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This paper is concerned with a semiratio-dependent predator-prey systemwith nonmonotonic functional response and two delays.
It is shown that the positive equilibriumof the system is locally asymptotically stable when the time delay is small enough. Change of
stability of the positive equilibrium will cause bifurcating periodic solutions as the time delay passes through a sequence of critical
values. The properties of Hopf bifurcation such as direction and stability are determined by using the normal form method and
center manifold theorem. Numerical simulations confirm our theoretical findings.

1. Introduction

It is well known that there are many factors which can
affect dynamical properties of predator-prey systems. One
of the important factors is the functional response describ-
ing the number of prey consumed per predator per unit
time for given quantities of prey and predators. Numerous
laboratory experiment, and observations have shown that a
more suitable general predator-prey system should be based
on the “ratio-dependent” theory, especially when predators
have to search, share, or compete for food [1–3]. And ratio-
dependent predator-prey systems have been investigated by
many scholars [4–11]. In [4], Zhang and Lu considered the
following semi-ratio-dependent predator-prey system with
the nonmonotonic functional response
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where 𝑥
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2
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the predator, respectively. 𝑟
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quality that the prey provided for conversion into predator
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𝑚 ̸= 0, 𝑛 ≥ 0, and 𝑎
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to be continuously positive periodic functions with period
𝜔. Zhang and Lu [4] established the existence of positive
periodic solutions of system (1), and sufficient conditions for
the uniqueness and global stability of the positive solutions
of system (1) were also obtained by constructing a Lyapunov
function.

Time delays of one type or another have been incorpo-
rated into predator-prey systems by many researchers since
a time delay could cause a stable equilibrium to become
unstable and cause the population to fluctuate [5, 6, 12–15].
In [5], Ding et al. incorporated the time delay 𝜏(𝑡) ≥ 0

due to negative feedback of the prey into system (1) and
got the special case (𝑛 = 0) of system (1) with time
delay
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Ding et al. [5] established the existence of a positive periodic
solution for system (2) by using the continuation theorem
of coincidence degree theory. Sufficient conditions for the
permanence of system (2) were obtained by Li and Yang in
[6]. But studies on predator-prey systems not only involve the
persistence and the periodic phenomenon but also involve
many patterns of other behavior such as global attractivity
[16, 17] and bifurcation phenomenon [18–21]. Starting from
this point, we will study the bifurcation phenomenon and
the properties of periodic solutions of the following predator-
prey system with two delays:
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Unlike the assumptions in [4–6], we assume that all the
parameters of system (3) are positive constants. 𝜏

1
≥ 0 and

𝜏
2
≥ 0 are the feedback delays of the prey and the predator,

respectively.
The rest of this paper is organized as follows. In Section 2,

sufficient conditions are obtained for the local stability of the
positive equilibrium and the existence of Hopf bifurcation
for possible combinations of the two delays in system (3).
In Section 3, we give the formula determining the direction
of Hopf bifurcation and the stability of the bifurcating
periodic solutions. Finally, numerical simulations supporting
the theoretical analysis are also included.

2. Stability of the Positive Equilibrium and
Local Hopf Bifurcations

It is not difficult to verify that system (2) has at least one
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1
, 𝑥
∗

2
) of system (3) is asymptotically stable for

𝜏
2
∈ [0, 𝜏

20
) and unstable when 𝜏

2
> 𝜏
20
. System (3) undergoes

a Hopf bifurcation at the positive equilibrium 𝐸
∗
(𝑥
∗

1
, 𝑥
∗

2
)when

𝜏
2
= 𝜏
20
.

Case 4 (𝜏
1
= 𝜏
2
= 𝜏 > 0). Equation (8) can be transformed

into the following form:

𝜆
2
+ 𝐴𝜆 + ((𝐵 + 𝐶) 𝜆 + 𝐷) 𝑒

−𝜆𝜏
+ 𝐸𝑒
−2𝜆𝜏

= 0. (25)

Multiplying 𝑒
𝜆𝜏 on both sides of (25), we get

(𝐵 + 𝐶) 𝜆 + 𝐷 + (𝜆
2
+ 𝐴𝜆) 𝑒

𝜆𝜏
+ 𝐸𝑒
−𝜆𝜏

= 0. (26)

Let 𝜆 = 𝑖𝜔 (𝜔 > 0) be the root of (26), then we obtain

𝐴𝜔 sin 𝜏𝜔 + (𝜔
2
− 𝐸) cos 𝜏𝜔 = 𝐷,

𝐴𝜔 cos 𝜏𝜔 − (𝜔
2
+ 𝐸) sin 𝜏𝜔 = − (𝐵 + 𝐶)𝜔,

(27)

which follows that

sin 𝜏𝜔 =
(𝐵 + 𝐶)𝜔

3
+ (𝐴𝐷 − 𝐵𝐸 − 𝐶𝐸)𝜔

𝜔4 + 𝐴2𝜔2 − 𝐸2
,

cos 𝜏𝜔 =
(𝐷 − 𝐴𝐵 − 𝐴𝐶)𝜔

2
+ 𝐷𝐸

𝜔4 + 𝐴2𝜔2 − 𝐸2
.

(28)

Then, we have

𝜔
8
+ 𝑐
3
𝜔
6
+ 𝑐
2
𝜔
4
+ 𝑐
1
𝜔
2
+ 𝑐
0
= 0, (29)

where
𝑐
0
= 𝐸
4
, 𝑐

3
= 2𝐴
2
− (𝐵 + 𝐶)

2
,

𝑐
1
= 2𝐷𝐸 (𝐴𝐵 + 𝐴𝐶 − 𝐷) − 2𝐴

2
𝐸
2

− (𝐴𝐷 − 𝐵𝐸 − 𝐶𝐸)
2
,

𝑐
2
= 𝐴
4
− 2𝐸
2
− 2 (𝐵 + 𝐶) (𝐴𝐷 − 𝐵𝐸 − 𝐶𝐸)

− (𝐷 − 𝐴𝐵 − 𝐴𝐶)
2
.

(30)

Denote 𝜔
2
= V, and then (29) becomes

V4 + 𝑐
3
V3 + 𝑐
2
V2 + 𝑐
1
V + 𝑐
0
= 0. (31)

Next, we give the following assumption.

(𝐻
3
) Equation (31) has at least one positive real root.

Suppose that (𝐻
3
) holds. Without loss of generality, we

assume that (31) has four real positive roots, which are
denoted by V

1
, V
2
, V
3
, and V

4
.Then (29) has four positive roots

𝜔
𝑘
= √V
𝑘
, 𝑘 = 1, 2, 3, 4.

For every fixed 𝜔
𝑘
, the corresponding critical value of

time delay is

𝜏
(𝑗)

𝑘
=

1

𝜔
𝑘

arccos
(𝐷 − 𝐴𝐵 − 𝐴𝐶)𝜔

2

𝑘
+ 𝐷𝐸

𝜔4
𝑘
+ 𝐴2𝜔2

𝑘
− 𝐸2

+
2𝑗𝜋

𝜔
𝑘

,

𝑘 = 1, 2, 3, 4, 𝑗 = 0, 1, 2, . . . .

(32)

Let

𝜏
0
= min {𝜏

(0)

𝑘
} , 𝑘 = 1, 2, 3, 4. 𝜔

0
= 𝜔
𝑘
0

. (33)

Taking the derivative of 𝜆 with respect to 𝜏 in (26), we obtain

[
𝑑𝜆

𝑑𝜏
]

−1

=
(2𝜆 + 𝐴) 𝑒

𝜆𝜏
+ 𝐵 + 𝐶

𝜆 [𝐸𝑒−𝜆𝜏 − (𝜆2 + 𝐴𝜆) 𝑒𝜆𝜏]
−

𝜏

𝜆
. (34)

Thus,

Re [𝑑𝜆

𝑑𝜏
]

−1

𝜏=𝜏
0

=
𝑃
𝑅
𝑄
𝑅
+ 𝑃
𝐼
𝑄
𝐼

𝑄2
𝑅
+ 𝑄2
𝐼

, (35)

with

𝑃
𝑅
= 𝐴 cos 𝜏

0
𝜔
0
− 2𝜔
0
sin 𝜏
0
𝜔
0
+ 𝐵 + 𝐶,

𝑃
𝐼
= 𝐴 sin 𝜏

0
𝜔
0
+ 2𝜔
0
cos 𝜏
0
𝜔
0
,

𝑄
𝑅
= 𝐴𝜔
2

0
cos 𝜏
0
𝜔
0
+ (𝐸𝜔

0
− 𝜔
3

0
) sin 𝜏

0
𝜔
0
,

𝑄
𝐼
= 𝐴𝜔
2

0
sin 𝜏
0
𝜔
0
+ (𝐸𝜔

0
+ 𝜔
3

0
) cos 𝜏

0
𝜔
0
.

(36)

It is easy to see that if condition (𝐻
4
)𝑃
𝑅
𝑄
𝑅
+𝑃
𝐼
𝑄
𝐼

̸= 0, then
Re [𝑑𝜆/𝑑𝜏]−1

𝜏=𝜏
0

̸= 0. Therefore, we have the following results.

Theorem 3. If conditions (𝐻
1
) and (𝐻

4
) holds, then the pos-

itive equilibrium 𝐸
∗
(𝑥
∗

1
, 𝑥
∗

2
) of system (3) is asymptotically

stable for 𝜏 ∈ [0, 𝜏
0
) and unstable when 𝜏 > 𝜏

0
. System

(3) undergoes a Hopf bifurcation at the positive equilibrium
𝐸
∗
(𝑥
∗

1
, 𝑥
∗

2
) when 𝜏 = 𝜏

0
.

Case 5 (𝜏
1

̸= 𝜏
2
, 𝜏
1
> 0 and 𝜏

2
> 0). Considered the following:

𝜆
2
+ 𝐴𝜆 + 𝐵𝜆𝑒

−𝜆𝜏
1 + (𝐶𝜆 + 𝐷) 𝑒

−𝜆𝜏
2

+ 𝐸𝑒
−𝜆(𝜏
1
+𝜏
2
)
= 0.

(37)

We consider (8) with 𝜏
2
in its stable interval and regard 𝜏

1

as a parameter.
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Let 𝜆 = 𝑖𝜔
∗

1
(𝜔∗
1

> 0) be the root of (8), and then we can
obtain

(𝐵𝜔
∗

1
− 𝐸 sin 𝜏

2
𝜔
∗

1
) sin 𝜏

1
𝜔
∗

1
+ 𝐸 cos 𝜏

2
𝜔
∗

1
cos 𝜏
1
𝜔
∗

1

= (𝜔
∗

1
)
2

− 𝐷 cos 𝜏
2
𝜔
∗

1
− 𝐶𝜔
∗

1
sin 𝜏
2
𝜔
∗

1
,

(𝐵𝜔
∗

1
− 𝐸 sin 𝜏

2
𝜔
∗

1
) cos 𝜏

1
𝜔
∗

1
− 𝐸 cos 𝜏

2
𝜔
∗

1
cos 𝜏
1
𝜔
∗

1

= −𝐴𝜔
∗

1
+ 𝐷 sin 𝜏

2
𝜔
∗

1
− 𝐶𝜔
∗

1
cos 𝜏
2
𝜔
∗

1
.

(38)

Then we get

(𝜔
∗

1
)
4

+ (𝐴
2
− 𝐵
2
+ 𝐶
2
) (𝜔
∗

1
)
2

+ 𝐷
2
− 𝐸
2

+ 2 (𝐴𝐶 − 𝐷
2
) (𝜔
∗

1
)
2 cos 𝜏

2
𝜔
∗

1

− 2 (𝐶(𝜔
∗

1
)
3

+ 𝐴𝐷𝜔
∗

1
) sin 𝜏

2
𝜔
∗

1
= 0.

(39)

Define

𝐹 (𝜔
∗

1
) = (𝜔

∗

1
)
4

+ (𝐴
2
− 𝐵
2
+ 𝐶
2
) (𝜔
∗

1
)
2

+ 𝐷
2
− 𝐸
2

+ 2 (𝐴𝐶 − 𝐷
2
) (𝜔
∗

1
)
2 cos 𝜏

2
𝜔
∗

1

− 2 (𝐶 (𝜔
∗

1
)
3

+ 𝐴𝐷𝜔
∗

1
) sin 𝜏

2
𝜔
∗

1
.

(40)

If condition (𝐻
1
) 𝐷 + 𝐸 > 0 and (𝐻

2
) 𝐷 − 𝐸 < 0 hold,

then 𝐹(0) = 𝐷
2
− 𝐸
2

< 0. In addition, 𝐹(+∞) = +∞.
Therefore, (39) has at least one positive root. We suppose that
the positive roots of (39) are denoted as 𝜔∗

11
, 𝜔
∗

12
, . . . 𝜔
∗

1𝑘
. For

every fixed 𝜔
∗

1𝑖
, the corresponding critical value of time delay

𝜏
∗(𝑗)

1𝑖
=

1

𝜔∗
1𝑖

×arccos
𝑒
1
(𝜔
∗

1𝑖
)+𝑒
2
(𝜔
∗

1𝑖
) cos 𝜏

2
𝜔
∗

1𝑖
+𝑒
3
(𝜔
∗

1𝑖
) sin 𝜏

2
𝜔
∗

1𝑖

𝑒
4
(𝜔∗
1𝑖
)+𝑒
5
(𝜔∗
1𝑖
) sin 𝜏

2
𝜔∗
1𝑖

+
2𝑗𝜋

𝜔∗
1𝑖

𝑖 = 1, 2, 3, . . . , 𝑘, 𝑗 = 0, 1, 2, . . .

(41)

with

𝑒
1
(𝜔
∗

1𝑖
) = −𝐴𝐵(𝜔

∗

1𝑖
)
2

− 𝐷𝐸, 𝑒
2
(𝜔
∗

1𝑖
) = (𝐸 − 𝐵𝐶) (𝜔

∗

1𝑖
)
2

,

𝑒
3
(𝜔
∗

1𝑖
) = (𝐴𝐸 + 𝐵𝐷)𝜔

∗

1𝑖
, 𝑒

4
(𝜔
∗

1𝑖
) = 𝐵
2
(𝜔
∗

1𝑖
)
2

+ 𝐸
2
,

𝑒
5
(𝜔
∗

1𝑖
) = −2𝐵𝐸𝜔

∗

1𝑖
.

(42)

Let 𝜏
1∗

= min{𝜏∗(0)
1𝑖

}, 𝑖 = 1, 2, 3, . . . 𝑘. When 𝜏
1
= 𝜏
1∗
, (8) has

a pair of purely imaginary roots ±𝑖𝜔
1∗

for 𝜏
2
∈ (0, 𝜏

20
).

Next, in order to give the main results, we give the
following assumption

(𝐻
5
) 𝑑Re 𝜆(𝜏∗

10
)/𝑑𝜏
1

̸= 0.

Therefore, we have the following results on the stability and
bifurcation in system (3).

Theorem 4. If the conditions (𝐻
1
) and (𝐻

5
) hold and 𝜏

2
∈

(0, 𝜏
20
), then the positive equilibrium 𝐸

∗
(𝑥
∗

1
, 𝑥
∗

2
) of system (3)

is asymptotically stable for 𝜏
1

∈ [0, 𝜏
1∗
) and unstable when

𝜏
1

> 𝜏
1∗
. System (3) undergoes a Hopf bifurcation at the

positive equilibrium 𝐸
∗
(𝑥
∗

1
, 𝑥
∗

2
) when 𝜏

1
= 𝜏
1∗
.

3. Direction and Stability of
the Hopf Bifurcation

In this section, we will investigate the direction of Hopf
bifurcation and stability of the bifurcating periodic solutions
of system (3) with respect to 𝜏

1
for 𝜏
2
∈ (0, 𝜏

20
). We assume

that 𝜏
2∗

< 𝜏
1∗

where 𝜏
2∗

∈ (0, 𝜏
20
).

Let 𝜏
1
= 𝜏
1∗

+𝜇, 𝜇 ∈ 𝑅 so that𝜇 = 0 is theHopf bifurcation
value of system (3). Rescale the time delay by 𝑡 → (𝑡/𝜏

1
). Let

𝑢
1
(𝑡) = 𝑥

1
(𝑡)−𝑥

∗

1
, 𝑢
2
(𝑡) = 𝑥

2
(𝑡)−𝑥

∗

2
, and then system (3) can

be rewritten as an PDE in 𝐶 = 𝐶([−1, 0], 𝑅
2
) as

𝑢̇ (𝑡) = 𝐿
𝜇
𝑢
𝑡
+ 𝐹 (𝜇, 𝑢

𝑡
) , (43)

where

𝑢 (𝑡) = (𝑢
1
(𝑡) , 𝑢
2
(𝑡))
𝑇

∈ 𝑅
2
,

𝐿
𝜇
: 𝐶 󳨀→ 𝑅

2
, 𝐹 : 𝑅 × 𝐶 󳨀→ 𝑅

2

(44)

are given, respectively, by

𝐿
𝜇
𝜙 = (𝜏

1∗
+ 𝜇) (𝐴

󸀠
𝜙 (0) + 𝐶

󸀠
𝜙(−

𝜏
2∗

𝜏
1∗

) + 𝐵
󸀠
𝜙 (−1)) ,

𝐹 (𝜇, 𝑢
𝑡
) = (𝜏

1∗
+ 𝜇) (𝐹

1
, 𝐹
2
)
𝑇

(45)

with

𝜙 (𝜃) = (𝜙
1
(𝜃) , 𝜙

2
(𝜃))
𝑇

∈ 𝐶 ([−1, 0] , 𝑅
2
) ,

𝐴
󸀠
= (

𝑎
11

𝑎
12

0 0
) , 𝐵

󸀠
= (

𝑏
11

0

0 0
) ,

𝐶
󸀠
= (

0 0

𝑐
21

𝑐
22

) ,

𝐹
1
= 𝑎
13
𝜙
2

1
(0) + 𝑎

14
𝜙
1
(0) 𝜙
2
(0) + 𝑎

15
𝜙
1
(0) 𝜙
1
(−1)

+ 𝑎
16
𝜙
2

1
(0) 𝜙
2
(0) + 𝑎

17
𝜙
3

1
(0) + ⋅ ⋅ ⋅

𝐹
2
= 𝑐
23
𝜙
2

1
(−

𝜏
2∗

𝜏
1∗

) + 𝑐
24
𝜙
1
(−

𝜏
2∗

𝜏
1∗

)𝜙
2
(0)

+ 𝑐
25
𝜙
2
(−

𝜏
2∗

𝜏
1∗

)𝜙
2
(0) + 𝑐

26
𝜙
1
(−

𝜏
2∗

𝜏
1∗

)𝜙
2
(−

𝜏
2∗

𝜏
1∗

)

+ 𝑐
27
𝜙
3

1
(−

𝜏
2∗

𝜏
1∗

) + 𝑐
28
𝜙
2

1
(−

𝜏
2∗

𝜏
1∗

)𝜙
2
(0)

+ 𝑐
29
𝜙
2

1
(−

𝜏
2∗

𝜏
1∗

)𝜙
2
(−

𝜏
2∗

𝜏
1∗

)

+ 𝑐
210

𝜙
1
(−

𝜏
2∗

𝜏
1∗

)𝜙
2
(−

𝜏
2∗

𝜏
1∗

)𝜙
2
(0) + ⋅ ⋅ ⋅ .

(46)
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By the Riesz representation theorem, there is a 2 × 2 matrix
function with bounded variation components 𝜂(𝜃, 𝜇), 𝜃 ∈

[−1, 0] such that

𝐿
𝜇
𝜙 = ∫

0

−1

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜙 ∈ 𝐶. (47)

In fact, we have chosen

𝜂 (𝜃, 𝜇) =

{{{{{{{{{{

{{{{{{{{{{

{

(𝜏
1∗

+ 𝜇) (𝐴
󸀠
+ 𝐵
󸀠
+ 𝐶
󸀠
) , 𝜃 = 0,

(𝜏
1∗

+ 𝜇) (𝐵
󸀠
+ 𝐶
󸀠
) , 𝜃 ∈ [−

𝜏
2∗

𝜏
1∗

, 0) ,

(𝜏
1∗

+ 𝜇) 𝐵
󸀠
, 𝜃 ∈ (−1, −

𝜏
2∗

𝜏
1∗

) ,

0, 𝜃 = −1.

(48)

For 𝜙 ∈ 𝐶([−1, 0]), 𝑅
2, we define

𝐴 (𝜇) 𝜙 =

{{{{

{{{{

{

𝑑𝜙 (𝜃)

𝑑𝜃
, −1 ≤ 𝜃 < 0,

∫

0

−1

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 = {
0, −1 ≤ 𝜃 < 0,

𝐹 (𝜇, 𝜙) , 𝜃 = 0.

(49)

Then system (43) is equivalent to the following operator equa-
tion:

𝑢̇ (𝑡) = 𝐴 (𝜇) 𝑢
𝑡
+ 𝑅 (𝜇) 𝑢

𝑡
, (50)

where 𝑢
𝑡
= 𝑢(𝑡 + 𝜃) for 𝜃 ∈ [−1, 0].

For 𝜑 ∈ 𝐶([−1, 0]), (𝑅
2
)
∗, we define the adjoint operator

𝐴
∗ of 𝐴 as

𝐴
∗
(𝜇) 𝑠 =

{{{{

{{{{

{

−
𝑑𝜑 (𝑠)

𝑑𝑠
, 0 < 𝑠 ≤ 1,

∫

0

−1

𝑑𝜂
𝑇
(𝑠, 𝜇) 𝜑 (−𝑠) , 𝑠 = 0,

(51)

and a bilinear inner product

⟨𝜑, 𝜙⟩ = 𝜑 (0) 𝜙 (0) − ∫

0

𝜃=−1

∫

𝜃

𝜉=0

𝜑 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉,

(52)

where 𝜂(𝜃) = 𝜂(𝜃, 0).
Then,𝐴(0) and𝐴

∗
(0) are adjoint operators. From the dis-

cussion above, we can know that ±𝑖𝜔
1∗
𝜏
1∗

are the eigenvalues
of 𝐴(0) and they are also eigenvalues of 𝐴∗(0).

Let 𝑞(𝜃) = (1, 𝑞
2
)
𝑇
𝑒
𝑖𝜔
1∗
𝜏
1∗
𝜃 be the eigenvector of 𝐴(0)

corresponding to 𝑖𝜔
1∗
𝜏
1∗
, and 𝑞

∗
(𝜃) =𝐷(1, 𝑞

∗

2
)𝑒
𝑖𝜔
1∗
𝜏
1∗
𝑠 be the

eigenvector of 𝐴
∗
(0) corresponding to −𝑖𝜔

1∗
𝜏
1∗
. Then we

have

𝐴 (0) 𝑞 (𝜃) = 𝑖𝜔
1∗
𝜏
1∗
𝑞 (𝜃) ,

𝐴
∗
(0) 𝑞
∗
(𝜃) = −𝑖𝜔

1∗
𝜏
1∗
𝑞
∗
(𝜃) .

(53)

By a simple computation, we can get

𝑞
2
=

𝑖𝜔
1∗

− 𝑎
11

− 𝑏
11
𝑒
−𝑖𝜔
1∗
𝜏
1∗

𝑎
12

,

𝑞
∗

2
=

𝑖𝜔
1∗

− 𝑎
11

− 𝑏
11
𝑒
𝑖𝜔
1∗
𝜏
1∗

𝑐
21
𝑒𝑖𝜔1∗𝜏2∗

𝐷 = [1 + 𝑞
2
𝑞
∗

2
+ 𝑏
11
𝜏
1∗
𝑒
−𝑖𝜔
1∗
𝜏
1∗

+𝑞
∗

2
(𝑐
21

+ 𝑐
22
𝑞
2
) 𝜏
2∗
𝑒
−𝑖𝜔
1∗
𝜏
2∗]
−1

.

(54)

Then,

⟨𝑞
∗
, 𝑞⟩ = 1, ⟨𝑞

∗
, 𝑞⟩ = 0. (55)

Following the algorithms explained in the work of Has-
sard et al. [22] and using a computation process similar to
that in [18], we can get the following coefficients which can
determine the properties of Hopf bifurcation:

𝑔
20

= 2𝜏
1∗
𝐷[𝑎
13

+ 𝑎
14
𝑞
(2)

(0) + 𝑎
15
𝑞
(1)

(−1)

+ 𝑞
∗

2
(𝑐
23
(𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

))

2

+ 𝑐
24
𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

)

× 𝑞
(2)

(0) + 𝑐
25
𝑞
(2)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(0)

+ 𝑐
26
𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(−
𝜏
2∗

𝜏
1∗

))] ,

𝑔
11

= 𝜏
1∗
𝐷[2𝑎

13
+ 𝑎
14

(𝑞
(2)

(0) + 𝑞
(2)

(0))

+ 𝑎
15

(𝑞
(1)

(−1) + 𝑞
(1)

(−1))

+ 𝑞
∗

2
(2𝑐
23
𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

)

+ 𝑐
24

(𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(0)

+ 𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(0))

+ 𝑐
25

(𝑞
(2)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(0)

+ 𝑞
(2)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(0))

+ 𝑐
26

(𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(−
𝜏
2∗

𝜏
1∗

)

+ 𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(−
𝜏
2∗

𝜏
1∗

)))] ,
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Figure 1: 𝐸∗ is asymptotically stable for 𝜏
1
= 0.350 < 𝜏

10
= 0.3788.

0 50 100
2.5

3

3.5

4

4.5

5

5.5

x
1
(
t
)

Time t

(a)

0 50 100
5.5

6

6.5

7

7.5

8

8.5

9

9.5

x
2
(
t
)

Time t

(b)

2 4 6
5.5

6

6.5

7

7.5

8

8.5

9

9.5

x
2
(
t
)

x1(t)

(c)

Figure 2: 𝐸∗ is unstable for 𝜏
1
= 0.395 > 𝜏

10
= 0.3788.
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Figure 3: 𝐸∗ is asymptotically stable for 𝜏
2
= 0.450 < 𝜏

20
= 0.4912.
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Figure 4: 𝐸∗ is unstable for 𝜏
2
= 0.505 > 𝜏

20
= 0.4912.
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Figure 5: 𝐸∗ is asymptotically stable for 𝜏 = 0.320 < 𝜏
0
= 0.3361.
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Figure 6: 𝐸∗ is unstable for 𝜏 = 0.355 > 𝜏
0
= 0.3361.



10 Abstract and Applied Analysis

0 50 100
3

3.5

4

4.5
x
1
(
t
)

Time t

(a)

0 50 100
5.5

6

6.5

7

7.5

8

8.5

9

9.5

x
2
(
t
)

Time t

(b)

3 3.5 4 4.5
5.5

6

6.5

7

7.5

8

8.5

9

9.5

x
2
(
t
)

x1(t)

(c)

Figure 7: 𝐸∗ is asymptotically stable for 𝜏
1
= 0.325 < 𝜏

1∗
= 0.3490 at 𝜏

2
= 0.3.
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Figure 8: 𝐸∗ is unstable for 𝜏
1
= 0.360 > 𝜏

1∗
= 0.3490 at 𝜏

2
= 0.3.



Abstract and Applied Analysis 11

𝑔
02

= 2𝜏
1∗
𝐷[𝑎
13

+ 𝑎
14
𝑞
(2)

(0) + 𝑎
15
𝑞
(1)

(−1)

+ 𝑞
∗

2
(𝑐
23
(𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

))

2

+ 𝑐
24
𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

)𝑞
(2)

(0)

+ 𝑐
25
𝑞
(2)

(−
𝜏
2∗

𝜏
1∗

)𝑞
(2)

(0)

+𝑐
26
𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(−
𝜏
2∗

𝜏
1∗

))] ,

𝑔
21

= 2𝜏
1∗
𝐷[𝑎
13

(𝑊
(1)

11
(0) + 𝑊

(1)

20
(0))

+ 𝑎
14

(𝑊
(1)

11
(0) 𝑞
(2)

(0) +
1

2
𝑊
(1)

20
(0) 𝑞
(2)

(0)

+ 𝑊
(2)

11
(0) +

1

2
𝑊
(2)

20
(0))

+ 𝑎
15

(𝑊
(1)

11
(0) 𝑞
(1)

(−1) +
1

2
𝑊
(1)

20
(0) 𝑞
(1)

(−1)

+ 𝑊
(1)

11
(−1) +

1

2
𝑊
(1)

20
(−1))

+ 𝑎
16

(𝑞
(2)

(0) + 2𝑞
(2)

(0)) + 3𝑎
17
𝑞
(1)

(0)

+ 𝑞
∗

2
(𝑐
23

(2𝑊
(1)

11
(−

𝜏
2∗

𝜏
1∗

) 𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

)

+𝑊
(1)

20
(−

𝜏
2∗

𝜏
1∗

) 𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

))

+ 𝑐
24

(𝑊
(1)

11
(−

𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(0)

+
1

2
𝑊
(1)

20
(−

𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(0)

+ 𝑊
(2)

11
(0) 𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

)

+
1

2
𝑊
(2)

20
(0) 𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

))

+ 𝑐
25

(𝑊
(2)

11
(−

𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(0)

+
1

2
𝑊
(2)

20
(−

𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(0)

+ 𝑊
(2)

11
(0) 𝑞
(2)

(−
𝜏
2∗

𝜏
1∗

)

+
1

2
𝑊
(2)

20
(0) 𝑞
(2)

(−
𝜏
2∗

𝜏
1∗

))

+ 𝑐
26

(𝑊
(1)

11
(−

𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(−
𝜏
2∗

𝜏
1∗

)

+
1

2
𝑊
(1)

20
(−

𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(−
𝜏
2∗

𝜏
1∗

)

+ 𝑊
(2)

11
(−

𝜏
2∗

𝜏
1∗

) 𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

)

+
1

2
𝑊
(2)

20
(−

𝜏
2∗

𝜏
1∗

) 𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

))

+ 3𝑐
27
(𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

))

2

𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

)

+ 𝑐
28

((𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

))

2

𝑞
(2)

(0)

+2𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(0) 𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

))

+ 𝑐
29

((𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

))

2

𝑞
(2)

(−
𝜏
2∗

𝜏
1∗

)+ 2𝑞
(1)

×(−
𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

))

+𝑐
210

(𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(0)

+ 𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(−
𝜏
2∗

𝜏
1∗

)

× 𝑞
(2)

(0) + 𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

)

× 𝑞
(2)

(−
𝜏
2∗

𝜏
1∗

)𝑞
(2)

(0)))] ,

(56)

with

𝑊
20

(𝜃) =
𝑖𝑔
20
𝑞 (0)

𝜔
1∗
𝜏
1∗

𝑒
𝑖𝜔
1∗
𝜏
1∗
𝜃
+

𝑖𝑔
02
𝑞 (0)

3𝜔
1∗
𝜏
1∗

𝑒
−𝑖𝜔
1∗
𝜏
1∗
𝜃

+ 𝐸
1
𝑒
2𝑖𝜔
1∗
𝜏
1∗
𝜃
,

𝑊
11

(𝜃) = −
𝑖𝑔
11
𝑞 (0)

𝜔
1∗
𝜏
1∗

𝑒
𝑖𝜔
1∗
𝜏
1∗
𝜃
+

𝑖𝑔
11
𝑞 (0)

𝜔
1∗
𝜏
1∗

𝑒
−𝑖𝜔
1∗
𝜏
1∗
𝜃
+ 𝐸
2
,

(57)

where 𝐸
1
and 𝐸

2
can be determined by the following equa-

tions, respectively:

(
2𝑖𝜔
1∗

− 𝑎
11

− 𝑏
11
𝑒
−2𝑖𝜔
1∗𝜏1∗ −𝑎

12

−𝑐
21
𝑒
−2𝑖𝜔
1∗
𝜏
2∗ 2𝑖𝜔

1∗
− 𝑐
33
𝑒
−2𝑖𝜔
1∗
𝜏
2∗

)𝐸
1

= 2(

𝐸
(1)

1

𝐸
(2)

1

) ,

(
𝑎
11

+ 𝑏
11

𝑎
12

𝑐
21

𝑐
22

)𝐸
2
= −(

𝐸
(1)

2

𝐸
(2)

2

) ,

(58)
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with

𝐸
(1)

1
= 𝑎
13

+ 𝑎
14
𝑞
(2)

(0) + 𝑎
15
𝑞
(1)

(−1) ,

𝐸
(1)

1
= 𝑐
23
(𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

))

2

+ 𝑐
24
𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(0)

+ 𝑐
25
𝑞
(2)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(0)

+ 𝑐
26
𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(−
𝜏
2∗

𝜏
1∗

) ,

𝐸
(1)

2
= 2𝑎
13

+ 𝑎
14

(𝑞
(2)

(0) + 𝑞
(2)

(0))

+ 𝑎
15

(𝑞
(1)

(−1) + 𝑞
(1)

(−1)) ,

𝐸
(2)

2
= 2𝑐
23
𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

)

+ 𝑐
24

(𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(0) + 𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(0))

+ 𝑐
25

(𝑞
(2)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(0) + 𝑞
(2)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(0))

+ 𝑐
26

(𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(−
𝜏
2∗

𝜏
1∗

)

+𝑞
(1)

(−
𝜏
2∗

𝜏
1∗

) 𝑞
(2)

(−
𝜏
2∗

𝜏
1∗

)) .

(59)

Then, we can get the following coefficients:

𝐶
1
(0) =

𝑖

2𝜔
1∗
𝜏
1∗

(𝑔
11
𝑔
20

− 2
󵄨󵄨󵄨󵄨𝑔11

󵄨󵄨󵄨󵄨
2

−

󵄨󵄨󵄨󵄨𝑔02
󵄨󵄨󵄨󵄨
2

3
) +

𝑔
21

2
,

𝜇
2
= −

Re {𝐶
1
(0)}

Re {𝜆󸀠 (𝜏
1∗
)}

,

𝛽
2
= 2Re {𝐶

1
(0)} ,

𝑇
2
= −

Im {𝐶
1
(0)} + 𝜇

2
Im {𝜆

󸀠
(𝜏
1∗
)}

𝜔
1∗
𝜏
1∗

.

(60)

In conclusion, we have the following results.

Theorem 5. If 𝜇
2

> 0 (𝜇
2

< 0), then the Hopf bifurcation
is supercritical (subcritical); if 𝛽

2
< 0 (𝛽

2
> 0), then the

bifurcating periodic solutions are stable (unstable); if 𝑇
2

> 0

(𝑇
2
< 0), then the period of the bifurcating periodic solutions

increases (decreases).

4. Numerical Simulation and Discussions

To demonstrate the algorithm for determining the existence
of Hopf bifurcation in Section 2 and the properties of Hopf

bifurcation in Section 3, we give an example of system (3) in
the following form:

𝑑𝑥
1
(𝑡)

𝑑𝑡
= 𝑥
1
(𝑡) [4 − 𝑥

1
(𝑡 − 𝜏
1
) −

0.5𝑥
2
(𝑡)

4 + 𝑥
1
(𝑡) + 𝑥2

1
(𝑡)

] ,

𝑑𝑥
2
(𝑡)

𝑑𝑡
= 𝑥
2
(𝑡) [3 −

1.5𝑥
2
(𝑡 − 𝜏
2
)

𝑥
1
(𝑡 − 𝜏
2
)

] ,

(61)

which has a positive equilibrium 𝐸
∗
(3.8298, 7.6596). By

calculation, we have𝐴+𝐵+𝐶 = 6.5788,𝐷+𝐸 = 11.2470, and
𝐷 − 𝐸 = −11.7318. Namely, conditions (𝐻

1
) and (𝐻

2
) hold.

For 𝜏
1

> 0, 𝜏
2

= 0. We can get 𝜔
10

= 3.9074,
𝜏
10

= 0.3788. By Theorem 1, we know that when 𝜏
1

∈

[0, 𝜏
10
), the positive equilibrium 𝐸

∗
(3.8298, 7.6596) is locally

asymptotically stable and is unstable if 𝜏
1

> 𝜏
10
. As

can be seen from Figure 1, when we let 𝜏
1

= 0.35 ∈

[0, 𝜏
10
), the positive equilibrium 𝐸

∗
(3.8298, 7.6596) is locally

asymptotically stable. However, when 𝜏
1

= 0.395 > 𝜏
10
,

the positive equilibrium 𝐸
∗
(3.8298, 7.6596) is unstable and

a Hopf bifurcation occurs and a family of periodic solutions
bifurcate from the positive equilibrium 𝐸

∗
(3.8298, 7.6596),

which can be illustrated by Figure 2. Similarly, we can get
𝜔
20

= 3.0827, 𝜏
20

= 0.4912. The corresponding waveform
and the phase plots are shown in Figures 3 and 4.

For 𝜏
1

= 𝜏
2

= 𝜏 > 0. We can obtain 𝜔
0

=

3.4601, 𝜏
0

= 0.3361. By Theorem 3, we know that when
the time delay 𝜏 increases from zero to the critical value
𝜏
0

= 0.3361, the positive equilibrium 𝐸
∗
(3.8298, 7.6596) is

locally asymptotically stable. It will lose its stability and a
Hopf bifurcation occurs once 𝜏 > 𝜏

0
= 0.3361. This property

can be illustrated by Figures 5 and 6.
Finally, consider 𝜏

1
as a parameter and let 𝜏

2
= 0.3 ∈

(0, 𝜏
20
). We can get 𝜔

1∗
= 2.3761, 𝜏

1∗
= 0.3490, 𝜆󸀠(𝜏

1∗
) =

8.2230 + 2.6054𝑖. From Theorem 4, the positive equilibrium
𝐸
∗
(3.8298, 7.6596) is locally asymptotically stable for 𝜏

1
∈

[0, 0.3490) and unstable when 𝜏
1
> 𝜏
1∗

= 0.3490, which can
be seen from Figures 7 and 8.

In addition, from (60), we can get 𝐶
1
(0) = −41.5020 −

17.8366𝑖. Furthermore, we have 𝜇
2

= 5.0471 > 0, 𝛽
2

=

−83.0040 < 0, 𝑇
2
= 5.6519 > 0. Therefore, from Theorem 5,

we know that the Hopf bifurcation is supercritical. The
bifurcating periodic solutions are stable and increase. If the
bifurcating periodic solutions are stable, then the prey and the
predator may coexist in an oscillatory mode. Therefore, the
two species in system (3) may coexist in an oscillatory mode
under certain conditions.
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