
𝐴𝑖
(𝑐
1
)) + ℎ

2
(𝜇
𝐴𝑖+1

(𝑐
1
)) = ℎ

1
(𝜇
𝐴𝑖
(𝑐
1
)) > 0.

(18)

Thus, from Lemma 7,

Δ (𝑐
2
) = ℎ
1
(𝜇
𝐴𝑖
(𝑐
2
)) + ℎ

2
(𝜇
𝐴𝑖+1

(𝑐
2
)) = ℎ

2
(𝜇
𝐴𝑖+1

(𝑐
2
)) < 0.

(19)

Since Δ is continuous, by Bolzano’s Intermediate Value
Theorem, ∃𝑥∗ ∈ [𝑐

1
, 𝑐
2
] such that Δ(𝑥∗) = 0; therefore, 𝑥∗

is a stationary point.

Remark 14. If in Theorem 13 we consider 𝐴∗ as an equilib-
rium viable set of the type (𝐴

𝑖
, 𝐴
𝑖+1
) → (𝐵, 𝐶), the result is

analogous; that is, there exists a stationary point 𝑥∗ ∈ 𝐴∗.

3.1. Local Stationary Points-Symmetrical Output. If 𝐴∗ is an
equilibrium viable set, where the membership functions of
the consequents, 𝐵 and 𝐶, are symmetrical functions, then
the stationary point in𝐴∗ is unique. Except when 𝜇

𝐴𝑖
(𝑐
1
) = 0

or 𝜇
𝐴𝑖+1

(𝑐
2
) = 0 possibly occurs. Then we have the following

proposition.

Proposition 15. Let 𝑆 be a p-fuzzy system and 𝐴∗ an equi-
librium viable set of 𝑆 of the type (𝐴

𝑖
, 𝐴
𝑖+1
) → (𝐶, 𝐵). If the

membership functions of 𝐵 and 𝐶, respectively, 𝜇
𝐵
and 𝜇

𝐶
, are

monotonous and symmetric, that is, 𝜇
𝐶
(𝑡) = 𝜇

𝐵
(−𝑡), then there

exists an equilibrium point in 𝐴∗:

𝑥
∗

= max
𝑥∈𝐴
∗

[min (𝜇
𝐴𝑖
(𝑥) , 𝜇

𝐴𝑖+1
(𝑥))] . (20)

Proof. Since 𝜇
𝐵
(𝑡) = 𝜇

𝐶
(−𝑡) then 𝜇

𝐵
(−𝑎) = 𝜇

𝐶
(𝑎) = 0 =

𝜇
𝐵
(𝑏) ⇒ 𝑏 = −𝑎, because 𝜇

𝐵
Ú is monotonous. Yet, we have

that 𝜇
𝐵
(𝑡) = 𝜇

𝐶
(−𝑡) ⇒ 𝜇

−1

𝐵
(𝜇
𝐶
(𝑡)) = −𝑡 = −𝜇

−1

𝐵
(𝜇
𝐵
(𝑡)) ⇒

𝜇
−1

𝐵
(𝑦) = −𝜇

−1

𝐶
(𝑦).

Then, Δ(𝑧
𝑜
) = 0, if and only if, ℎ

1
(𝑛) = −ℎ

2
(𝑚). Since

𝑏 = −𝑎, from (8), then we obtain

ℎ
2
(𝑚) = ∫

𝜇
−1

𝐵
(𝑚)

−𝑎

𝑡𝜇
𝐵
(𝑡) 𝑑𝑡 + ∫

0

𝜇
−1

𝐵
(𝑚)

𝑚𝑡𝑑𝑡. (21)

If we perform a change in the variable 𝑢 = −𝑡, we have

ℎ
2
(𝑚) = ∫

−𝜇
−1

𝐵
(𝑚)

a
𝑢𝜇
𝐵
(−𝑢) 𝑑𝑢 + ∫

0

−𝜇
−1

𝐵
(𝑚)

𝑚𝑢𝑑𝑢

󳨐⇒ ℎ
2
(𝑚) = ∫

𝜇
−1

𝐶
(𝑚)

𝑎

𝑢𝜇
𝐶
(𝑢) 𝑑𝑢 + ∫

0

𝜇
−1

𝐶
(𝑚)

𝑚𝑢𝑑𝑢 = −ℎ
1
(𝑚) .

(22)

That is, ℎ
2
= −ℎ

1
. Hence, ℎ

1
(𝑛) = −ℎ

2
(𝑚) ⇔ ℎ

1
(𝑛) =

ℎ
1
(𝑚) ⇔ 𝑚 = 𝑛 (because ℎ

1
is increasing: Lemma 7); that

proves the proposition.

Remark 16. If 𝜇
𝐴𝑖
(𝑐
1
) ̸= 0, then 𝑥∗ = max

𝑥∈𝐴
∗[min(𝜇

𝐴𝑖
(𝑥),

𝜇
𝐴𝑖+1

(𝑥))] is the only stationary point in 𝐴∗. Besides that, if
the system 𝑆 is of the type (𝐴

𝑖
, 𝐴
𝑖+1
) → (𝐵, 𝐶), then the result

of Proposition 15 is the same.

4. Uniqueness of the Stationary Point

In this section we will enunciate and prove theorems that
establish condition for uniqueness of the stationary point of
a one-dimensional p-fuzzy system. Initially we will consider
a simpler case, when 𝐴∗ ⊂ [𝑧

1
, 𝑧
2
] (Figure 4), where

𝑧
1
= min
𝑥∈supp(𝐴𝑖)

{𝑟 (𝑥) = 1} , 𝑧
2
= max
𝑥∈supp(𝐴𝑖+1)

{𝑠 (𝑥) = 1} .

(23)

Theorem 17. Let 𝑆 be a p-fuzzy system and𝐴∗ an equilibrium
viable set of 𝑆 of the type (𝐴

𝑖
, 𝐴
𝑖+1
) → (𝐶, 𝐵). If the functions

𝜇
𝐴𝑖
and𝜇
𝐴𝑖+1

are piecewisemonotonous and𝐴∗ ⊂ [𝑧
1
, 𝑧
2
] then

there exists only one stationary point in 𝐴∗.

Proof. Given 𝑥 ∈ 𝐴∗ one has

Δ (𝑥) = ℎ
1
(𝑛) + ℎ

2
(𝑚) = ℎ

1
(𝜇
𝐴𝑖
(𝑥)) + ℎ

2
(𝜇
𝐴𝑖+1

(𝑥)) .

(24)

Using Lemmas 7 and 8 and the chain rule we find that the
derivative of Δ is

Δ
󸀠

(𝑥) =

[𝜇
−1

𝐶
(𝜇
𝐴𝑖
(𝑥))]

2

2

𝜇
󸀠

𝐴𝑖

(𝑥)

−

[𝜇
−1

𝐵
(𝜇
𝐴𝑖+1

(𝑥))]

2

2

𝜇
󸀠

𝐴𝑖+1

(𝑥) .

(25)

Since in 𝐴∗ = [𝑐
1
, 𝑐
2
]𝜇
𝐴𝑖

is not increasing and 𝜇
𝐴𝑖+1

is not
decreasing, then 𝜇󸀠

𝐴𝑖

(𝑥) ≤ 0 and 𝜇󸀠
𝐴𝑖+1

(𝑥) ≥ 0, and, besides
that, if 𝜇󸀠

𝐴𝑖

(𝑥) = 0, we have that 𝜇󸀠
𝐴𝑖+1

(𝑥) ̸= 0 and if 𝜇󸀠
𝐴𝑖+1

(𝑥) =

0 we obtain 𝜇
󸀠

𝐴𝑖

(𝑥) ̸= 0. Then, from (25), Δ󸀠(𝑥) < 0. This
shows that Δ is decreasing. From Theorem 13, there exists a
stationary point in 𝐴∗ then this point is unique.

Now, consider the more general case, when𝐴∗ ̸⊂ [𝑧
1
, 𝑧
2
],

and divide it into two theorems. Initially, consider the case
that the membership functions 𝜇

𝐶
and 𝜇

𝐵
are such that

𝜇
𝐶
(𝑡) > 𝜇

𝐵
(−𝑡); next, consider the case where 𝜇

𝐶
(𝑡) <

𝜇
𝐵
(−𝑡).
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4.1. Case 1: 𝜇
𝐶
(𝑡) > 𝜇

𝐵
(−𝑡)

Theorem 18 (uniqueness). Let 𝑆 be a p-fuzzy system and
𝐴
∗ an equilibrium viable set of 𝑆 of the type (𝐴

𝑖
, 𝐴
𝑖+1
) →

(𝐶, 𝐵). If the functions 𝜇
𝐴𝑖
, 𝜇
𝐴𝑖+1

, 𝜇
𝐵
and 𝜇

𝐶
are continuously

differentiable, 𝜇
𝐴𝑖

and 𝜇
𝐴𝑖+1

are piecewise monotonous 𝜇
𝐵
and

𝜇
𝐶
are strictly monotonous, such that

(i) 𝜇
𝐶
(𝑡) > 𝜇

𝐵
(−𝑡), ∀𝑡 ∈ (0, −𝑏),

(ii) 𝜇󸀠
𝐶
(𝑞)/𝜇
󸀠

𝐵
(𝑝) < (𝑝

3

/𝑞
3

) , ∀𝑝 ∈ supp(𝐵), 𝑞 ∈

supp(𝐶) and 𝜇
𝐵
(𝑝) > 𝜇

𝐶
(𝑞),

(iii) [𝜇󸀠
𝐴𝑖+1

(𝑥)/𝜇
󸀠

𝐴𝑖

(𝑥)] ≤ 0, ∀𝑥 ∈ (𝑧
𝑜
, 𝑐
2
), 𝜇
𝐴𝑖
(𝑥) ̸= 𝜇

𝐴𝑖+1
(𝑥).

Then, 𝑆 has only one stationary point, 𝑥∗ in 𝐴∗, and 𝑥∗ ∈

(𝑧
𝑜
, 𝑐
2
].

Proof. For the sake of simplicity notation, we make 𝑟 = 𝜇
𝐴𝑖
,

𝑠 = 𝜇
𝐴𝑖+1

, 𝑓 = 𝜇
𝐵
and 𝑔 = 𝜇

𝐶
.

Initially, we see that given 𝑥 ∈ (𝑧
𝑜
, 𝑐
2
] (Figure 4), 𝑥

determines only one (𝑛,𝑚) ∈ [0, 1]
2 such that 𝑛 = 𝑟(𝑥)

and 𝑚 = 𝑠(𝑥). By monotonicity of 𝑟, we have that for each
𝑛 ∈ [0, 𝑟(𝑧

𝑜
)) there exists only one 𝑚 ∈ [0, 1] such that

𝑛 = 𝑟(𝑥) and 𝑚 = 𝑠(𝑥). That is, each (𝑛,𝑚), in this situation,
determines only one 𝑥 ∈ (𝑧

𝑜
, 𝑐
2
].

By Theorem 13, there exists a stationary point 𝑥∗ ∈

[𝑐
1
, 𝑐
2
] = [𝑐
1
, 𝑧
𝑜
] ∪ (𝑧
𝑜
, 𝑐
2
]. Given 𝑥 ∈ [𝑐

1
, 𝑧
𝑜
] ⇒ 𝑚 = 𝑠(𝑥) ≤

𝑛 = 𝑟(𝑥). Then, by Lemma 11 𝑥∗ ∉ [𝑐
1
, 𝑧
𝑜
] ⇒ 𝑥

∗

∈ (𝑧
𝑜
, 𝑐
2
].

That is equivalent to the existence of only one (𝑛∗, 𝑚∗), with
𝑛
∗

∈ [0, 𝑟(𝑧
𝑜
)) such that𝐻(𝑛∗, 𝑚∗) = 0.

Since for each 𝑛 ∈ [0, 𝑟(𝑧
𝑜
)) there exists only one 𝑚 ∈

[0, 1] such that 𝑛 = 𝑟(𝑥) and 𝑚 = 𝑠(𝑥), then we may define
a function 𝛿

2
: [0, 𝑟(𝑧

𝑜
)) → [0, 1] such that 𝑚 = 𝛿

2
(𝑛)

(Figure 7). We observe that 𝛿
2
is continuous, because 𝑟 and

𝑠 are continuous. Using the chain rule we get the derivative of
𝛿
2
to be

𝛿
󸀠

2
(𝑛) =

𝑠
󸀠

(𝑥)

𝑟
󸀠
(𝑥)

(iii)
⇒ 𝛿
󸀠󸀠

2
(𝑛) ≤ 0, ∀𝑛 ∈ 𝐷

𝛿2
. (26)

By Lemmas 7 and 8, ℎ
1
and −ℎ

2
are increasing, and, by

condition (i), it follows that (Figure 6)

∫

𝑎

0

𝑡𝑔 (𝑡) 𝑑𝑡 > −∫

0

𝑏

𝑡𝑓 (𝑡) 𝑑𝑡 ⇐⇒ ℎ
1
(1) > −ℎ

2
(1) . (27)

Then, given 𝑛 ∈ [0, ℎ
−1

1
(−ℎ
2
(1))], there exists only one 𝑚 ∈

[0, 1] such that

ℎ
1
(𝑛) = −ℎ

2
(𝑚) ⇐⇒ ℎ

1
(𝑛) + ℎ

2
(𝑚) = 0. (28)

Therefore, we may define an injective function 𝜉, 𝑚 = 𝜉(𝑛)

(Figure 7) so that the inverse range of 0 by𝐻 is given by

𝐻
−1

(0) = {(𝑛,𝑚) ;𝑚 = 𝜉 (𝑛)} , (29)

where 𝐻 : [0, ℎ
−1

1
(−ℎ
2
(1))] × [0, 1] → R is given by

𝐻(𝑛,𝑚) = ℎ
1
(𝑛) + ℎ

2
(𝑚).

Since 𝜕𝐻/𝜕𝑛 = ℎ󸀠
1
(𝑛) = (𝑔

−1

(𝑛))

2

/2 > 0 (Lemma 7) and
𝜕𝐻/𝜕𝑚 = ℎ

󸀠

2
(𝑚) = −(𝑓

−1

(𝑚))

2

/2 < 0 (Lemma 8) then, by
the Implicity Function Theorem, 𝜉 is 𝑘 times differentiable,
and, besides that,

𝜉
󸀠

(𝑛) = −

𝑑ℎ
1
/𝑛

𝑑ℎ
2
/𝑚

= [

𝑔
−1

(𝑛)

𝑓
−1
(𝑚)

]

2

> 0,

∀𝑛 ∈ (0, ℎ
−1

1
(−ℎ
2
(1))) , 𝑚 ∈ (0, 1) , 𝑚 = 𝜉 (𝑛) .

(30)

Thus, 𝜉 is a strictly increasing function, and since𝐻(0, 0) = 0
and 𝐻(ℎ−1

1
(−ℎ
2
(1)), 1) = 0, then 𝐷

𝜉
= [0, ℎ

−1

1
(ℎ
2
(1))] and

𝐼𝑚
𝜉
= [0, 1].
Given 𝑚, 𝑛 ∈ (0, 1), there is only one 𝑝 ∈ (𝑏, 0) such that

𝑝 = 𝑓
−1

(𝑚), and there exists only one 𝑞 ∈ (0, 𝑎) such that 𝑞 =
𝑔
−1

(𝑛), since by assumption𝑓 and 𝑔 are strictly monotonous.
From Lemma 11 we have that 𝑚 ≤ 𝑛 ⇒ 𝐻(𝑚, 𝑛) > 0.

Hence,𝐻(𝑚, 𝑛) = 0 ⇒ 𝑚 > 𝑛. Therefore, we are interested in
the pairs (𝑚, 𝑛) such that𝑚 > 𝑛. Thus, we have

𝑚 > 𝑛 ⇐⇒ 𝑓(𝑝) > 𝑔 (𝑞) . (31)
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Since 𝑓 and 𝑔 are monotonous, by Lagrange’s Medium Value
Theorem, we obtain

𝑝 = 𝑓
−1

(𝑚) ⇐⇒ (𝑓
−1

)

󸀠

(𝑚) =

1

𝑓
󸀠
(𝑝)

(32)

𝑞 = 𝑔
−1

(𝑛) ⇐⇒ (𝑔
−1

)

󸀠

(𝑛) =

1

𝑔
󸀠
(𝑞)

. (33)

Then,

𝑚 > 𝑛

(31)

⇐󳨐󳨐⇒ 𝑓(𝑝) > 𝑔 (𝑞)

(ii)
⇒

𝑔
󸀠

(𝑞)

𝑓
󸀠
(𝑝)

<

𝑝
3

𝑞
3

(32)𝑒(33)

⇐󳨐󳨐󳨐󳨐󳨐⇒

(𝑓
−1

)

󸀠

(𝑚)

(𝑔
−1
)
󸀠

(𝑛)

<

[𝑓
−1

(𝑚)]

3

[𝑔
−1
(𝑛)]
3
.

(34)

Therefore,

𝑚 > 𝑛 󳨐⇒ (𝑓
−1

)

󸀠

(𝑚) [𝑔
−1

(𝑛)]

3

− (𝑔
−1

)

󸀠

(𝑛) [𝑓
−1

(𝑚)]

3

> 0.

(35)

By differentiation of (30), we obtain

𝜉
󸀠󸀠

(𝑛) =

−2𝑔
−1

(𝑛)

[𝑓
−1
(𝑚)]
5

× {(𝑓
−1

)

󸀠

(𝑚) [𝑔
−1

(𝑛)]

3

− (𝑔
−1

)

󸀠

(𝑛) [𝑓
−1

(𝑚)]

3

}

(36)

and since −2𝑔−1(𝑛)/[𝑓−1(𝑚)]5 > 0, ∀𝑚, 𝑛 ∈ (0, 1), from (35),
we have

𝜉
󸀠󸀠

(𝑛) > 0, ∀𝑛 ∈

𝑜

𝐷
𝜉
. (37)

Now we take 𝐼 = 𝐷
𝜉
∩ 𝐷
𝛿2
= 𝐷
𝜉
∩ [0, 𝑟(𝑧

𝑜
)), and we define

the function 𝜙 : 𝐼 → [0, 1] such that

𝜙 (𝑛) = 𝜉 (𝑛) − 𝛿
2
(𝑛) . (38)

Then, from (26) and (37) we have 𝜙󸀠󸀠(𝑛) > 0, ∀𝑛 ∈

𝑜

𝐼. Since
𝜉(0) = 0 and by condition (iii) of Theorem 18, it follows
that 𝛿

2
(0) > 0; then we have 𝜙(0) < 0. Consequently, from

Lemma 9, we have that there is only one 𝑛∗ ∈ 𝐼 such that

𝜙 (𝑛
∗

) = 0

(38)

⇐󳨐󳨐⇒ 𝜉 (𝑛
∗

) = 𝛿
2
(𝑛
∗

) .
(39)

Since 𝜉 = 𝐻−1(0), then we obtain

0 = 𝐻 (𝑛
∗

, 𝜉 (𝑛
∗

))

(39)

= 𝐻 (𝑛
∗

, 𝛿
2
(𝑛
∗

)) . (40)

So, there exists only one 𝑥∗ ∈ (𝑧
𝑜
, 𝑐
2
], 𝑛∗ = 𝑟(𝑥

∗

) and
𝑚
∗

= 𝛿
2
(𝑛
∗

) = 𝑠(𝑥
∗

) such that

Δ (𝑥
∗

) =

𝐻 (𝑛
∗

, 𝑚
∗

)

𝐴 (𝑛
∗
, 𝑚
∗
)

= 0. (41)

This finally proves the theorem.

4.2. Case 2: 𝜇
𝐶
(𝑡)<𝜇
𝐵
(−𝑡)

Theorem 19 (uniqueness). Let 𝑆 be a p-fuzzy system and
𝐴
∗ an equilibrium viable set of 𝑆 of the type (𝐴

𝑖
, 𝐴
𝑖+1
) →

(𝐶, 𝐵). If the functions 𝜇
𝐴𝑖
, 𝜇
𝐴𝑖+1

, 𝜇
𝐵
, and 𝜇

𝐶
are continuously

differentiable, 𝜇
𝐴𝑖

and 𝜇
𝐴𝑖+1

are piecewise monotonous, 𝜇
𝐵
and

𝜇
𝐶
are strictly monotonous, such that

(i) 𝜇
𝐶
(𝑡) < 𝜇

𝐵
(−𝑡), ∀𝑡 ∈ (0, 𝑎),

(ii) 𝜇󸀠
𝐶
(𝑞)/𝜇
󸀠

𝐵
(𝑝) > 𝑝

3

/𝑞
3 , ∀𝑝 ∈ supp(𝐵), 𝑞 ∈ supp(𝐶)

and 𝜇
𝐵
(𝑝) < 𝜇

𝐶
(𝑞),

(iii) [𝜇󸀠
𝐴𝑖

(𝑥)/𝜇
󸀠

𝐴𝑖+1

(𝑥)] ≤ 0, ∀𝑥 ∈ (𝑐
1
, 𝑧
𝑜
), 𝜇
𝐴𝑖
(𝑥) ̸= 𝜇

𝐴𝑖+1
(𝑥).

Then, 𝑆 has only one stationary point, 𝑥∗ in 𝐴∗, and 𝑥∗ ∈

[𝑐
1
, 𝑧
𝑜
).

Proof. It is analogous to the proof of Theorem 18.

4.3. Some Comments about Uniqueness Theorems. When we
do not have 𝜇

𝐶
(𝑡) > 𝜇

𝐵
(−𝑡) or 𝜇

𝐶
(𝑡) < 𝜇

𝐵
(−𝑡), it is impossible

to establish general conditions for uniqueness of stationary
points. For example, consider the p-fuzzy system in Figure 8.
This system has an equilibrium viable set, 𝐴∗ = [𝐴

1
∩ 𝐴
2
]
0.
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Figure 9: Function Δ with𝑚
1
= 𝜀 = 0.1.

The sets that describe the input variable havemembership
functions 𝜇

𝐴1
and 𝜇

𝐴2
:

𝜇
𝐴1
(𝑥) =

{
{
{
{
{

{
{
{
{
{

{

1

40

𝑥, if 0 < 𝑥 ≤ 40

−1

50

𝑥 +

9

5

, if 40 < 𝑥 ≤ 90
0, otherwise,

𝜇
𝐴2
(𝑥) =

{
{
{
{
{

{
{
{
{
{

{

1

55

𝑥 −

1

11

, if 5 < 𝑥 ≤ 60

−1

40

𝑥 +

5

2

, if 60 < 𝑥 ≤ 100
0, otherwise,

(42)

and the fuzzy sets that describe the output variable have
membership functions: 𝜇

𝐶
(𝑡) = (−1/2)𝑡 + 1 and

𝜇
𝐵
(𝑡)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

1

3

𝑡 + 1, if − 3 < 𝑡 ≤ 3 (𝑚
1
− 1)

𝜀

3 (𝑚
1
− 1)

𝑡 + 𝑚
1
+ 𝜀, if 3 (𝑚

1
− 1) < 𝑡

≤

3𝜀 (𝜀 + 𝑚
1
− 1) (𝑚

1
− 1)

3 (𝑚
1
− 1) + 𝜀

2

1

𝜀

𝑡 + 1, if
3𝜀 (𝜀 + 𝑚

1
− 1) (𝑚

1
− 1)

3 (𝑚
1
− 1) + 𝜀

2

< 𝑡 ≤ 0

0, otherwise.
(43)

For example, if we take in (43) 𝑚
1
= 0.1 and 𝜀 = 0.1,

the p-fuzzy systemobtained has three stationary points in𝐴∗,
which can be visualized in Figure 9, which depicts the graphic
of function Δ.

Remark 20. Note that the function 𝜇
𝐵
is not differentiable in

all points into supp(𝐵), which was a requirement made in
the previous cases. However, it can be clearly constructed a
function 𝜇

𝐵
derivable in all points of supp(𝐵). For example,

0 10 20 30 40 50 60 70 80 90

0
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1

−1.5
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Figure 10: Function Δ with 𝜀 = 0.4,𝑚
1
= 0.1.

if we substitute the second sentence of 𝜇
𝐵
by an adequate

fourth degree polynomial, obviously 𝜇
𝐵
will be derivable into

supp(𝐵).

Remark 21. If we take, for example, 𝜀 = 0.3 and 𝑚
1
=

0.3, we have that the obtained p-fuzzy system has only one
stationary point (Figure 10).This shows thatTheorems 18 and
19 establish only sufficient conditions for uniqueness of the
stationary point.

4.4. Uniqueness for Triangular and Trapezoidal Membership
Functions. In this section, we will list some important con-
sequences of Theorems 18 and 19. We will also show that
for triangular and trapezoidal membership functions, the
stationary point is only one in 𝐴∗. However, before doing so,
let us take a look at the following lemmas.

Lemma 22. If 𝜇
𝐵
(𝑝) > 𝜇

𝐶
(𝑞) then 𝑞 > −𝑝, where 𝑝 = 𝜇−1

𝐵
(𝑚)

and 𝑞 = 𝜇−1
𝐶
(𝑛).

Proof. In fact, we have that 𝜇
𝐵
(𝑝) > 𝜇

𝐶
(𝑞) ⇒ 𝑚 > 𝑛 hence

using Lemma 10 and the fact that −𝜇−1
𝐵

isincreasing, once 𝜇
𝐵

is increasing, then we have that

𝑞 = 𝜇
−1

𝐶
(𝑛) > −𝜇

−1

𝐵
(𝑛) > −𝜇

−1

𝐵
(𝑚) = −𝑝. (44)

Lemma 23. If 𝜇
𝐵
(𝑝) < 𝜇

𝐶
(𝑞), then 𝑞 < −𝑝, where 𝑝 = 𝜇−1

𝐵
(𝑚)

and 𝑞 = 𝜇−1
𝐶
(𝑛).

Proof. Analogous to previous proof.

Corollary 24. Let 𝑆 be a p-fuzzy system and 𝐴∗ an equilib-
rium viable set of 𝑆. If 𝜇

𝐴𝑖
, 𝜇
𝐴𝑖+1

, 𝜇
𝐵
and 𝜇
𝐶
are triangular fuzzy

numbers, then 𝑆 has only one stationary point in 𝐴∗.

Proof. We will prove the case where 𝑆 is (𝜇
𝐴𝑖
, 𝜇
𝐴𝑖+1

) →

(𝜇
𝐶
, 𝜇
𝐵
). If 𝑆 is (𝜇

𝐴𝑖
, 𝜇
𝐴𝑖+1

) → (𝜇
𝐵
, 𝜇
𝐶
), then the proof is

analogous.
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Figure 11: Population (𝑥).

If 𝑎 = 𝑏, then 𝜇
𝐴𝑖

and 𝜇
𝐴𝑖+1

are symmetrical and by
Proposition 15 the stationary point is only one:

𝑥
∗

= max
𝑥∈𝐴
∗

[min (𝜇
𝐴𝑖
(𝑥) , 𝜇

𝐴𝑖+1
(𝑥))] . (45)

Assume that 𝑎 > 𝑏; then 𝜇
𝐴𝑖
, 𝜇
𝐴𝑖+1

, 𝜇
𝐵
, and 𝜇

𝐶
satisfy

Theorem 18. In fact, (i) and (iii) are trivial. Since 𝜇
𝐵
(𝑡) =

−(1/𝑏)𝑡 + 1 and 𝜇
𝐶
(𝑡) = −(1/𝑎)𝑡 + 1, then 𝜇

𝐵
(𝑝) > 𝜇

𝐶
(𝑞) ⇒

𝑏/𝑎 < 𝑝/𝑞 ⇒ 𝜇
󸀠

𝐶
(𝑞)/𝜇
󸀠

𝐵
(𝑝) < 𝑝/𝑞. From Lemma 22, we

have that 𝑞 > −𝑝 ⇒ 𝑝/𝑞 < 𝑝
3

/𝑞
3 and, therefore, we obtain

𝜇
󸀠

𝐶
(𝑞)/𝜇
󸀠

𝐵
(𝑝) < 𝑝

3

/𝑞
3, which satisfies (ii).

Now, assume that 𝑎 < 𝑏; then 𝜇
𝐴𝑖
, 𝜇
𝐴𝑖+1

, 𝜇
𝐵
, and 𝜇

𝐶

satisfy the Theorem 19. In fact, (i) and (iii) are trivial and
𝜇
𝐵
(𝑝) < 𝜇

𝐶
(𝑞) ⇒ 𝑏/𝑎 > 𝑝/𝑞 ⇒ 𝜇

󸀠

𝐶
(𝑞)/𝜇
󸀠

𝐵
(𝑝) > 𝑝/𝑞. From

Lemma 23 we get 𝑞 < −𝑝 ⇒ 𝑝/𝑞 > 𝑝
3

/𝑞
3, and, therefore,

𝜇
󸀠

𝐶
(𝑞)/𝜇
󸀠

𝐵
(𝑝) > 𝑝

3

/𝑞
3, which satisfies (ii). This concludes the

proof.

Corollary 25. Let 𝑆 be a p-fuzzy system and 𝐴∗ an equilib-
rium viable set of 𝑆. If 𝜇

𝐴𝑖
and 𝜇

𝐴𝑖+1
are trapezoidal fuzzy

numbers and 𝜇
𝐵
and 𝜇

𝐶
are triangular fuzzy numbers, then

𝑆 has only one stationary point in 𝐴∗.

Proof. It is analogous to the proof of Corollary 24.

5. Examples

In this section we will present some computational exper-
iments that confirm the mathematical theory presented in
the previous sections. The experiments had been carried out
with Matlab software. For the experiments we will consider
inhibited one-dimensional p-fuzzy systems. These systems
can be used to model situations where the state variable is
increasing (resp., decreasing) with a carrying capacity (resp.
lower bound). These situations, in population dynamics, are
described by inhibited models such as Gompertz’s model,
Verhulst’s model, von Bertallanffy’s models, and Asymptotic
Exponential model.

The inhibited one-dimensional p-fuzzy systems are com-
posed of the variables “Population” (Figure 11) and “Varia-
tion” (Figure 12). The rule-base of these systems is

(1) if Population is low (𝐴
1
) thenVariation is low positive

(𝐶);
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Figure 12: Variation (Δ): 𝜇
𝐶
(𝑡) = 𝜇

𝐵
(−𝑡).

(2) if Population is medium low (𝐴
2
) then Variation is

medium positive (𝐷);
(3) if Population is medium (𝐴

3
) then Variation is high

positive (𝐸);
(4) if Population is medium high (𝐴

4
) then Variation is

medium positive (𝐷);
(5) if Population is high (𝐴

5
) then Variation is low

positive (𝐶);
(6) if Population is the highest (𝐴

6
) then Variation is low

negative (𝐵).

5.1. Example 1. In this system the membership functions of 𝐵
and 𝐶 are 𝜇

𝐵
(𝑡) = 𝑡 + 1 and 𝜇

𝐶
(𝑡) = 1 − 𝑡. These functions are

symmetric (Figure 12). Observing the rules we can identify an
equilibrium viable set,𝐴∗ = [200, 280], where𝐴∗ = 𝐴

5
∩𝐴
6
,

in which membership functions are given by size:

𝜇
𝐴5
(𝑥) =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

1

50

(𝑥 − 150) , if 150 < 𝑥 ≤ 200

1, if 200 < 𝑥 ≤ 220
−1

60

(𝑥 − 280) , if 220 < 𝑥 ≤ 270

0, otherwise,

𝜇
𝐴6
(𝑥) =

{
{
{

{
{
{

{

1

70

(𝑥 − 200) , if 200 < 𝑥 ≤ 270

1, if 270 < 𝑥 ≤ 300
0, otherwise.

(46)

A simple calculation shows that 𝜇
𝐴5

∩ 𝜇
𝐴6

= 243.07,
which is the stationary point of the system, as shown in
Proposition 15. This is the same result as that obtained from
numerical experiments in Figure 13, where it is possible
to observe the solution of the p-fuzzy system with initial
condition 𝑥

𝑜
= 50 converging to the stationary point 𝑥∗ =

243.07 (dotted line curve).

5.2. Example 2 (Application). Losses caused by fungi attacks
reach up to the amazing and worrisome figure of 20% of
the total harvested fruits. Among the recognized pathogens
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Figure 13: Equilibrium of the p-fuzzy systems.
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Figure 14: Population (𝐴).

of these degenerative processes are the Colletotrichum sp.
(bitter putrefaction); Alternaria sp and Fusarium sp (carpelar
putrefaction); Alternaria alternata (black putrefaction) and
Penicillium sp. (blue mould). In general, putrefaction occurs
always after harvesting, when the apples are kept in boxes
awaiting the refrigeration process.

Let us consider a situation where an apple box filled with
approximately 3000 fruits exists and there is a rotten apple in
the center of the box that will contaminate the other apples.
The dispersion of the disease occurs through the contact of
the rotten apple with a healthy one. If we want to model
the dispersion of the disease, we can only use the intuition
because the available information we have is that after 𝑛 days
all the apples will be contaminated. We do not have in hand
a “force of infection of the disease” parameter, and we know
little about the possible contacts between the rotten apple and
a healthy one. Thus, any mathematical model or simulation
of the phenomenon only will produce an approximate result.
On the other hand, if we simply use the intuition, we can
formulate some relative rules to the dispersion process such
as the following:

“If the rotten apple population is “low” then the
variation (incidence) of rotten apples is “small”.”

Let us consider then the p-fuzzy systemwith the following
linguistic variables:

300
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Iteration

x∗ = 274.49
x∗ = 243.07
x∗ = 206.42

Figure 15: Variation (Δ).
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Figure 16: Solutions: p-fuzzy system and adjust model.

(i) 𝐴: “rotten apple population” (Figure 14); L: low; Ml:
medium low; M: medium; medium high; H: high,

(ii) Δ “Variation” (incidence of the disease, Figure 15); S:
small; M: medium; G: great,

where the rule-base is:

(1) if Population (𝐴) is low (L), then Variation is small
(S);

(2) if Population (𝐴) is medium low (L), then Variation is
medium (M);

(3) if Population (𝐴) is medium (M), then Variation is
great (G);

(4) if Population (𝐴) is medium high (M), then Variation
is medium (M);

(5) if Population (𝐴) is medium (G), then Variation is
small (S).
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This p-fuzzy system can be used to adjust the parameters
of a deterministic differential equation model of the type

𝑑𝐴

𝑑𝑡

= 𝑟𝐴(1 −

𝐴

𝐾

) , (47)

for example, by the method of least squares. In Figure 16 it is
possible to observe the solution of the p-fuzzy system (dotted
line curve) and the adjust model (continuous line curve).
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