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We present an efficient method for solving linearly constrained convex programming. Our algorithmic framework employs an
implementable proximal step by a slight relaxation to the subproblem of proximal point algorithm (PPA). In particular, the stepsize
choice condition of our algorithm is weaker than some elegant PPA-type methods. This condition is flexible and effective. Self-
adaptive strategies are proposed to improve the convergence in practice. We theoretically show under mild conditions that our
method converges in a global sense. Finally, we discuss applications and perform numerical experiments which confirm the
efficiency of the proposed method. Comparisons of our method with some state-of-the-art algorithms are also provided.

1. Introduction

In this paper, we consider the following generic convex pro-
gramming:

min {𝜃 (𝑥) | 𝐴𝑥 = 𝑏 (or𝐴𝑥 ≥ 𝑏) , 𝑥 ∈ X} , (1)
where 𝜃(𝑥) : R𝑛 → R is a convex (not necessary smooth)
function,𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚, andX ⊂ R𝑛 is a closed convex
set. Problem (1) generalizes a wide range of problems that fre-
quently arise in signal and image processing and reconstruc-
tion, mechanics, statistics, operations research, and other
fields, for example, basis pursuit [1–4], nearest correlation
matrix [5–7], matrix completion problem [2, 3, 8–10], and so
forth. Before we begin, some assumptions should be pre-
sented for problem (1).

Assumption 1. The solution set of (1) is denoted byX∗, and it
is assumed to be nonempty.

Assumption 2. The objective function is simple. This means
that, for a given constant , the following proximal problem
admits a closed-form solution or can be solved efficientlywith
high precision:

min
𝑥∈X

𝜃 (𝑥) +


2
‖𝑥 − 𝑎‖

2

, (2)

where 𝑎 is any given vector. At first sight, this assumption
seems to be quite restrictive, but this is indeed for many
problems in practice. For example, nuclear norm function in
matrix completion problem, 𝑙

1
-norm function in basis pur-

suit problem, and so forth.

Many fundamental methods have been developed over
the past decades to solve problem (1). Proximal point algo-
rithm (PPA) is one of the leading approaches for solving
convex optimization problems. It is earlier used for reg-
ularized linear equations and has been applied to convex
optimization byMartinet [11].There are some significant the-
oretical achievements [12–19] in the field of PPA for convex
optimization and monotone variational inequalities (VIs).
Nowadays, it is still the object of intensive investigation [20]
and leads to a variety of primal and dual methods. Common
to PPA and its variants is the difficulty of their subproblems;
this restricts the practical interest. Augmented Lagrangian
method (ALM) [21] is a powerful method for linearly con-
strained problems. It can be regarded as a variant of PPA
applied to the dual problem of (1). However, with the addi-
tional regularized term ‖𝐴𝑥 − 𝑏‖

2, its subproblems require an
inverse operator of the form (𝐼+(1/𝑠)𝐴

𝑇

𝐴)
−1 which is hard to

implement in some cases. Particularly,𝐴𝑇𝐴 is general or large
scale, so the computation of inverse operator may fail. Hence,
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ALM is not sufficiently competitive when the objective func-
tion 𝜃(𝑥) is “simple.” Extragradient method (EGM) [22] is
a practical method for (1) which employs the information of
current iteration. In fact, EGM is an explicit type method and
requires two calls to the gradient per iteration; therefore, it
might suffer slow convergence. Recently, He and Yuan [23]
proposed a contraction method based on PPA (PPA-CM) to
solve (1), which is elegant and simple. Inspired by PPA-CM,
a Lagrangian PPA-based (LPPA) contraction method is pre-
sented in [24] which employs an asymmetrical proximal term
[25]. These two PPA-based methods have nice convergence
properties that are similar inmanyways to PPA, but they both
require a quite restrictive condition for convergence and are
sensitive to the initial choice of stepsizes.

In this paper, we focus on development of PPA-type
method for solving (1). Based on LPPA, we propose a general
self-adaptive relaxed-PPA method (SRPPA) which is simple
yet efficient. Our algorithm capitalizes certain features of
PPA, hence, we term it relaxed-PPA. The proposed algorithm
has several nice fronts. First, our method is a PPA-type
method with asymmetrical linear term, which is clearly a dif-
ferent nature to classical PPA. It relaxes the jointly structure of
subproblem to a tractable one. Second, we provide two simple
search directions for new iterate. Third, the stepsize choice
is flexible, and the condition for convergence guarantee is
weaker than both PPA-CM and LPPA. Finally, simple adap-
tive strategies are employed to choose stepsize, and this
appealing aspect is significantly important in practice. We
also demonstrate that our method is relevant for various
applications whose practical success is made possible by our
efficient algorithm.

This paper is organized as follows. In Section 2, we pro-
vide some notations and preliminaries which are useful for
subsequent analysis. In Section 3, we review some related
works. The general relaxed-PPA and its variant are formally
presented in Section 4. Self-adaptive strategies to choose
stepsize are also described. Next, in Section 5, the conver-
gence analysis is provided. In Section 6, we present some
concrete applications of (1) and elaborate on the implemen-
tation of our method; preliminary numerical results are also
reported to verify the efficiency of our proposed method.
Finally, in Section 7, we conclude the paper with a discussion
about the future research directions.

2. Preliminaries

In this section, we first establish some important notations
used throughout this paper.Then, we describe the variational
inequality formulation of (1) which is convenient for the con-
vergence analysis.

𝜕𝜃(𝑥) denotes the subdifferential set of the convex func-
tion 𝜃(𝑥):

𝜕𝜃 (𝑥) := {𝑑 ∈ R
𝑛

| 𝜃 (𝑦) − 𝜃 (𝑥) ≥ 𝑑
𝑇

(𝑦 − 𝑥) , ∀𝑦 ∈ R
𝑛

} ,

(3)

and 𝑑 ∈ 𝜕𝜃(𝑥) is called a subgradient of 𝜃(𝑥), see [26]. Let
𝑓(𝑥) ∈ 𝜕𝜃(𝑥) and 𝑓(𝑦) ∈ 𝜕𝜃(𝑦), by the convexity of the func-
tion 𝜃, we have

(𝑥 − 𝑦)
𝑇

(𝑓 (𝑥) − 𝑓 (𝑦)) ≥ 0, ∀𝑥, 𝑦 ∈ R
𝑛

, (4)

which indicates that the mapping 𝑓 is monotone.
Now, we show that (1) can be characterized by a vari-

ational inequality; see, for example, [27]. By attaching a
Lagrange multiplier vector 𝜆 ∈ Λ to the linear constraint
𝐴𝑥 = 𝑏 (or𝐴𝑥 ≥ 𝑏), the Lagrangian function of (1) is

𝐿 (𝑥, 𝜆) = 𝜃 (𝑥) − 𝜆
𝑇

(𝐴𝑥 − 𝑏) ; (5)

here,

Λ = {
R𝑚, for the equality constraints 𝐴𝑥 = 𝑏,
R𝑚
+
, for the inequality constraints 𝐴𝑥 ≥ 𝑏,

(6)

and 𝐿(𝑥, 𝜆) is defined on X × Λ. Then, by the optimality
condition, we can easily see that (1) amounts to finding a pair
of (𝑥∗, 𝜆∗) which satisfies

𝑥
∗

∈ X, (𝑥 − 𝑥
∗

)
𝑇

{𝑓 (𝑥
∗

) − 𝐴
𝑇

𝜆
∗

} ≥ 0, ∀𝑥 ∈ X,

𝜆
∗

∈ Λ, (𝜆 − 𝜆
∗

)
𝑇

(𝐴𝑥
∗

− 𝑏) ≥ 0, ∀𝜆 ∈ Λ,

(7)

where 𝑓(𝑥∗) ∈ 𝜕𝜃(𝑥∗). Denoting

𝑢 = (
𝑥

𝜆
) , 𝐹 (𝑢) = (

𝑓 (𝑥) − 𝐴
𝑇

𝜆

𝐴𝑥 − 𝑏
) , Ω = X × Λ,

(8)

the system (7) can be characterized by the following varia-
tional inequality denoted by VI(Ω, 𝐹):

𝑢
∗

∈ Ω, (𝑢 − 𝑢
∗

)
𝑇

𝐹 (𝑢
∗

) ≥ 0, ∀𝑢 ∈ Ω. (9)

Recalling the monotonicity of 𝑓, it is easy to get that VI(Ω, 𝐹)
(9) is monotone. Since the solution set of (1) is assumed to be
nonempty, the solution set of VI(Ω, 𝐹), denoted byΩ∗, is also
nonempty. Our analysis will be built upon this equivalent VI
formulation.

3. The Existing Related Methods

There are basically two lines of research for VI(Ω, 𝐹) (9),
either deal with it by implicit methods that are in general
computationally intractable or concentrate on relaxing it with
explicit methods. In this section, we first briefly review the
well-known classical PPA and EGM. And then, PPA-CM [23]
and LPPA [24] are discussed, which will provide motivation
for our general self-adaptive relaxed-PPA.

3.1. Classical PPA for the Equivalent Variational Inequality.
PPA and its variants are implicit methods which have fast
asymptotical convergence rate and produce highly accurate
solutions. At each iteration, the subproblem of classical PPA
consists of a regularized term, which can be expressed as
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follows: given any iterate 𝑢𝑘 = (𝑥𝑘, 𝜆𝑘), find �̃�𝑘 = (𝑥𝑘, �̃�𝑘) ∈ Ω
such that

�̃�
𝑘

∈ Ω, (𝑢 − �̃�
𝑘

)
𝑇

{𝐹 (�̃�
𝑘

) + 𝑟 (�̃�
𝑘

− 𝑢
𝑘

)} ≥ 0, ∀𝑢 ∈ Ω.

(10)

Then, the update step is taken as follows:

𝑢
𝑘+1

= 𝑢
𝑘

− 𝛾 (𝑢
𝑘

− �̃�
𝑘

) , 𝛾 ∈ (0, 2) . (11)

PPA has a nice convergence property


𝑢
𝑘+1

− 𝑢
∗


2

≤

𝑢
𝑘

− 𝑢
∗


2

− 𝛾 (2 − 𝛾)

𝑢
𝑘

− �̃�
𝑘


2

. (12)

Although classical PPA is conceptually appealing, subprob-
lem (10) presents certain computational challenges. More
specifically, primal variable 𝑥 and dual variable 𝜆 are tied
together, and their subproblems are treated as a joint problem.
In most cases, this joint subproblem may be as difficult as the
original problem (9). As a result, PPA is “conceptual” rather
than implementable. It lacks capability in exploiting potential
decomposable/specific structure of subproblem. Variants of
classical PPA have been explored in the literature, in order to
solve the proximal subproblem (10), inexactly, see, for exam-
ple, [14, 15, 17, 19]. Unfortunately, inexact variants take expen-
sive computation for obtaining approximative solutions.

3.2. The Methods Based on the Simplest Relaxation. To over-
come the drawbacks of the classical PPA, it is instinctive to
relax subproblem (10) to a solvable one.Themost straightfor-
ward and simplest relaxation is to replace 𝐹(�̃�𝑘)with 𝐹(𝑢𝑘) in
the proximal subproblem (10), which amounts to the follow-
ing subproblem:

�̃�
𝑘

∈ Ω, (𝑢 − �̃�
𝑘

)
𝑇

{𝐹 (𝑢
𝑘

) + 𝑟 (�̃�
𝑘

− 𝑢
𝑘

)} ≥ 0, ∀𝑢 ∈ Ω.

(13)

The solution of the relaxed problem (13) is given by �̃�𝑘 =
𝑃
Ω
[𝑢
𝑘

− (1/𝑟)𝐹(𝑢
𝑘

)]. It is clear that methods with such
relaxation are explicit type methods. However, �̃�𝑘 cannot be
accepted directly as the new iterate. Using the terminology
“predictor-corrector,” such point can be viewed as a predictor.
Here, we list two simple methods which employ predictor �̃�𝑘
to obtain corrector as the new iterate.

(i) The extragradient method (EGM) updates the new
iterate (corrector) by

𝑢
𝑘+1

= 𝑃
Ω
[𝑢
𝑘

−
1

𝑟
𝐹 (�̃�
𝑘

)] . (14)

(ii) The projection and contraction methods (PCM) [28–
30] perform update as follows:

𝑢
𝑘+1

= 𝑢
𝑘

− 𝛾𝛼
∗

𝑘
𝑑
𝑘 or 𝑢

𝑘+1

= 𝑃
Ω
[𝑢
𝑘

−
𝛾𝛼
∗

𝑘

𝑟
𝐹 (�̃�
𝑘

)] ,

(15)

where

𝑑
𝑘

= (𝑢
𝑘

− �̃�
𝑘

) −
1

𝑟
(𝐹 (𝑢
𝑘

) − 𝐹 (�̃�
𝑘

)) ,

𝛼
∗

𝑘
=
(𝑢
𝑘

− �̃�
𝑘

)
𝑇

𝑑
𝑘

𝑑
𝑘

2

.

(16)

The sequence {𝑢𝑘} generated by the above mentioned EGM
or PCM satisfies


𝑢
𝑘+1

− 𝑢
∗


2

≤

𝑢
𝑘

− 𝑢
∗


2

− 𝑐

𝑢
𝑘

− �̃�
𝑘


2

, 𝑐 > 0, (17)

which is similar to PPA. Both EGMandPCMuse the simplest
relaxation to obtain �̃�

𝑘 in 𝑘th iteration, hence are compu-
tationally practical. These methods have appealing practical
aspects; however, such simplest relaxation does not exploit
the inner structure of VI(Ω, 𝐹) (9).This observation prompts
the need for dedicated relaxations.

3.3. PPA-Type Contraction Method. The algorithms that are
closely related to ours are PPA-CM [23] and LPPA [24]. The
PPA-CM obtains the predictor �̃�𝑘 by solving the following
subproblem: find (𝑥𝑘, �̃�𝑘) ∈ Ω such that

�̃�
𝑘

∈ Ω, (𝑢 − �̃�
𝑘

)
𝑇

{𝐹 (�̃�
𝑘

) + 𝑆 (�̃�
𝑘

− 𝑢
𝑘

)} ≥ 0, ∀𝑢 ∈ Ω,

(18)

where

𝑆 = (
𝑟𝐼
𝑛
−𝐴
𝑇

−𝐴 𝑠𝐼
𝑚

) . (19)

And perform the update

𝑢
𝑘+1

= 𝑢
𝑘

− 𝛾 (𝑢
𝑘

− �̃�
𝑘

) , 𝛾 ∈ (0, 2) . (20)

The framework of LPPA is as follows:

�̃�
𝑘

∈ Ω, (𝑢 − �̃�
𝑘

)
𝑇

{𝐹 (�̃�
𝑘

) +𝑀(�̃�
𝑘

− 𝑢
𝑘

)} ≥ 0, ∀𝑢 ∈ Ω,

(21)

where

𝑀 = (
𝑟𝐼
𝑛
𝐴
𝑇

0 𝑠𝐼
𝑚

) . (22)

And the new iterate is defined by

𝑢
𝑘+1

= 𝑢
𝑘

− 𝛾𝛼𝑀(𝑢
𝑘

− �̃�
𝑘

) , 𝛾 ∈ (0, 2) . (23)

Both procedures are simple and can solve subproblem effi-
ciently; but their nice convergence results require a quite
restrictive condition, that is; 𝑟𝑠 > ‖𝐴

𝑇

𝐴‖ in PPA-CM and
𝑟𝑠 > (1/2)‖𝐴

𝑇

𝐴‖ in LPPA, respectively. The stepsizes 𝑟, 𝑠 are
directly determined by such condition; hence, it is important
to estimate ‖𝐴𝑇𝐴‖. Overestimationmay lead to poor stepsizes
and slow convergence, while underestimation may result in
divergence. In addition, they are both quite sensitive to the
choice of 𝑟, 𝑠. To overcome those drawbacks, we propose a
general self-adaptive relaxed-PPA, and as mentioned earlier,
it can provide improved guarantee for convergence and has
potential progress in the choice of stepsize. Furthermore, self-
adaptive strategies are designed to improve performance.
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Step 1. Initialization. Let 𝛾 ∈ (0, 2) and pick (𝑥0, 𝜆0) ∈ R𝑛 × Λ, set 𝑘 = 0.
Step 2. Predictor. Let

𝑥
𝑘

= Argmin{𝜃(𝑥) + 𝑟

2


𝑥 − [𝑥

𝑘

+
1

𝑟
𝐴
𝑇

𝜆
𝑘

]


2

| 𝑥 ∈ X}, (∗)

and
�̃�
𝑘

= 𝑃
Λ
[𝜆
𝑘

−
1

𝑠
(𝐴𝑥
𝑘

− 𝑏)]. (∗∗)
Step 3. If the stepsizes 𝑟 and 𝑠 are chosen satisfying

𝜑(𝑢
𝑘

, �̃�
𝑘

) ≥
1

4


𝑑(𝑢
𝑘

, �̃�
𝑘

)


2

𝐺

, (#)
then go to Step 4. Otherwise, increase 𝑟, 𝑠 and go back to Step 2.
Step 4. Corrector and updating

𝑢
𝑘+1

= 𝑢
𝑘

− 𝛼
𝑘
𝐺
−1

𝑀(𝑢
𝑘

− �̃�
𝑘

). ($)
Step 5. Adjustment

(𝑟, 𝑠) =
{

{

{

(
𝑟

2
,
𝑠

2
) , if 𝜑(𝑢𝑘, �̃�𝑘) ≥ 𝜅 ∗ 𝑑(𝑢

𝑘

, �̃�
𝑘

)


2

𝐺

;

(𝑟, 𝑠), otherwise.
Here 𝜅 > 4.

Set 𝑘 := 𝑘 + 1.

Algorithm 1: General primal-dual relaxed-PPA method.

Step 1. Initialization. Let 𝛾 ∈ (0, 2) and pick (𝑥0, 𝜆0) ∈ R𝑛 × Λ, set 𝑘 = 0.
Step 2. Predictor. Let

�̃�
𝑘

= 𝑃
Λ
[𝜆
𝑘

−
1

𝑠
(𝐴𝑥
𝑘

− 𝑏)], (†)
and

𝑥
𝑘

= Argmin{𝜃(𝑥) + 𝑟

2


𝑥 − [𝑥

𝑘

+
1

𝑟
𝐴
𝑇

�̃�
𝑘

]


2

| 𝑥 ∈ X}. (††)

Step 3. If the stepsize 𝑟 and 𝑠 are chosen satisfying
𝜑 (𝑢
𝑘

, �̃�
𝑘

) ≥
1

4


𝑑 (𝑢
𝑘

, �̃�
𝑘

)


2

𝐺

, (‡)
then go to Step 4. Otherwise, increase 𝑟, 𝑠 and go back to Step 2.
Step 4. Corrector and updating

𝑢
𝑘+1

= 𝑢
𝑘

− 𝛼
𝑘
𝐺
−1

𝑀(𝑢
𝑘

− �̃�
𝑘

). (∧)
Step 5. Adjustment

(𝑟, 𝑠) =
{

{

{

(
𝑟

2
,
𝑠

2
) , if 𝜑 (𝑢𝑘, �̃�𝑘) ≥ 𝜅 ∗ 𝑑 (𝑢

𝑘

, �̃�
𝑘

)


2

𝐺

;

(𝑟, 𝑠), otherwise.
Here 𝜅 > 4.

Set 𝑘 := 𝑘 + 1.

Algorithm 2: General dual-primal relaxed-PPA method.

4. The General Self-Adaptive
Relaxed PPA-Method

In this section, we weave together the ideas of the previous
section to present general self-adaptive relaxed-PPA method
(SRPPA) which ismostly inspired by LPPA [24]. At first sight,
the predictor applied in SRPPA is much the same as LPPA,
but the stepsize choice condition for convergence is quite dif-
ferent; moreover, we prove that it is weaker than LPPA. Self-
adaptive strategies are elaborately designed to ensure the
robustness of our algorithm. Two simple yet efficient con-
structions of new iterate are also presentedwhichwill provide
some inspirations for designing various search directions.

4.1. General Relaxed-PPA Method. The general primal-dual
relaxed-PPA method with implementable structure for (1) is

summarized in Algorithm 1. Note that the order of 𝑥 and 𝜆
can be changed to obtain a variant, which is summarized in
Algorithm 2.Our relaxed-PPA is intended to blend the imple-
mentable properties of EGM (or PCM) with the fast conver-
gence performance of PPA. Now, it is helpful to introduce
additional notations that will be used in the rest of this paper.
Let 𝐺 be a positive symmetry definite matrix (we will specify
it later),

𝑀 = (
𝑟𝐼
𝑛
𝐴
𝑇

0 𝑠𝐼
𝑚

) , 𝐻 = (
𝑟𝐼
𝑛

0

0 𝑠𝐼
𝑚

) , (24)

𝑑 (𝑢
𝑘

, �̃�
𝑘

) = 𝐺
−1

𝑀(𝑢
𝑘

− �̃�
𝑘

) , (25)

𝜑 (𝑢
𝑘

, �̃�
𝑘

) = (𝑢
𝑘

− �̃�
𝑘

)
𝑇

𝑀(𝑢
𝑘

− �̃�
𝑘

) . (26)
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The relaxed-PPA described here involves two steps. First, we
solve the relaxed subproblem (∗), (∗∗) to obtain predictor,
which is nice and efficient for the nature of the problemunder
study. Note that the 𝑥-predictor step (∗) involves minimizing
𝜃 plus a convex quadratic function, and under Assumption 2,
it can be efficiently solved or it admits a closed form solution.
And then, 𝜆-predictor step (∗∗) is just a projection onto Λ
which is tractable and computationally efficient. It is clear that
the prediction step employs a Gauss-Seidel manner to update
information efficiently. The correction step ($) only involves
matrix-vector multiplication which is very simple and
straightforward.

Remark 3. Wefirstmake some insight into the correction step
inAlgorithm 1.Theobtained �̃�𝑘 plays nodirect role as the new
iterate. Instead, we need some kind of “corrector” defined in
($). Although matrix 𝐺 in ($) is just a required positive sym-
metry definite, our goal here is to fully integrate the informa-
tion of 𝑢𝑘 and �̃�𝑘 to construct effective, simple search direc-
tion𝐺−1𝑀(𝑢

𝑘

− �̃�
𝑘

) for the corrector. Based on this consider-
ation, we elaborately provide two simple choices of 𝐺.

Case 1. It is natural to set 𝐺 = 𝐻 to induce a simple update
form. Then, it is easy to get that

(
𝑥
𝑘+1

𝜆
𝑘+1
) = (

𝑥
𝑘

𝜆
𝑘
) − 𝛼

𝑘
(
𝑥
𝑘

− 𝑥
𝑘

+
1

𝑟
𝐴
𝑇

(𝜆
𝑘

− �̃�
𝑘

)

𝜆
𝑘

− �̃�
𝑘

). (27)

Case 2. Let 𝐺 = 𝑀𝐻
−1

𝑀
𝑇. This case is a little less intuitive,

but it can lead to a simple update form as well as Case 1. The
underlying derivation is a little more complicate. Applying 𝐺
in ($), we get

𝑢
𝑘+1

= 𝑢
𝑘

− 𝛼
𝑘
𝑀
−𝑇

𝐻𝑀
−1

𝑀(𝑢
𝑘

− �̃�
𝑘

)

= 𝑢
𝑘

− 𝛼
𝑘
𝑀
−𝑇

𝐻(𝑢
𝑘

− �̃�
𝑘

) .

(28)

Recalling𝑀 is a lower triangular matrix, by the fact that
its inverse is also a lower triangular, we have

𝐺
−1

𝑀 = 𝑀
−𝑇

𝐻 = (

𝐼
𝑛

0

−
𝐴

𝑠
𝐼
𝑚

). (29)

Plugging the previous relationship to (31), we have

(
𝑥
𝑘+1

𝜆
𝑘+1
) = (

𝑥
𝑘

𝜆
𝑘
) − 𝛼

𝑘
(

𝑥
𝑘

− 𝑥
𝑘

𝜆
𝑘

− �̃�
𝑘

−
1

𝑠
𝐴 (𝑥
𝑘

− 𝑥
𝑘

)
) . (30)

In fact, this is a scheme of Gaussian back substitution.
Both cases only involve one matrix-vector multiplication

whichmakes the update form simple. And the computational
cost is usually inexpensive.

Remark 4. We now study the subproblem described in (∗),
(∗∗), and the stepsize choice condition (#). For easy analysis,
we characterize (∗), (∗∗) as the following VI formulation.

Find (𝑥𝑘, �̃�𝑘) ∈ Ω such that

(
𝑥 − 𝑥
𝑘

𝜆 − �̃�
𝑘
)

𝑇

{(
𝑓 (𝑥
𝑘

) − 𝐴
𝑇

�̃�
𝑘

𝐴𝑥
𝑘

− 𝑏
) + (

𝑟𝐼
𝑛
𝐴
𝑇

0 𝑠𝐼
𝑚

)(
𝑥
𝑘

− 𝑥
𝑘

�̃�
𝑘

− 𝜆
𝑘
)}

≥ 0, ∀ (
𝑥

𝜆
) ∈ Ω,

(31)

and its compact form

�̃�
𝑘

∈ Ω, (𝑢 − �̃�
𝑘

)
𝑇

{𝐹 (�̃�
𝑘

) +𝑀(�̃�
𝑘

− 𝑢
𝑘

)} ≥ 0,

∀𝑢 ∈ Ω.

(32)

We observe that subproblem (32) is similar to (10) in PPA,
except for the construction of asymmetrymatrix𝑀. As men-
tioned before, (32) is the same as the prediction subproblem
in [24]. Even though they are closely related, the stepsize
choice here is quite different. We provide more specific and
weaker condition for stepsize 𝑟, 𝑠. It is clear that condition (#)
does not need prior knowledge of matrix 𝐴. Furthermore, it
only involves matrix-vector multiplication, and so, it is easy
to verify, and it is amenable to large-scale𝐴. If 𝑟, 𝑠 fail to meet
this convergence condition (#), one should appropriately
increase 𝑟, 𝑠. In the following subsection, we will elaborate
on the self-adaptive strategies to increase the stepsizes. At
this point, condition (#)may be seen somewhat unmotivated.
Some insight into this will be provided later, as we proceed
with the convergence analysis. The convergence condition in
[24] has a quite different feature: 𝑟, 𝑠 satisfy

𝑟𝑠 ≥
1

2


𝐴
𝑇

𝐴

. (33)

It is stronger than condition (#). The following lemma is
devoted to the proof of this result.

Lemma 5. Let {𝑢𝑘} be the sequence generated by Algorithm 1,
𝐻, 𝑑(𝑢𝑘, �̃�𝑘), and 𝜑(𝑢

𝑘

, �̃�
𝑘

) defined in (24), (25), and (26),
respectively. Suppose that condition (33) is satisfied. Then, con-
dition (#) holds immediately.

Proof. Note that

𝜑 (𝑢
𝑘

, �̃�
𝑘

) = 𝑟

𝑥
𝑘

− 𝑥
𝑘


2

+ 𝑠

𝜆
𝑘

− �̃�
𝑘


2

+ (𝜆
𝑘

− �̃�
𝑘

)
𝑇

𝐴(𝑥
𝑘

− 𝑥
𝑘

) .

(34)

Recall thatmatrix𝐺described inAlgorithm 1 can be designed
in two different cases.

Case 1. If 𝐺 = 𝐻, we immediately have


𝑑 (𝑢
𝑘

, �̃�
𝑘

)


2

𝐺

=

𝑢
𝑘

− �̃�
𝑘


2

𝐻

+
1

𝑟


𝐴
𝑇

(𝜆
𝑘

− �̃�
𝑘

)


2

+ 2(𝜆
𝑘

− �̃�
𝑘

)
𝑇

𝐴(𝑥
𝑘

− 𝑥
𝑘

) .

(35)
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According to Cauchy-Schwarz inequality, we get

𝜑 (𝑢
𝑘

, �̃�
𝑘

) −
1

4


𝑑 (𝑢
𝑘

, �̃�
𝑘

)


2

𝐺

=
3

4


𝑢
𝑘

− �̃�
𝑘


2

𝐻

−
1

4𝑟


𝐴
𝑇

(𝜆
𝑘

− �̃�
𝑘

)


2

+
1

2
(𝜆
𝑘

− �̃�
𝑘

)
𝑇

𝐴(𝑥
𝑘

− 𝑥
𝑘

)

≥
3

4


𝑢
𝑘

− �̃�
𝑘


2

𝐻

−
1

4𝑟


𝐴
𝑇

(𝜆
𝑘

− �̃�
𝑘

)


2

−
1

4
(2𝑟


𝑥
𝑘

− 𝑥
𝑘


2

+
1

2𝑟


𝐴
𝑇

(𝜆
𝑘

− �̃�
𝑘

)


2

)

=
𝑟

4


𝑥
𝑘

− 𝑥
𝑘


2

+
3𝑠

4


𝜆
𝑘

− �̃�
𝑘


2

−
3

8𝑟


𝐴
𝑇

(𝜆
𝑘

− �̃�
𝑘

)


2

≥
𝑟

4


𝑥
𝑘

− 𝑥
𝑘


2

.

(36)

The last inequality follows directly from condition (33).

Case 2. If 𝐺 = 𝑀𝐻
−1

𝑀
𝑇, by the definition of 𝑑(𝑢𝑘, �̃�𝑘), we

obtain

𝑑 (𝑢
𝑘

, �̃�
𝑘

)


2

𝐺

= (𝑢
𝑘

− �̃�
𝑘

)
𝑇

𝑀
𝑇

𝐺
−1

𝑀(𝑢
𝑘

− �̃�
𝑘

)

=

𝑢
𝑘

− �̃�
𝑘


2

𝐻

.

(37)

Then, we get

𝜑 (𝑢
𝑘

, �̃�
𝑘

) −
1

4


𝑑 (𝑢
𝑘

, �̃�
𝑘

)


2

𝐺

=
3

4


𝑢
𝑘

− �̃�
𝑘


2

𝐻

+ (𝜆
𝑘

− �̃�
𝑘

)
𝑇

𝐴(𝑥
𝑘

− 𝑥
𝑘

)

≥
3

4


𝑢
𝑘

− �̃�
𝑘


2

𝐻

−
1

2

4𝑟

3


𝑥
𝑘

− 𝑥
𝑘


2

−
1

2

3

4𝑟


𝐴
𝑇

(𝜆
𝑘

− �̃�
𝑘

)


2

=
𝑟

12


𝑥
𝑘

− 𝑥
𝑘


2

+
3𝑠

4


𝜆
𝑘

− �̃�
𝑘


2

−
3

8𝑟


𝐴
𝑇

(𝜆
𝑘

− �̃�
𝑘

)


2

≥
𝑟

12


𝑥
𝑘

− 𝑥
𝑘


2

.

(38)

Thefirst inequality follows from theCauchy-Schwarz ine-
quality, and the last one follows directly from condition (33).

Note that, in both cases, we have that condition (#) holds
if 𝑟𝑠 ≥ (1/2)‖𝐴𝑇𝐴‖.

Condition (33) is not only stronger than Condition (#),
but it also requires that matrix 𝑀 is positive semidefinite,
while condition (#) does not. Furthermore, condition (33)
may require the explicit expression of 𝐴 or knowledge of
‖𝐴
𝑇

𝐴‖. Despite these drawbacks, condition (33) is appealing
to the problems in which ‖𝐴𝑇𝐴‖ is known beforehand or easy
to compute/obtain. For instance, 𝐴 is small scale, an identity
matrix or a projection operator, and so forth. It is clear that
both condition (#) and (33) are more flexible than the one
in PPA-CM [23]. The most aggressive condition (#) may lead

to further improvement in stepsize choice. Moreover, it is
worthwhile to notice that condition (#) is elegantly designed
and provides 𝜑(𝑢𝑘, �̃�𝑘) with favourable property. In fact, for
general matrix 𝐺, condition (#) also can guarantee conver-
gence.

Remark 6. The update stepsize 𝛼
𝑘
plays an important role

here. In fact, it can be regarded as an optimal stepsize which
will be illustrated in the following section.

Remark 7. We should restrict the adjustment in Step 5 of
Algorithm 1 within a limited number to avoid divergence.

In Algorithm 1, we carry out the 𝑥-predictor before
performing 𝜆-predictor. The roles of 𝑥 and 𝜆 are symmetric;
hence, sweeping the order will not break the Gauss-Seidel
structure. We switch 𝑥 and 𝜆 and obtain a variant of relaxed-
PPA with the order of the 𝑥-predictor step and 𝜆-predictor
step reversed.This variant is illustrated in Algorithm 2. How-
ever, there is no a priori information to knowwhich algorithm
is superior. Here, we let

𝑀 = (
𝑟𝐼
𝑛

0

−𝐴 𝑠𝐼
𝑚

) . (39)

4.2. Adaptive Enhancements. Both PPA-CM and LPPA
employ fixed stepsizes 𝑟, 𝑠. Experiments reveal that they will
suffer slow convergence when stepsizes 𝑟, 𝑠 are chosen inap-
propriately. A natural question is, how to choose the proper
initial stepsizes 𝑟, 𝑠. Here, we propose self-adaptive strategies
with the goal of improving the convergence in practice, aswell
asmaking performance less dependent on the initial choice of
stepsizes. Our strategies dynamically incorporate the infor-
mation of the current iteration to perform more informative
choice of stepsizes for the next iteration [31]. When doing so,
the algorithmwill be adaptive and free from the initial choice.
Denote

(
𝑑
𝑘

𝑥

𝑑
𝑘

𝜆

) = (
(𝑥
𝑘

− 𝑥
𝑘

) +
1

𝑟
𝐴
𝑇

(𝜆
𝑘

− �̃�
𝑘

)

𝜆
𝑘

− �̃�
𝑘

) , (40)

and then, (31) can be rewritten as

(
𝑥 − 𝑥
𝑘

𝜆 − �̃�
𝑘
)

𝑇

{(
𝑓 (𝑥
𝑘

) − 𝐴
𝑇

�̃�
𝑘

𝐴𝑥
𝑘

− 𝑏
) − (

𝑟𝐼
𝑛

0

0 𝑠𝐼
𝑚

)(
𝑑
𝑘

𝑥

𝑑
𝑘

𝜆

)} ≥ 0,

∀ (
𝑥

𝜆
) ∈ Ω.

(41)

Under 𝐻-norm, the quantity 𝑑𝑘
𝑥
can be viewed as a residual

for the dual feasibility condition, and 𝑑
𝑘

𝜆
can be viewed as

a primal residual. These two residuals converge to zero as
relaxed-PPA proceeds. Note that


𝑑
𝑘

𝑥



2

𝑟

= 𝑟

𝑥
𝑘

− 𝑥
𝑘


2

+ 2(𝑥
𝑘

− 𝑥
𝑘

)
𝑇

𝐴
𝑇

(𝜆
𝑘

− �̃�
𝑘

)

+
1

𝑟


𝐴
𝑇

(𝜆
𝑘

− �̃�
𝑘

)


2

,


𝑑
𝑘

𝜆



2

𝑠

= 𝑠

𝜆
𝑘

− �̃�
𝑘


2

.

(42)



Abstract and Applied Analysis 7

If 𝑑
𝑘

𝑥



2

𝑟

≥ 𝜏
1


𝑑
𝑘

𝜆



2

𝑠

𝑟 := 𝑟; 𝑠 := 𝑠 ∗ 2;
else if 𝜏

2


𝑑
𝑘

𝑥



2

𝑟

≤

𝑑
𝑘

𝜆



2

𝑠

𝑟 := 𝑟 ∗ 2; 𝑠 := 𝑠;
else
𝑟 := 𝑟 ∗ 1.5; 𝑠 := 𝑠 ∗ 1.5.

Algorithm 3: Adaptation-I.

if 𝑟𝑥
𝑘

− 𝑥
𝑘


2

≥ 𝜏
1
(𝑠

𝜆
𝑘

− �̃�
𝑘


2

+
1

𝑟


𝐴
𝑇

(𝜆
𝑘

− �̃�
𝑘

)


2

)

𝑟 :=
𝑟

2
; 𝑠 =

𝜇

𝐴𝐴
𝑇


𝑟
;

else if 𝜏
2
𝑟

𝑥
𝑘

− 𝑥
𝑘


2

≤ (𝑠

𝜆
𝑘

− �̃�
𝑘


2

+
1

𝑟


𝐴
𝑇

(𝜆
𝑘

− �̃�
𝑘

)


2

)

𝑠 :=
𝑠

2
; 𝑟 =

𝜇

𝐴𝐴
𝑇


𝑠
;

else
𝑟 := 𝑟; 𝑠 := 𝑠.

Algorithm 4: Adaptation-II.

And this implies that small values of 𝑠 tend to reduce the
primal residual but have potential to enlarge violations of
dual feasibility and tend to produce larger dual residual. This
observation motivates us to balance primal and dual residu-
als. When condition (#) fails, we increase stepsizes 𝑟, 𝑠 prop-
erly according to the adaptation shown in Algorithm 3.

Here, 𝜏
1
> 1, 𝜏

2
> 1. This adaptation strategy increases 𝑠

when the dual residual ‖𝑑𝑘
𝑥
‖
2

𝑟
appears large compared to the

primal residual ‖𝑑𝑘
𝜆
‖
2

𝑠
and increases 𝑟 when the dual residual

‖𝑑
𝑘

𝑥
‖
2

𝑟
seems too small relative to the primal residual ‖𝑑𝑘

𝜆
‖
2

𝑠
.

As mentioned, condition (33) is stronger than condition
(#). If one chooses condition (33), our RPPA also converges.
It must have predetermined stepsizes satisfying 𝑟𝑠 = 𝜇‖𝐴𝑇𝐴‖
(here, 𝜇 ≥ 0.5). However, there is no priority knowledge of
the choice of individual 𝑟 or 𝑠. Here, we can also adjust 𝑟, 𝑠
automatically when choosing condition (33). Intuitively, we
consider expansion of the entire residual under𝐻-norm:


𝑑
𝑘

𝑥



2

𝑟

+

𝑑
𝑘

𝜆



2

𝑠

= 𝑟

𝑥
𝑘

− 𝑥
𝑘


2

+ 𝑠

𝜆
𝑘

− �̃�
𝑘


2

+
1

𝑟


𝐴
𝑇

(𝜆
𝑘

− �̃�
𝑘

)


2

+ 2(𝑥
𝑘

− 𝑥
𝑘

)
𝑇

𝐴
𝑇

(𝜆
𝑘

− �̃�
𝑘

) ;

(43)

there are three terms involving 𝑟or 𝑠, andwe intend to balance
these terms. For fixed 𝜇, take 𝑠 = (𝜇/𝑟)‖𝐴𝐴𝑇‖; then

𝑠

𝜆
𝑘

− �̃�
𝑘


2

=
𝜇

𝑟


𝐴𝐴
𝑇



𝜆
𝑘

− �̃�
𝑘


2

. (44)

Applying (44) into (43), clearly we have


𝑑
𝑘

𝑥



2

𝑟

+

𝑑
𝑘

𝜆



2

𝑠

= 𝑟

𝑥
𝑘

− 𝑥
𝑘


2

+
1

𝑟
(𝜇


𝐴𝐴
𝑇



𝜆
𝑘

− �̃�
𝑘


2

+

𝐴
𝑇

(𝜆
𝑘

− �̃�
𝑘

)


2

)

+ 2 (𝑥
𝑘

− 𝑥
𝑘

)
𝑇

𝐴
𝑇

(𝜆
𝑘

− �̃�
𝑘

) .

(45)

Now, we consider adjusting stepsize to balance 𝑟‖𝑥𝑘 − 𝑥𝑘‖
2

and (1/𝑟)(𝜇‖𝐴𝐴
𝑇

‖‖𝜆
𝑘

− �̃�
𝑘

‖
2

+ ‖𝐴
𝑇

(𝜆
𝑘

− �̃�
𝑘

)‖
2

) and obtain
another adaptation strategy (see Algorithm 4).

It is worth noting that too many adjustments of stepsizes
by Algorithm 4might cause the algorithm to diverge in prac-
tice, and we therefore restrict these adaptations within a lim-
ited number of iterations. If one chooses Algorithm 4, there is
no need to carry out Step 5 in Algorithm 1 (or Algorithm 2).
These techniques embedded into relaxed-PPA automatically
choose a “better” stepsize for the next iteration.

5. Convergence Analysis

In this section, we analyze convergence of our primal-dual
relaxed-PPA.The convergence analysis of dual-primal scheme
can follow a similar procedure.

Let 𝑢∗ = (𝑥∗, 𝜆∗) be any solution point, setting 𝑢 = 𝑢∗ in
(32) yields

(�̃�
𝑘

− 𝑢
∗

)
𝑇

𝑀(𝑢
𝑘

− �̃�
𝑘

) ≥ (�̃�
𝑘

− 𝑢
∗

)
𝑇

𝐹 (�̃�
𝑘

) . (46)
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Since �̃�𝑘 ∈ Ω, we have (�̃�𝑘 − 𝑢∗)𝑇𝐹(𝑢∗) ≥ 0. Consequently,
by using the monotonicity of 𝐹, the right hand side of (46) is
nonnegative, and thus

(�̃�
𝑘

− 𝑢
∗

)
𝑇

𝑀(𝑢
𝑘

− �̃�
𝑘

) ≥ 0. (47)

Now, we are writing the update as

𝑢 (𝛼) = 𝑢
𝑘

− 𝛼𝑑 (𝑢
𝑘

, �̃�
𝑘

) (48)

and

𝜗 (𝛼) :=

𝑢
𝑘

− 𝑢
∗


2

𝐺

−
𝑢 (𝛼) − 𝑢

∗
2

𝐺
,

𝑞 (𝛼) = 2𝛼(𝑢
𝑘

− �̃�
𝑘

)
𝑇

𝐺𝑑 (𝑢
𝑘

, �̃�
𝑘

) − 𝛼
2

𝑑 (𝑢
𝑘

, �̃�
𝑘

)


2

𝐺

.

(49)

Here, 𝜗(𝛼) can be viewed as a progress function. The follow-
ing lemma shows that 𝑞(𝛼) is a lower bound of 𝜗(𝛼).

Lemma 8. Let 𝜗(𝛼) and 𝑞(𝛼) be defined in (49); then one has

𝜗 (𝛼) ≥ 𝑞 (𝛼) . (50)

Proof. Let 𝑢∗ be any solution, from the definition of 𝑢(𝛼), we
have

𝜗 (𝛼) =

𝑢
𝑘

− 𝑢
∗


2

𝐺

−

(𝑢
𝑘

− 𝑢
∗

) − 𝛼𝑑 (𝑢
𝑘

, �̃�
𝑘

)


2

𝐺

= 2𝛼(𝑢
𝑘

− 𝑢
∗

)
𝑇

𝐺𝑑 (𝑢
𝑘

, �̃�
𝑘

) − 𝛼
2

𝑑 (𝑢
𝑘

, �̃�
𝑘

)


2

𝐺

.

(51)

Applying (47) to the first term of (51) gives

(𝑢
𝑘

− 𝑢
∗

)
𝑇

𝐺𝑑 (𝑢
𝑘

, �̃�
𝑘

) = (𝑢
𝑘

− �̃�
𝑘

)
𝑇

𝐺𝑑 (𝑢
𝑘

, �̃�
𝑘

)

+ (�̃�
𝑘

− 𝑢
∗

)
𝑇

𝐺𝑑 (𝑢
𝑘

, �̃�
𝑘

)

≥ (𝑢
𝑘

− �̃�
𝑘

)
𝑇

𝐺𝑑 (𝑢
𝑘

, �̃�
𝑘

) .

(52)

Substituting (52) into (51), we immediately obtain the asser-
tion.

We note that 𝑞(𝛼) is a quadratic function of 𝛼 and it is
natural to maximize 𝑞(𝛼) to obtain an “optimal” 𝛼:

𝛼
∗

𝑘
=
(𝑢
𝑘

− �̃�
𝑘

)
𝑇

𝐺𝑑 (𝑢
𝑘

, �̃�
𝑘

)

𝑑 (𝑢
𝑘, �̃�𝑘)


2

𝐺

. (53)

We now show that the “optimal” 𝛼∗
𝑘
is bounded above from

zero in the following Lemma.

Lemma 9. Let sequence {𝑢𝑘} be produced by Algorithm 1, 𝛼∗
𝑘

defined in (53); then, one has

𝛼
∗

𝑘
≥
1

4
> 0. (54)

Proof. Using the definition of 𝛼∗
𝑘
in (53), we have, for all 𝑘,

𝛼
∗

𝑘
=

𝜑 (𝑢
𝑘

, �̃�
𝑘

)

𝑑 (𝑢
𝑘, �̃�𝑘)


2

𝐺

≥
1

4
. (55)

The inequality follows from condition (#).

Setting 𝛼 = 𝛼
𝑘
= 𝛼
∗

𝑘
𝛾 in (50) yields


𝑢
𝑘+1

− 𝑢
∗


2

𝐺

≤

𝑢
𝑘

− 𝑢
∗


2

𝐺

− 𝛾 (2 − 𝛾) 𝛼
∗

𝑘
(𝑢
𝑘

− �̃�
𝑘

)
𝑇

𝐺𝑑 (𝑢
𝑘

, �̃�
𝑘

) .

(56)

Combining Lemmas 8 and 9, we immediately obtain the fol-
lowing convergence theorem.

Theorem 10. Let sequence {𝑢𝑘} be produced by Algorithm 1;
then one gets


𝑢
𝑘+1

− 𝑢
∗


2

𝐺

≤

𝑢
𝑘

− 𝑢
∗


2

𝐺

−
𝛾 (2 − 𝛾)

16


𝑑 (𝑢
𝑘

, �̃�
𝑘

)


2

𝐺

. (57)

Theorem 11. Let sequence {𝑢𝑘} be generated by Algorithm 1.
Then, {𝑢𝑘} converges to some 𝑢

∞ which is a solution of
𝑉𝐼(Ω, 𝐹) (9).

Proof. First, for each 𝑢 ∈ Ω, we have

(𝑢 − �̃�
𝑘

)
𝑇

𝐹 (�̃�
𝑘

) ≥ (𝑢 − �̃�
𝑘

)
𝑇

𝑀(𝑢
𝑘

− �̃�
𝑘

) . (58)

It follows from (57) that {𝑢𝑘} is a bounded sequence and

lim
𝑘→∞


𝑢
𝑘

− �̃�
𝑘
𝐺

= 0. (59)

Consequently, {�̃�
𝑘

} is also bounded. Since
lim
𝑘→∞

‖𝑢
𝑘

− �̃�
𝑘

‖
𝐺
= 0, it follows from (58) that

lim
𝑘→∞

(𝑢 − �̃�
𝑘

)
𝑇

𝐹 (�̃�
𝑘

) ≥ 0, ∀𝑢 ∈ Ω. (60)

Because {�̃�𝑘} is bounded, it has at least a cluster point. Let
𝑢
∞ be a cluster point of {�̃�𝑘} and let the subsequence {�̃�𝑘𝑗}

converge to 𝑢∞. It follows that

lim
𝑗→∞

(𝑢 − �̃�
𝑘𝑗)
𝑇

𝐹 (�̃�
𝑘𝑗) ≥ 0, ∀𝑢 ∈ Ω, (61)

and consequently,

(𝑢 − 𝑢
∞

)
𝑇

𝐹 (𝑢
∞

) ≥ 0. ∀𝑢 ∈ Ω. (62)

This means that 𝑢∞ is a solution of VI(Ω, 𝐹). Note that the
inequality (57) is true for all solution points of VI(Ω, 𝐹), and
hence, we have


𝑢
𝑘+1

− 𝑢
∞


2

𝐺

≤

𝑢
𝑘

− 𝑢
∞


2

𝐺

, ∀𝑘 ≥ 0. (63)

Since �̃�𝑘𝑗 → 𝑢
∞

(𝑗 → ∞) and 𝑢𝑘 − �̃�𝑘 → 0 (𝑘 → ∞), for
any given 𝜀 > 0, there exists an integer 𝑙 > 0 such that


�̃�
𝑘𝑙 − 𝑢
∞
𝐺

<
𝜀

2
,


𝑢
𝑘𝑙 − �̃�
𝑘𝑙
𝐺

<
𝜀

2
. (64)

Therefore, for any 𝑘 ≥ 𝑘
𝑙
, it follows from (63) and (64) that


𝑢
𝑘

− 𝑢
∞
𝐺

≤

𝑢
𝑘𝑙 − 𝑢
∞
𝐺

≤

𝑢
𝑘𝑙 − �̃�
𝑘𝑙
𝐺
+

�̃�
𝑘𝑙 − 𝑢
∞
𝐺

≤ 𝜀.

(65)

This implies that the sequence {𝑢𝑘} converges to 𝑢∞, which is
a solution of VI(Ω, 𝐹) (9).
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Table 1: Comparison of behaviours of four SRPPAs.

𝐴 SPDRPPAG1-I SDPRPPAG1-I SPDRPPAG2-I SDPRPPAG2-I
𝑛 It. CPU It. CPU It. CPU It. CPU
500 360 0.13 241 0.13 513 0.19 875 0.26
1500 379 1.32 259 0.89 387 1.72 594 2.04
2500 501 4.39 343 3.01 429 4.93 648 5.72
3500 399 6.65 325 5.57 663 14.44 1089 18.02
4500 389 12.13 457 14.47 493 20.61 991 31.26
5500 515 24.21 462 21.97 497 30.88 813 38.43
6500 449 25.01 423 23.41 456 33.42 932 51.62
7500 520 45.72 473 41.79 724 63.06 886 77.91

6. Applications and Preliminary
Numerical Experiments

The general self-adaptive relaxed-PPA (SRPPA) offers a
flexible framework for solving many interesting problems.
We illustrate our algorithm with different applications: basis
pursuit problem, nearest correlation matrix problem. In this
section, we describe the results of experiments whose goal is
to demonstrate the efficiency of general relaxed-PPA (RPPA)
and its self-adaptive version. To that end, we compare RPPA
with certain state-of-the-art algorithms on different prob-
lems. Our experiments focus on efficiency and speed of con-
vergence and evaluate the methods in terms of their number
of iterations and computational times.

All the codes were written byMatlab R2009b version, and
all the numerical experiments were performed on a Lenovo
desktop computer with Intel (R) Core (TM) i5 CPU with
3.2GHz and 3.5GB RAM.

6.1. Basis Pursuit Problem. Basis pursuit (BP) finds signal
representations in overcomplete dictionaries by equality-
constrained 𝑙

1
minimization problem. Formally, one solves

the problem

min {‖𝑥‖
1
𝐴𝑥 = 𝑏, 𝑥 ∈ R

𝑛

} . (66)

And here, ‖ ⋅ ‖
1

denotes the 𝑙
1

norm defined as ‖𝑥‖
1

:=

∑
𝑛

𝑖=1
|𝑥
𝑖
|. BP is a fundamental problem in image processing

andmodern statistical signal processing, particularly the the-
ory of compressed sensing; see, for example, [1–4] for inten-
sive study. We now discuss our approach to BP problem of
over-complete representations. Our experiments in this sub-
section use synthetic data which were mainly designed to
illustrate the nice performance of our RPPA. The synthetic
problem that we test here is similar to the one employed in
[32]. We generate the data as follows: matrix 𝐴 is a random
𝑚 × 𝑛 matrix, with Gaussian i.i.d. entries of zero mean and
variance 1, with 𝑚 = 𝑛/2. 𝑥original ∈ 𝑅

𝑛 is the original sparse
signal, constructed with𝑚/5 nonzero values, randomly from
standard normal distribution. We use 𝑥original to generate the
measurements as 𝑏 = 𝐴𝑥original. It is desirable to use test
problems that have a precisely known solution. In fact, when
𝑥original is very sparse, it is the solution to the minimization
problem (66). Hence, in our synthetic problem, 𝑥original is
exactly the solution.

In our first experiment, we compared general RPPA using
two different 𝐺’s mentioned in Section 4.1. For BP problem,
we use condition (#) and Algorithm 3. Since 𝐴 constructed
here is a general random matrix, and when 𝐴 is large scale,
‖𝐴
𝑇

𝐴‖might be obtained costly. A simple stopping criterion

err . = 𝑥
𝑘

− 𝑥original

≤ Tol (67)

was used in this experiment, and the stopping tolerance Tol
was set to 10−10. In all the tests, initial stepsizes were set as 𝑠 =
10, 𝑟 = 1, the primal variable 𝑥0 was initialized as zeros(𝑛, 1),
and the dual 𝜆0 was ones(𝑚, 1) inMatlab. Table 1 summarizes
the performance of general SRPPA. Here, SPDRPPAG𝑖-
I(SPDRPPAG𝑖-II) denotes self-adaptive primal-dual RPPA
with Algorithm 3 (Algorithm 4), 𝐺 = 𝐻, if 𝑖 = 1, and 𝐺 =

𝑀𝐻
−1

𝑀
𝑇, if 𝑖 = 2. DPRPPA (DPRPPA) denotes dual-primal

RPPA version.
Basically, SRPPAs converge very quickly and achieved

tight error 10−10 in a few hundred iterations. For this exper-
iment, one can see that SDPRPPAG1-I is fastest in all cases.
Both SDPRPPAG1-I and SPDRPPAG1-I are Gaussian type
methods, with 𝐺 = 𝐻, and they exhibit very similar
performance. SDPRPPAG2-I and SPDRPPAG2-I with 𝐺 =

𝑀𝐻
−1

𝑀
𝑇 are Gaussian back substitute form methods and

perform a little slower than Gaussian type methods. We also
plot a figure to graphically illustrate the performance of four
SRPPAs. Figure 1 shows the results from the test with 𝑛 =

1000 and 𝑛 = 6000, depicting error versusCPU time.Quality-
wise, SPDRPPAG1-I was on par with SDPRPPAG1-I.

In the second experiment, we compare the performance
of SPDRPPAG1-I with TFOCS (source code can be found
at http://cvxr.com/tfocs/) [32], ADMM (source code can
be found at http://www.stanford.edu/∼boyd/papers/admm/)
[33], and PPA-CM. To make the comparison independent of
the stopping criterion for each algorithm, we first run TFOCS
to get its solution 𝑥 TFOCS and set a benchmark error

benchmark err . = 𝑥TFOCS − 𝑥original
2

(68)

and then runother algorithmsuntil they obtain smaller errors
than this benchmark. TFOCS was stopped upon


𝑥
𝑘+1

− 𝑥
𝑘


max {1, 𝑥𝑘+1
}

≤ Tol. (69)
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Figure 1: Comparing SRPPAs applied to BP problem with 𝑛 = 1000 (a) and 𝑛 = 6000 (b).The horizontal axis gives the CPU time; the vertical
axis gives the error between the solution and the original.

Table 2: Performance of different iterative methods.

𝐴 TFOCS ADMM PPA-CM SPDRPPAG1-I
𝑛 It./CPU Err. It./CPU Err. It./CPU Err. It./CPU Err.
512 1681/4.16 7.5𝑒 − 10 492/0.67 5.0𝑒 − 10 1027/1.41 6.2𝑒 − 10 391/0.10 4.0𝑒 − 10

1024 406/1.68 3.7𝑒 − 10 274/0.53 3.0𝑒 − 10 848/0.76 2.3𝑒 − 10 214/0.28 3.0𝑒 − 10

2048 507/4.01 4.4𝑒 − 9 607/3.93 2.9𝑒 − 9 804/3.65 4.0𝑒 − 9 239/1.49 3.9𝑒 − 9

4096 933/19.50 2.6𝑒 − 9 1070/27.47 2.1𝑒 − 9 845/15.09 2.3𝑒 − 9 422/9.84 2.3𝑒 − 9

4200 461/9.91 2.1𝑒 − 9 916/25.48 1.8𝑒 − 9 868/16.27 2.1𝑒 − 9 391/9.44 1.5𝑒 − 9

4300 451/9.74 2.2𝑒 − 9 464/20.37 1.6𝑒 − 9 884/16.91 2.1𝑒 − 9 429/10.54 2.1𝑒 − 9

4600 505/12.37 1.36𝑒 − 9 2155/56.45 1.2𝑒 − 9 863/18.95 1.2𝑒 − 9 425/11.89 1.1𝑒 − 9

4700 801/20.15 1.3𝑒 − 11 1517/45.37 8.2𝑒 − 12 1102/34.27 1.2𝑒 − 11 425/14.20 1.1𝑒 − 11

5500 407/13.64 2.4𝑒 − 6 —/— — 546/20.13 1.9𝑒 − 6 308/12.40 2.0𝑒 − 6

6500 1257/56.11 1.5𝑒 − 5 —/— — 508/26.48 1.4𝑒 − 5 308/17.22 1.3𝑒 − 5

7500 801/81.42 1.1𝑒 − 12 —/— — 1313/813.52 1.1𝑒 − 12 522/69.52 1.1𝑒 − 12

8500 842/107.18 2.3𝑒 − 7 —/— — 724/100.36 2.2𝑒 − 7 542/83.07 2.2𝑒 − 7

Since we found that Tol = 10−12 is small enough to guarantee
very high accuracy, we set Tol = 10−12 in TFOCS.The param-
eters of TFOCS and ADMM were taken with their defaults.
To guarantee the convergence, fixed stepsizes 𝑟, 𝑠 were set to
𝑠 = 100, 𝑟 = 1.01 ∗ ‖𝐴𝐴𝑇‖/𝑠 for PPA-CM. In SPDRPPAG1-I,
we also choose the same convergence condition (#) and initial
step size 𝑠 = 10, 𝑟 = 1 as the previous experiment. We varied
the size of 𝐴 from 𝑛 = 512 (𝑚 = 𝑛/2) to 𝑛 = 8500. The
results of this experiment are summarized in Table 2. There,
we report the run time in seconds, the number of iterations,
and the error of the recovery solution. In Table 2, “—” means
“out of memory.”

We observe from Table 2 that four algorithms reach
high accuracy around 10

−9. SPDRPPAG1-I is about two
times faster than the first-order method implemented in
the TFOCS package, and moreover, it usually outperforms
TFOCS in terms of iterations. For medium size problems,
SPDRPPAG1-I is clearly faster than ADMM. Even for small
size problems, SPDRPPAG1-I shows its superior perform-
ance. The main reason lies in that ADMM computed (𝐼 +

𝐴𝐴
𝑇

)
−1 to solve its subproblem exactly which would take

expensive computational cost. Not surprisingly, the general
SPDRPPAG1-I performs better than the primary PPA-CM.
Here, the total iterations of SPDRPPAG1-I are less than 50%
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Figure 2: CPU times as a function of the initial stepsize 𝑠 for PPA-CM, LPPA, and SDPRPPAG1-II. The plot on the left is for 𝑛 = 500, while
the plot on the right is for 𝑛 = 1000.

of PPA-CM.Aswe havementioned, “optimal” update stepsize
𝛼
𝑘

and more flexible condition for convergence may pro-
vide SPDRPPAG1-I improved performance. SPDRPPAG1-I is
faster than PPA-CM in terms of CPU times. However, the
superiority of CPU time is not so significant as iteration
number. For the cases 𝑛 = 4300, it is just about 62% of PPA-
CM. This is not particularly surprising; compared to PPA-
CM, SPDRPPAG1-I has to take extra computation for con-
vergence condition and “optimal” 𝛼

𝑘
in each iteration.

6.2. Nearest Correlation Matrix Problem. The nearest corre-
lation matrix problem is solving the problem

min {1
2
‖𝑋 − 𝐶‖

2

𝐹
| diag (𝑋) = 𝑒, 𝑋 ∈ 𝑆

𝑛

+
} , (70)

where 𝑒 ∈ R𝑛 is the vector whose entries are all 1𝑠, 𝑆𝑛
+
denotes

the cone of positive definite symmetric matrices, diag(𝑋) is
the vector of diagonal elements of 𝑋, and ‖ ⋅ ‖

𝐹
denotes the

matrix Fröbenius norm ‖𝑋‖
𝐹
= trace (𝑋𝑇𝑋)1/2.

Here, we apply PPA-CM, LPPA, and SDPRPPA1-II for
solving (70). The standard Matlab Mex interface mexsvd
is used to conduct the eigenvalue decomposition. We con-
structed test data sets and stopping criterion like those of
[24]. As mentioned in the prequel, we expect our SRPPA to
produce robust performance. To assess the effectiveness of the
adaptive strategies proposed in Section 6, we nowmove on to
the description of experiments that focus on the conse-
quences of the initial stepsizes. For investigating, we used

dimensions 𝑛 ∈ {500, 1000} and varied 𝑠 from 0.05 to 100,
and initial points were set to 0 in all cases. Note that𝐴 = 𝐼; we
fixed 𝑟 = 1.01/𝑠 for PPA-CM, 𝑟 = 0.65/𝑠 for LPPA and chose
𝑟 = 0.65/𝑠 as initial start for SDPRPPAG1-II. Since the exper-
iments with other values of 𝑛 give qualitatively similar results,
we therefore do not plot those results to avoid clutter in the
figures. The respective numerical results are plotted in
Figure 2.

It is clear that, for PPA-CM and LPPA, the convergence
performance was a result of the stepsize selection. They are
both fairly sensitive to initial stepsize 𝑠 (or 𝑟). The results
confirm that, with inappropriate stepsizes, both PPA-CM
and LPPA become significantly slow. SDPRPPAG1-II yields
significantly robust performance with adaptive strategy. And
it is independent of the initial stepsizes and illustrates its
superior performance. Furthermore, SDPRPPAG1-II yields
competitive results even when PPA-CM and LPPA chose the
“good” initial stepsize.This underlies the importance of adap-
tive strategy in producing good performance. Of course, care
should be taken. For instance, the cost of computing optimal
stepsize 𝛼

𝑘
here is negligible, compared to the computation

of SVD; when they are more costly, general LPPA will be
expected to perform slower than PPA-CM.

7. Conclusions

In this paper, we proposed an efficient general self-adaptive
relaxed-PPA method for linearly constrained convex pro-
gramming and provided theoretical convergence analysis for
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this method. The stepsizes choice condition is flexible and
simple. Self-adaptive strategies are provided to make our
method more efficient and robust. Experiments of the
method in comparison to other state-of-art methods are pro-
vided to confirm the efficiency of the proposed method. Our
numerical results suggest that SRPPA is effective and simple
to implement. There are a few directions for further research,
but we list here only two. The first is the question of whether
wemaymodify the algorithm toworkwithmore general con-
strained convex problems. Second, we aim to provide various
relaxations of the subproblem for the practical purpose.
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