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A novel family of numerical integration of closed Newton-Cotes quadrature rules is presented which uses the derivative value at
the midpoint. It is proved that these kinds of quadrature rules obtain an increase of two orders of precision over the classical closed
Newton-Cotes formula, and the error terms are given. The computational cost for these methods is analyzed from the numerical
point of view, and it has shown that the proposed formulas are superior computationally to the same order closed Newton-Cotes
formula when they reduce the error below the same level. Finally, some numerical examples show the numerical superiority of the
proposed approach with respect to closed Newton-Cotes formulas.

1. Introduction

Definite integration is one of the most important and basic
concepts in mathematics. It has numerous applications in
fields such as physics and engineering. In several practical
problems, we need to calculate integrals. As is known to all,
as for 𝐼 = ∫

𝑏

𝑎
𝑓(𝑥)𝑑𝑥, once the primitive function 𝐹(𝑥) of

integrand 𝑓(𝑥) is known, the definite integral of 𝑓(𝑥) over
the interval [𝑎, 𝑏] is given by Newton-Leibniz formula, that
is,

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = 𝐹 (𝑏) − 𝐹 (𝑎) . (1)

However, the explicit primitive function 𝐹(𝑥) is not
available or its primitive function is not easy to obtain, such
as 𝑒±𝑥

2

, sin𝑥2, and sin𝑥/𝑥. Moreover, some of the integrand
𝑓(𝑥) is only available at certain points 𝑥𝑖, 𝑖 = 0, 1, . . . , 𝑛.
It is often the case that the values of 𝑓(𝑥𝑖) come from
experimental data, such as sampling [1]. But the need often
arises for calculating the definite integral. And how to get
high-precision numerical integration formulas becomes one
of the challenges in fields of mathematics [2].

The methods of quadrature are usually based on the
interpolation polynomials and can bewritten in the following
form:

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 ≈

𝑛

∑

𝑖=0

𝑤𝑖𝑓 (𝑥𝑖) , (2)

where there are 𝑛 + 1 distinct integration points at
𝑥0, 𝑥1, . . . , 𝑥𝑛 within the interval [𝑎, 𝑏] and 𝑛 + 1 weights
𝑤𝑖, 𝑖 = 0, 1, . . . , 𝑛. If the integration points are uniformly
distributed over the interval, so 𝑥𝑖 = 𝑥0 + 𝑖ℎ in which ℎ =

(𝑏 − 𝑎)/𝑛.
These 𝑤𝑖 can be derived in several different ways [3–

5]. One method is to interpolate 𝑓(𝑥) at the 𝑛 + 1 points
𝑥0, 𝑥1, . . . , 𝑥𝑛, using the Lagrange polynomials and then
integrating the foresaid polynomials to obtain (2).

The other method is based on the precision of a quadra-
ture formula. Select the 𝑤𝑖, 𝑖 = 0, 1, . . . , 𝑛, so that the error

𝑅𝑛 (𝑓) = ∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 −

𝑛

∑

𝑖=0

𝑤𝑖𝑓 (𝑥𝑖) , (3)

is exactly zero for 𝑓(𝑥) = 𝑥
𝑗, 𝑗 = 0, 1, . . . , 𝑛. Using

the method of undetermined coefficients, this approach
generates a system of 𝑛 + 1 linear equations for weights 𝑤𝑖.
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Since themonomials 1, 𝑥, . . . , 𝑥𝑛 are linearly independent, the
linear system of equations has a unique solution.

The Newton-Cotes formulas are the most well-known
numerical integration rules of this type. There are several
subclasses of Newton-Cotes formulas that depend on the
integer value of 𝑛. We list some of them as follows.

Trapezoidal rule (𝑛 = 1)

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 =
𝑏 − 𝑎

2
(𝑓 (𝑎) + 𝑓 (𝑏)) −

(𝑏 − 𝑎)
3

12
𝑓

(𝜉) , (4)

where 𝜉 ∈ (𝑎, 𝑏).

Simpson’s rule (𝑛 = 2)

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 =
𝑏 − 𝑎

6
[𝑓 (𝑎) + 4𝑓(

𝑎 + 𝑏

2
) + 𝑓 (𝑏)]

−
(𝑏 − 𝑎)

5

2880
𝑓
(4)
(𝜉) ,

(5)

where 𝜉 ∈ (𝑎, 𝑏).

Simpson’s 3/8 rule (𝑛 = 3)

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥

=
(𝑏 − 𝑎)

8
[𝑓 (𝑎) + 3𝑓(

2𝑎 + 𝑏

3
) + 3𝑓(

𝑎 + 2𝑏

3
) + 𝑓 (𝑏)]

−
(𝑏 − 𝑎)

5

6480
𝑓
(4)
(𝜉) ,

(6)

where 𝜉 ∈ (𝑎, 𝑏).

Bool’s rule (𝑛 = 4)

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 =
(𝑏 − 𝑎)

90
[7𝑓 (𝑎) + 32𝑓(

3𝑎 + 𝑏

4
)

+ 12𝑓(
𝑎 + 𝑏

2
) + 32𝑓(

𝑎 + 3𝑏

4
)

+7𝑓 (𝑏) ] −
(𝑏 − 𝑎)

7

1935360
𝑓
(6)
(𝜉) ,

(7)

where 𝜉 ∈ (𝑎, 𝑏).
Note that when 𝑛 is an even integer, the degree of

precision is 𝑛 + 1. When 𝑛 is odd, the degree of precision is
only 𝑛 [1, 2].

In spite of the many accurate and efficient methods
for numerical integration being available in [3–5], recently
Dehghan et al. [6] improved the precision degree of closed

Newton-Cotes quadrature by including the location of
boundaries of the interval as two additional variables and
rescaling the original integral to fit the optimal boundary
locations. In their following work, they have applied this
method toGauss-Legendre quadrature [7], Gauss-Chebyshev
quadrature [8], and open Newton-Cotes quadrature [9].
These formulas increase the order of accuracy of standard
numerical integration by two orders. They use the method
of undermined coefficients to set up nonlinear equations for
parameters, which are solved approximately by using a com-
puter algebra system. Burg has proposed derivative-based
closed Newton-Cotes numerical quadrature [10], which uses
the function values on uniformly spaced intervals and 2
derivative values at the endpoints. The precision of the
method in [10] is higher than the standard closed Newton-
Cotes quadrature.

The motivation for this research lies in construction of
midpoint derivative-based closed Newton-Cotes numerical
quadrature rule for Newton-Cotes quadrature which uses the
derivative value at the midpoint only. These new schemes are
given in Section 2. In Section 3, the error terms are presented.
In Section 4, compared with the Newton-Cotes quadrature,
computational costs of these methods and run time on a
given processor are presented, where the minimum number
of subinterval to achieve the same level is calculated along
with the number of function and derivative evaluations. The
numerical experiments results are shown in Section 5. Finally,
conclusions are drawn in Section 6.

2. Midpoint Derivative-Based Closed Newton-
Cotes Quadrature

In this section, by adding the high derivative at the mid-
point, schemes with higher precision than the Newton-Cotes
quadrature rules are presented.

Theorem1. Midpoint derivative-based closedTrapezoidal rule
(𝑛 = 1) is

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 ≈ 𝑇 =
𝑏 − 𝑎

2
(𝑓 (𝑎) + 𝑓 (𝑏))

−
(𝑏 − 𝑎)

3

12
𝑓

(
𝑎 + 𝑏

2
) .

(8)

The precision of this method is 3.

Proof. Since theTrapezoidal rule has degree of precision 1, the
formula (8) at least has 1 precision degree. Now, we just need
to verify that the quadrature formula (8) is exact for 𝑓(𝑥) =
𝑥
2
, 𝑥
3.

When 𝑓(𝑥) = 𝑥
2, ∫𝑏
𝑎
𝑥
2
𝑑𝑥 = (1/3)(𝑏

3
− 𝑎
3
); 𝑇 = ((𝑏 −

𝑎)/2)(𝑎
2
+ 𝑏
2
) − 2(𝑏 − 𝑎)

3
/12 = (1/3)(𝑏

3
− 𝑎
3
).



Abstract and Applied Analysis 3

When 𝑓(𝑥) = 𝑥
3, ∫𝑏
𝑎
𝑥
3
𝑑𝑥 = (1/4)(𝑏

4
− 𝑎
4
);

𝑇 =
𝑏 − 𝑎

2
(𝑎
3
+ 𝑏
3
) −

6(𝑏 − 𝑎)
3

12

𝑎 + 𝑏

2

=
1

4
(𝑏
2
− 𝑎
2
) (2𝑏
2
+ 2𝑎
2
− 2𝑎𝑏 − 𝑏

2
− 𝑎
2
+ 2𝑎𝑏)

=
1

4
(𝑏
2
− 𝑎
2
) (𝑏
2
+ 𝑎
2
) =

1

4
(𝑏
4
− 𝑎
4
) .

(9)

So the precision of midpoint derivative-based closed Trape-
zoidal rule is 3.

Theorem 2. Midpoint derivative-based closed Simpson’s rule
(𝑛 = 2) is

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 ≈ 𝑆 =
𝑏 − 𝑎

6
[𝑓 (𝑎) + 4𝑓(

𝑎 + 𝑏

2
) + 𝑓 (𝑏)]

−
(𝑏 − 𝑎)

5

2880
𝑓
(4)
(
𝑎 + 𝑏

2
) .

(10)

The precision of this method is 5.

Proof. Since the Simpson’s rule has degree of precision 3, the
formula (10) at least has 3 precision degree. Now, we just need
to verify that the quadrature formula (10) is exact for 𝑓(𝑥) =
𝑥
4
, 𝑥
5.

When 𝑓(𝑥) = 𝑥
4, ∫𝑏
𝑎
𝑥
4
𝑑𝑥 = (1/5)(𝑏

5
− 𝑎
5
);

𝑆 =
𝑏 − 𝑎

6
[𝑎
4
+ 4(

𝑎 + 𝑏

2
)

4

+ 𝑏
4
] −

24(𝑏 − 𝑎)
5

2880

=
𝑏 − 𝑎

120
[20𝑎
4
+ 5(𝑎 + 𝑏)

4
+ 20𝑏
4
− (𝑏 − 𝑎)

4
]

=
1

5
(𝑏 − 𝑎) (𝑏

4
+ 𝑏
3
𝑎 + 𝑏
2
𝑎
2
+ 𝑏𝑎
3
+ 𝑎
4
)

=
1

5
(𝑏
5
− 𝑎
5
) .

(11)

When 𝑓(𝑥) = 𝑥
5, ∫𝑏
𝑎
𝑥
5
𝑑𝑥 = (1/6)(𝑏

6
− 𝑎
6
);

𝑆 =
𝑏 − 𝑎

6
[𝑎
5
+ 4(

𝑎 + 𝑏

2
)

5

+ 𝑏
5
]

−
60(𝑏 − 𝑎)

5
(𝑎 + 𝑏)

2880

=
𝑏 − 𝑎

48
[8𝑎
5
+ (𝑎 + 𝑏)

5
+ 8𝑏
5
− (𝑎 + 𝑏) (𝑏 − 𝑎)

4
]

=
1

6
(𝑏 − 𝑎) (𝑏

5
+ 𝑏
4
𝑎 + 𝑏
3
𝑎
2
+ 𝑏
2
𝑎
3
+ 𝑏𝑎
4
+ 𝑎
5
)

=
1

6
(𝑏
6
− 𝑎
6
) .

(12)

So the precision of midpoint derivative-based closed Simp-
son’s rule is 5.

Similarly, we obtain themidpoint derivative-based closed
Simpson’s 3/8 rule and Bool’s rule.

Theorem 3. Midpoint derivative-based closed Simpson’s 3/8
rule (𝑛 = 3) is

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 ≈ 𝑆3/8

=
(𝑏 − 𝑎)

8
[𝑓 (𝑎) + 3𝑓(

2𝑎 + 𝑏

3
) + 3𝑓(

𝑎 + 2𝑏

3
) + 𝑓 (𝑏)]

−
(𝑏 − 𝑎)

5

6480
𝑓
(4)
(
𝑎 + 𝑏

2
) .

(13)

The precision of this method is 5.

Proof. Since the Simpson’s 3/8 rule has degree of precision 3,
the formula (13) at least has 3 precision degree. Similarly, we
just need to verify that the quadrature formula (13) is exact
for 𝑓(𝑥) = 𝑥

4
, 𝑥
5.

When 𝑓(𝑥) = 𝑥
4, ∫𝑏
𝑎
𝑥
4
𝑑𝑥 = (1/5)(𝑏

5
− 𝑎
5
);

𝑆 =
𝑏 − 𝑎

8
[𝑎
4
+ 3(

2𝑎 + 𝑏

3
)

4

+ 3(
𝑎 + 2𝑏

3
)

4

+ 𝑏
4
]

−
24(𝑏 − 𝑎)

5

6480

=
𝑏 − 𝑎

216
[27𝑎
4
+ (2𝑎 + 𝑏)

4
+ (𝑎 + 2𝑏)

4
+ 27𝑏
4
]

−
(𝑏 − 𝑎)

5

270

=
𝑏 − 𝑎

1080
[135𝑎

4
+ 5(2𝑎 + 𝑏)

4
+ 5(𝑎 + 2𝑏)

4

+135𝑏
4
− 4(𝑏 − 𝑎)

4
]

=
216

1080
(𝑏 − 𝑎) (𝑏

4
+ 𝑏
3
𝑎 + 𝑏
2
𝑎
2
+ 𝑏𝑎
3
+ 𝑎
4
)

=
1

5
(𝑏
5
− 𝑎
5
) .

(14)
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When 𝑓(𝑥) = 𝑥
5, ∫𝑏
𝑎
𝑥
5
𝑑𝑥 = (1/6)(𝑏

6
− 𝑎
6
);

𝑆 =
𝑏 − 𝑎

8
[𝑎
4
+ 3(

2𝑎 + 𝑏

3
)

4

+ 3(
𝑎 + 2𝑏

3
)

4

+ 𝑏
4
]

−
60(𝑏 − 𝑎)

5
(𝑎 + 𝑏)

6480

=
𝑏 − 𝑎

216
[27𝑎
5
+ (2𝑎 + 𝑏)

4
+ (𝑎 + 2𝑏)

4
+ 27𝑏
5
]

−
(𝑏 − 𝑎)

5
(𝑎 + 𝑏)

108

=
𝑏 − 𝑎

216
[27𝑎
5
+ (2𝑎 + 𝑏)

4
+ (𝑎 + 2𝑏)

4
+ 27𝑏
5

−2 (𝑎 + 𝑏) (𝑏 − 𝑎)
4
]

=
36 (𝑏 − 𝑎)

216
(𝑏
5
+ 𝑏
4
𝑎 + 𝑏
3
𝑎
2
+ 𝑏
2
𝑎
3
+ 𝑏𝑎
4
+ 𝑎
5
)

=
1

6
(𝑏
6
− 𝑎
6
) .

(15)

Theorem 4. Midpoint derivative-based closed Bool’s rule (𝑛 =
4) is

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥

≈ 𝐵 =
(𝑏 − 𝑎)

90
[7𝑓 (𝑎) + 32𝑓(

3𝑎 + 𝑏

4
) + 12𝑓(

𝑎 + 𝑏

2
)

+32𝑓(
𝑎 + 3𝑏

4
) + 7𝑓 (𝑏)]

−
(𝑏 − 𝑎)

7

1935360
𝑓
(6)
(
𝑎 + 𝑏

2
) .

(16)

The precision of this method is 7.

Proof. Since the Bool’s rule has degree of precision 5, the
formula (16) at least has 5 precision degree. We just need to
verify that the quadrature formula (16) is exact for 𝑓(𝑥) =

𝑥
6
, 𝑥
7 in like manner.

When 𝑓(𝑥) = 𝑥
6, ∫𝑏
𝑎
𝑥
6
𝑑𝑥 = (1/7)(𝑏

7
− 𝑎
7
);

𝑆 =
𝑏 − 𝑎

90
[7𝑎
6
+ 32(

3𝑎 + 𝑏

4
)

6

+ 12(
𝑎 + 𝑏

2
)

6

+32(
𝑎 + 3𝑏

4
)

6

+ 7𝑏
6
] −

720(𝑏 − 𝑎)
7

1935360

=
𝑏 − 𝑎

11520
[896𝑎

6
+ (3𝑎 + 𝑏)

6
+ 24(𝑎 + 𝑏)

6

+(𝑎 + 3𝑏)
6
+ 896𝑏

6
] −

(𝑏 − 𝑎)
7

2688

=
𝑏 − 𝑎

80640
[6272𝑎

6
+ 7(3𝑎 + 𝑏)

6
+ 168(𝑎 + 𝑏)

6

+7(𝑎 + 3𝑏)
6
+ 6272𝑏

6
− 30(𝑏 − 𝑎)

6
]

=
11520

80640
(𝑏 − 𝑎)

× (𝑏
6
+ 𝑏
5
𝑎 + 𝑏
4
𝑎
2
+ 𝑏
3
𝑎
3
+ 𝑏
2
𝑎
4
+ 𝑏𝑎
5
+ 𝑎
6
)

=
1

7
(𝑏
7
− 𝑎
7
) .

(17)

When 𝑓(𝑥) = 𝑥
7, ∫𝑏
𝑎
𝑥
7
𝑑𝑥 = (1/8)(𝑏

8
− 𝑎
8
);

𝑆 =
𝑏 − 𝑎

90
[7𝑎
7
+ 32(

3𝑎 + 𝑏

4
)

7

+ 12(
𝑎 + 𝑏

2
)

7

+32(
𝑎 + 3𝑏

4
)

7

+ 7𝑏
7
] −

5040(𝑏 − 𝑎)
7
(𝑎 + 𝑏)

1935360

=
𝑏 − 𝑎

46080
[3584𝑎

7
+ (3𝑎 + 𝑏)

7
+ 48(𝑎 + 𝑏)

7

+(𝑎 + 3𝑏)
7
+ 3584𝑏

7
] −

(𝑏 − 𝑎)
7
(𝑎 + 𝑏)

768

=
𝑏 − 𝑎

46080
[3584𝑎

7
+ (3𝑎 + 𝑏)

7
+ 48(𝑎 + 𝑏)

7

+(𝑎 + 3𝑏)
7
+ 3584𝑏

7
− 60(𝑏 − 𝑎)

6
(𝑎 + 𝑏)]

=
5760 (𝑏 − 𝑎)

46080

× (𝑏
7
+ 𝑏
6
𝑎 + 𝑏
5
𝑎
2
+ 𝑏
4
𝑎
3
+ 𝑏
3
𝑎
4
+ 𝑏
2
𝑎
5
+ 𝑏𝑎
6
+ 𝑎
7
)

=
1

8
(𝑏
8
− 𝑎
8
) .

(18)

3. The Error Terms of Midpoint Derivative-
Based Closed Newton-Cotes Quadrature

In this section, the error terms of midpoint derivative-based
closed Newton-Cotes quadrature are given. The error term
can be given in mainly 3 different ways [5, 10]. Here, we use
the concept of precision to calculate the error term, where the
error term is related to the difference between the quadrature
formula for the monomial 𝑥𝑝+1/(𝑝 + 1)! and the exact value
(1/(𝑝 + 1)!) ∫

𝑏

𝑎
𝑥
𝑝+1

𝑑𝑥 = (𝑏
𝑝+2

− 𝑎
𝑝+2

)/(𝑝 + 2)!, where 𝑝 is
the precision of the quadrature formula.
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Theorem 5. Midpoint derivative-based closed Trapezoidal
rule (𝑛 = 1) with the error term is

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 =
𝑏 − 𝑎

2
(𝑓 (𝑎) + 𝑓 (𝑏)) −

(𝑏 − 𝑎)
3

12
𝑓

(
𝑎 + 𝑏

2
)

−
(𝑏 − 𝑎)

5

480
𝑓
(4)
(𝜉) ,

(19)

where 𝜉 ∈ (𝑎, 𝑏). Thus, this scheme is fifth order accurate
with the error term 𝑅1[𝑓] = −((𝑏 − 𝑎)

5
/480)𝑓

(4)
(𝜉), and the

associate composite method is fourth order.

Proof. Let𝑓(𝑥) = 𝑥
4
/4!. So (1/4!) ∫𝑏

𝑎
𝑥
4
𝑑𝑥 = (1/120)(𝑏

5
−𝑎
5
),

𝑏 − 𝑎

2
(𝑓 (𝑎) + 𝑓 (𝑏)) −

(𝑏 − 𝑎)
3

12
𝑓

(
𝑎 + 𝑏

2
)

=
𝑏 − 𝑎

2
(
𝑎
4

4!
+
𝑏
4

4!
) −

(𝑏 − 𝑎)
3

24
(
𝑎 + 𝑏

2
)

2

=
𝑏 − 𝑎

96
(𝑏
2
+ 𝑎
2
)
2

.

(20)

Therefore,

1

120
(𝑏
5
− 𝑎
5
) −

𝑏 − 𝑎

96
(𝑏
2
+ 𝑎
2
)
2

=
(𝑏 − 𝑎)

480
(−𝑏
4
+ 4𝑎𝑏

3
− 6𝑎
2
𝑏
2
+ 4𝑎
3
𝑏 − 𝑎
4
)

= −
(𝑏 − 𝑎)

480
(𝑏 − 𝑎)

4
= −

(𝑏 − 𝑎)
5

480
.

(21)

This implies that

𝑅1 [𝑓] = −
(𝑏 − 𝑎)

5

480
𝑓
(4)
(𝜉) . (22)

Theorem 6. Midpoint derivative-based closed Simpson’s rule
(𝑛 = 2) with the error term is

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 =
𝑏 − 𝑎

6
[𝑓 (𝑎) + 4𝑓(

𝑎 + 𝑏

2
) + 𝑓 (𝑏)]

−
(𝑏 − 𝑎)

5

2880
𝑓
(4)
(
𝑎 + 𝑏

2
)

−
(𝑏 − 𝑎)

7

241920
𝑓
(6)
(𝜉) ,

(23)

where 𝜉 ∈ (𝑎, 𝑏). Thus, this scheme is seventh order accurate
with the error term 𝑅2[𝑓] = −((𝑏 − 𝑎)

7
/241920)𝑓

(6)
(𝜉), and

the associate composite method is sixth order.

Proof. Let 𝑓(𝑥) = 𝑥
6
/6!. So (1/6!) ∫𝑏

𝑎
𝑥
6
𝑑𝑥 = (1/5040)(𝑏

7
−

𝑎
7
),

𝑏 − 𝑎

6
[𝑓 (𝑎) + 4𝑓(

𝑎 + 𝑏

2
) + 𝑓 (𝑏)] −

(𝑏 − 𝑎)
5

2880
𝑓
(4)
(
𝑎 + 𝑏

2
)

=
𝑏 − 𝑎

6
(
𝑎
6

6!
+ 4

(𝑎 + 𝑏)
6

26 ⋅ 6!
+
𝑏
6

6!
) −

(𝑏 − 𝑎)
5

5760
(
𝑎 + 𝑏

2
)

2

=
(𝑏 − 𝑎)

34560

× (7𝑏
6
+ 6𝑎𝑏

5
+ 9𝑎
2
𝑏
5
+ 4𝑎
3
𝑏
3
+ 9𝑎
4
𝑏
2
+ 6𝑎
5
𝑏 + 7𝑎

6
) .

(24)

Therefore,
1

5040
(𝑏
7
− 𝑎
7
) −

(𝑏 − 𝑎)

34560

× (7𝑏
6
+ 6𝑎𝑏

5
+ 9𝑎
2
𝑏
5
+ 4𝑎
3
𝑏
3
+ 9𝑎
4
𝑏
2
+ 6𝑎
5
𝑏 + 7𝑎

6
)

=
48 (𝑏 − 𝑎)

241920

× (𝑏
6
+ 𝑏
5
𝑎 + 𝑏
4
𝑎
2
+ 𝑏
3
𝑎
3
+ 𝑏
2
𝑎
4
+ 𝑏𝑎
5
+ 𝑎
6
)

−
7 (𝑏 − 𝑎)

241920

× (7𝑏
6
+ 6𝑎𝑏

5
+ 9𝑎
2
𝑏
5
+ 4𝑎
3
𝑏
3
+ 9𝑎
4
𝑏
2
+ 6𝑎
5
𝑏 + 7𝑎

6
)

=
(𝑏 − 𝑎)

241920

× (−𝑏
6
+ 6𝑏
5
𝑎 − 15𝑏

4
𝑎
2
+ 20𝑏
3
𝑎
3
− 15𝑏
2
𝑎
4
+ 6𝑏𝑎

5
− 𝑎
6
)

= −
(𝑏 − 𝑎)

7

241920
.

(25)

This implies that

𝑅2 [𝑓] = −
(𝑏 − 𝑎)

7

241920
𝑓
(6)
(𝜉) . (26)

Theorem 7. Midpoint derivative-based closed Simpson’s 3/8
rule (𝑛 = 3) with the error term is

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥

=
(𝑏 − 𝑎)

8
[𝑓 (𝑎) + 3𝑓(

2𝑎 + 𝑏

3
) + 3𝑓(

𝑎 + 2𝑏

3
) + 𝑓 (𝑏)]

−
(𝑏 − 𝑎)

5

6480
𝑓
(4)
(
𝑎 + 𝑏

2
) −

23(𝑏 − 𝑎)
7

9797760
𝑓
(6)
(𝜉) ,

(27)
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where 𝜉 ∈ (𝑎, 𝑏). It has a seventh order leading order error term
and is sixth order accurate in its composite form. And the error
term of this method is 𝑅3[𝑓] = −(23(𝑏 − 𝑎)

7
/9797760)𝑓

(6)
(𝜉).

Proof. Let 𝑓(𝑥) = 𝑥
6
/6!. So (1/6!) ∫𝑏

𝑎
𝑥
6
𝑑𝑥 = (1/5040)(𝑏

7
−

𝑎
7
),

𝑏 − 𝑎

8
[𝑓 (𝑎) + 3𝑓(

2𝑎 + 𝑏

3
) + 3𝑓(

𝑎 + 2𝑏

3
) + 𝑓 (𝑏)]

−
(𝑏 − 𝑎)

5

6480
𝑓
(4)
(
𝑎 + 𝑏

2
)

=
𝑏 − 𝑎

8
(
𝑎
6

6!
+ 3

(2𝑎 + 𝑏)
6

36 ⋅ 6!
+ 3

(𝑎 + 2𝑏)
6

36 ⋅ 6!
+
𝑏
6

6!
)

−
(𝑏 − 𝑎)

5

12960
(
𝑎 + 𝑏

2
)

2

=
(𝑏 − 𝑎)

9797760
(1967𝑏

6
+ 1806𝑎𝑏

5
+ 2289𝑎

2
𝑏
5

+ 1484𝑎
3
𝑏
3
+ 2289𝑎

4
𝑏
2

+1806𝑎
5
𝑏 + 1967𝑎

6
) .

(28)

Therefore,

1

5040
(𝑏
7
− 𝑎
7
) −

(𝑏 − 𝑎)

9797760

× (1967𝑏
6
+ 1806𝑎𝑏

5
+ 2289𝑎

2
𝑏
5
+ 1484𝑎

3
𝑏
3

+2289𝑎
4
𝑏
2
+ 1806𝑎

5
𝑏 + 1967𝑎

6
)

=
1944 (𝑏 − 𝑎)

9797760

× (𝑏
6
+ 𝑏
5
𝑎 + 𝑏
4
𝑎
2
+ 𝑏
3
𝑎
3
+ 𝑏
2
𝑎
4
+ 𝑏𝑎
5
+ 𝑎
6
)

−
(𝑏 − 𝑎)

9797760
(1967𝑏

6
+ 1806𝑎𝑏

5
+ 2289𝑎

2
𝑏
5
+ 1484𝑎

3
𝑏
3

+2289𝑎
4
𝑏
2
+ 1806𝑎

5
𝑏 + 1967𝑎

6
)

=
23 (𝑏 − 𝑎)

9797760
(−𝑏
6
+ 6𝑏
5
𝑎 − 15𝑏

4
𝑎
2
+ 20𝑏
3
𝑎
3

−15𝑏
2
𝑎
4
+ 6𝑏𝑎

5
− 𝑎
6
)

= −
23(𝑏 − 𝑎)

7

9797760
.

(29)

This implies that

𝑅3 [𝑓] = −
23(𝑏 − 𝑎)

7

9797760
𝑓
(6)
(𝜉) . (30)

Theorem 8. Midpoint derivative-based closed Bool’s rule (𝑛 =
4) with the error term is

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥

=
(𝑏 − 𝑎)

90
[7𝑓 (𝑎) + 32𝑓(

3𝑎 + 𝑏

4
) + 12𝑓(

𝑎 + 𝑏

2
)

+32𝑓(
𝑎 + 3𝑏

4
) + 7𝑓 (𝑏)]

−
(𝑏 − 𝑎)

7

1935360
𝑓
(6)
(
𝑎 + 𝑏

2
) −

17(𝑏 − 𝑎)
9

45 ⋅ 211 ⋅ 8!
𝑓
(8)
(𝜉) ,

(31)

where 𝜉 ∈ (𝑎, 𝑏). It has a ninth order leading order error term
and is eighth order accurate in its composite form. And the error
term of this method is𝑅4[𝑓] = −(17(𝑏−𝑎)

9
/45⋅2

11
⋅8!)𝑓
(8)
(𝜉).

Proof. Similarly, let 𝑓(𝑥) = 𝑥
8
/8!. So (1/8!) ∫

𝑏

𝑎
𝑥
8
𝑑𝑥 =

(1/362880)(𝑏
9
− 𝑎
9
),

(𝑏 − 𝑎)

90
[7𝑓 (𝑎) + 32𝑓(

3𝑎 + 𝑏

4
) + 12𝑓(

𝑎 + 𝑏

2
)

+32𝑓(
𝑎 + 3𝑏

4
) + 7𝑓 (𝑏)]

−
(𝑏 − 𝑎)

7

1935360
𝑓
(6)
(
𝑎 + 𝑏

2
)

=
𝑏 − 𝑎

90
(
7𝑎
8

8!
+ 32

(3𝑎 + 𝑏)
8

48 ⋅ 8!
+ 12

(𝑎 + 𝑏)
8

28 ⋅ 8!

+32
(𝑎 + 3𝑏)

8

48 ⋅ 8!
+
7𝑏
8

8!
)

−
(𝑏 − 𝑎)

7

3870720
(
𝑎 + 𝑏

2
)

2
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=
(𝑏 − 𝑎)

45 ⋅ 211 ⋅ 8!
(10257𝑏

8
+ 10104𝑎𝑏

7
+ 10716𝑎

2
𝑏
6

+ 9288𝑎
3
𝑏
5
+ 11430𝑎

4
𝑏
4
+ 9288𝑎

5
𝑏
3

+10716𝑎
6
𝑏
2
+ 10104𝑎

7
𝑏 + 10257𝑎

8
) .

(32)

Therefore,

1

362880
(𝑏
9
− 𝑎
9
) −

(𝑏 − 𝑎)

45 ⋅ 211 ⋅ 8!

× (10257𝑏
8
+ 10104𝑎𝑏

7
+ 10716𝑎

2
𝑏
6
+ 9288𝑎

3
𝑏
5

+ 11430𝑎
4
𝑏
4
+ 9288𝑎

5
𝑏
3
+ 10716𝑎

6
𝑏
2

+10104𝑎
7
𝑏 + 10257𝑎

8
)

=
10240 (𝑏 − 𝑎)

45 ⋅ 211 ⋅ 8!
(𝑏
8
+ 𝑏
7
𝑎 + 𝑏
6
𝑎
2
+ 𝑏
5
𝑎
3
+ 𝑏
4
𝑎
4

+𝑏
3
𝑎
5
+ 𝑏
2
𝑎
6
+ 𝑏𝑎
7
+ 𝑎
8
)

−
(𝑏 − 𝑎)

45 ⋅ 211 ⋅ 8!
(10257𝑏

8
+ 10104𝑎𝑏

7
+ 10716𝑎

2
𝑏
6

+ 9288𝑎
3
𝑏
5
+ 11430𝑎

4
𝑏
4
+ 9288𝑎

5
𝑏
3

+10716𝑎
6
𝑏
2
+ 10104𝑎

7
𝑏 + 10257𝑎

8
)

=
17 (𝑏 − 𝑎)

45 ⋅ 211 ⋅ 8!
(−𝑏
8
+ 8𝑏
7
𝑎 − 28𝑏

6
𝑎
2
+ 56𝑏
5
𝑎
3
− 70𝑏
4
𝑎
4

+56𝑏
3
𝑎
5
− 28𝑏
2
𝑎
6
+ 8𝑏𝑎

7
− 𝑎
6
)

= −
17(𝑏 − 𝑎)

9

45 ⋅ 211 ⋅ 8!
.

(33)

This implies that

𝑅4 [𝑓] = −
17(𝑏 − 𝑎)

9

45 ⋅ 211 ⋅ 8!
𝑓
(8)
(𝜉) . (34)

Precision, the orders and the error terms for midpoint
derivative-based closed Newton-Cotes quadrature are sum-
marized in Table 1.

4. Computational Efficiency in
Composite Form

In this section, in order to compare the computational
efficiency of the closed Newton-Cotes and the midpoint
derivative-based quadrature formula, the number of calcula-
tions required by each quadrature formula to obtain a certain

Table 1: Precision, the orders and the error terms for midpoint
derivative-based closed Newton-Cotes quadrature.

𝑛 Precision Order Error terms

Trapezoidal rule (𝑛 = 1) 3 5 −
(𝑏 − 𝑎)

5

480
𝑓
(4)
(𝜉)

Simpson’s rule (𝑛 = 2) 5 7 −
(𝑏 − 𝑎)

7

241920
𝑓
(6)
(𝜉)

Simpson’s 3/8 rule (𝑛 = 3) 5 7 −
23(𝑏 − 𝑎)

7

9797760
𝑓
(6)
(𝜉)

Bool’s rule (𝑛 = 4) 7 9 −
17(𝑏 − 𝑎)

9

45 ⋅ 211 ⋅ 8!
𝑓
(8)
(𝜉)

level of accuracy of 10−10 and 10
−5 is calculated for the

following integrals ∫1
0
(𝑑𝑥/(1 + 𝑥)) and ∫2

0
𝑒
𝑥
𝑑𝑥, respectively.

In Tables 2 and 3, the number of function and derivative
evaluations for the various quadrature formula presented for
∫
1

0
(𝑑𝑥/(1 + 𝑥)) and ∫

2

0
𝑒
𝑥
𝑑𝑥 are listed, respectively, using

Matlab 6.5.
Take ∫1

0
(𝑑𝑥/(1 + 𝑥)) as an example, for the composite

Trapezoidal rule, 25002 function evaluations are required,
and the computing time is 0.125 seconds; while for the
composite midpoint derivative Trapezoidal rule, 106 func-
tion evaluations and 105 second derivative evaluations are
required (total = 211), and the computing time is 0.031
seconds on the same processor. So the midpoint derivative
Trapezoidal rule is less time-consuming than Trapezoidal
rule when they obtain the same level of accuracy.

In order to compare the different methods with the same
computational cost, the numerical experiments between
Trapezoidal rule andMidpoint derivativeTrapezoidal rule are
performed. We choose the following two integrals ∫2

0
𝑒
𝑥
𝑑𝑥

and ∫1
0
(ln(1 + 𝑥)/(1 + 𝑥

2
))𝑑𝑥 as examples and compare the

CPU time for when they reach the same level of accuracy of
10
−3, 10−6, and 10

−9. The comparative experimental results
are shown in Tables 4 and 5.

5. Numerical Results

So far, we have proposed midpoint derivative-based closed
Newton-Cotes quadrature in Section 2 and demonstrate the
results that the proposed methods use fewer evaluations in
Section 4.

In this section, many numerical experiments are carried
out to determine whether the novel methods are of high
precision. In order to compare the precision of Newton-
Cotes quadrature and the midpoint derivative-based closed
Newton-Cotes quadrature, we calculate the following inte-
grals: ∫1

0
(4𝑑𝑥/(1 + 𝑥

2
)), ∫2
0
𝑒
𝑥
𝑑𝑥. The comparison results are

shown in Tables 6, 7, 8, 9, 10, 11, 12, and 13.
In Tables 6, 7, 8, 9, 10, 11, 12, and 13, the item Int. stands

for the number of composite intervals.
Let us define Error = |Exact value − Approximate value|.
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Table 2: Computational cost to estimate ∫1
0
(𝑑𝑥/(1 + 𝑥)).

Formula Order Subintervals Func. eval Mid. deriv Total
Trapezoidal rule 2 25001 25002 0 25002
Simpson’s rule 4 67 135 0 135
Simpson’s 3/8 rule 4 55 166 0 166
Bool’s rule 6 10 41 0 41
Mid. deriv. Trapezoidal rule 4 105 106 105 211
Mid. deriv. Simpson’s rule 6 14 29 14 43
Mid. deriv. Simpson’s 3/8 rule 6 12 37 12 49
Mid. deriv. Bool’s rule 8 5 21 5 26

Table 3: Computational cost to estimate ∫2
0
𝑒
𝑥
𝑑𝑥.

Formula Order Subintervals Func. eval Mid. deriv Total
Trapezoidal rule 2 462 463 0 463
Simpson’s rule 4 8 17 0 17
Simpson’s 3/8 rule 4 7 22 0 22
Bool’s rule 6 2 9 0 9
Mid. deriv. Trapezoidal rule 4 13 14 13 27
Mid. deriv. Simpson’s rule 6 3 7 3 10
Mid. deriv. Simpson’s 3/8 rule 6 3 10 3 13
Mid. deriv. Bool’s rule 8 1 5 1 6

Table 4: CPU time for ∫2
0
𝑒
𝑥
𝑑𝑥.

Level of accuracy Trapezoidal rule Midpoint derivative
Trapezoidal rule

10
−3 0.015 s 0 s

10
−6 0.016 s 0 s

10
−9 0.031 s 0.015 s

Table 5: CPU time for ∫1
0
(ln (1 + 𝑥)/(1 + 𝑥2))𝑑𝑥.

Level of accuracy Trapezoidal rule Midpoint derivative
Trapezoidal rule

10
−3 0.016 s 0.015 s

10
−6 0.016 s 0.015 s

10
−9 0.047 s 0.032 s

It can be seen from Tables 6–13 that midpoint derivative-
based closed Newton-Cotes quadrature formulas have a
much higher accuracy than classical closed Newton-Cotes
quadrature formulas.

6. Conclusion

We briefly summarize our main conclusions in this paper as
follows.

(1) A family of numerical integration formulas of closed
Newton-Cotes quadrature rules is presented, which
uses the derivative value at the midpoint.

(2) It is proved that these kinds of quadrature rules
obtain an increase of two orders of precision over the
classical closed Newton-Cotes formula, and the error
terms are given.

(3) The computational cost for these methods is analyzed
for several examples. And it has shown that the
proposed formulas are superior computationally to
the same order closed Newton-Cotes formulas when
they reduce the error below the same level.

(4) Finally, some numerical examples are given to show
the efficiency of the proposed approach.

Dehghan’s technique may be applied for midpoint
derivative-based closed Newton-Cotes quadrature and how
to accelerate the convergence of the quadrature formulas by
using Richardson extrapolation algorithmwill be achieved by
further research.
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Table 6: Exact value of ∫1
0
(4𝑑𝑥/(1 + 𝑥

2
)) = 𝜋 ≈ 3.1415926536.

Int. Trapezoidal rule Midpoint derivative Trapezoidal rule
Approximate value Error Approximate value Error

1 3 0.1415926536 3.0853333333 0.0562593203
2 3.1 0.0415926536 3.1414302104 0.0001624432
4 3.1311764706 0.0104161830 3.1415916562 0.0000009974

Table 7

Int. Simpson’s rule Midpoint derivative Simpson’s rule
Approximate value Error Approximate value Error

1 3.1333333333 0.0082593203 3.1463040000 0.0047113464
2 3.1415686275 0.0000240261 3.1416054730 0.0000128194
4 3.1415925024 0.0000001512 3.1415927140 0.0000000604

Table 8

Int. Simpson’s 3/8 rule Midpoint derivative Simpson’s 3/8 rule
Approximate value Error Approximate value Error

1 3.1384615385 0.0031311151 3.1442262792 0.0026336256
2 3.1415834498 0.0000092038 3.1415998256 0.0000071720
4 3.1415925939 0.0000000596 3.1415926879 0.0000000343

Table 9

Int. Bool’s rule Midpoint derivative Bool’s rule
Approximate value Error Approximate value Error

1 3.1421176471 0.0005249935 3.1414398566 0.0001527970
2 3.1415940941 0.0000014405 3.1415922411 0.0000004125
4 3.1415926611 0.0000000075 3.1415926536 0.0000000000

Table 10: Exact value of ∫2
0
𝑒
𝑥
𝑑𝑥 = 𝑒

2
− 1 ≈ 6.3890560989.

Int. Trapezoidal rule Midpoint derivative Trapezoidal rule
Approximate value Error Approximate value Error

1 8.3890560989 2.0000000000 6.5768682133 0.1878121144
2 6.9128098779 0.5237537790 6.4019423495 0.0128862506
4 6.5216101094 0.1325540105 6.3898812442 0.0008251453

Table 11

Int. Simpson’s rule Midpoint derivative Simpson’s rule
Approximate value Error Approximate value Error

1 6.4207278043 0.0316717054 6.3905246728 0.0014685739
2 6.3912101867 0.0021540878 6.3890815720 0.0000254731
4 6.3891937254 0.0001376265 6.3890565078 0.0000004089

Table 12

Int. Simpson’s 3/8 rule Midpoint derivative Simpson’s 3/8 rule
Approximate value Error Approximate value Error

1 6.4033154765 0.0142593776 6.3898918626 0.0008357637
2 6.3900166237 0.0009605248 6.3890705727 0.0000144738
4 6.3891173168 0.0000612179 6.3890563312 0.0000002323
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Table 13

Int. Bool’s rule Midpoint derivative Bool’s rule
Approximate value Error Approximate value Error

1 6.3892423455 0.0001862466 6.3890628650 0.0000067661
2 6.3890592947 0.0000031958 6.3890561271 0.0000000282
4 6.3890561500 0.0000000511 6.3890560990 0.0000000001
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