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We will combine linear successive overrelaxation method with nonlinear monotone iterative scheme to obtain a new iterative
method for solving nonlinear equations.The basic idea of thismethod joining traditionalmonotone iterativemethod (known as the
method of lower and upper solutions) which depends essentially on the monotone parameter is that by introducing an acceleration
parameter one can construct a sequence to accelerate the convergence. The resulting increase in the speed of convergence is very
dramatic. Moreover, the sequence can accomplish monotonic convergence behavior in the iterative process when some suitable
acceleration parameters are chosen. Under some suitable assumptions in aspect of the nonlinear function and the matrix norm
generated from this method, we can prove the boundedness and convergence of the resulting sequences. Application of the iterative
scheme is given to a logistic model problem in ecology, and numerical results for a test problem with known analytical solution are
given to demonstrate the accuracy and efficiency of the present method.

1. Introduction

In terms of solving linear equations, we usually use two
different iterative methods, namely, the Jacobi and Gauss-
Seidel methods [1–3]. The monotone iterative (MI) schemes
which combine linear iterative techniques, respectively, are
presented and analyzed in [4–8] for solving nonlinear equa-
tions. The method of monotone iterations is a classical tool
for the study of the existence of solutions of semilinear PDEs
of certain types [9–12]. It is also useful for numerical solutions
of these types of problems approximated, for instance, by the
finite difference [5, 6, 13–15], finite element [16], or boundary
element [17, 18] method. It is a constructive method that
depends essentially on only one parameter, called the mono-
tone parameter herein, which determines the convergent
behavior of the iterative process. Besides, the block Picard,
block Jacobi, and block Gauss-Seidel MI methods are also
developed and compared the rates of convergence with the
point MI schemes [6]. The block MI methods accelerate the
rate of convergence more than the point MI methods. In
particular, Ortega and Rheinboldt [19, page 456] mention
an analysis of the Newton-SOR methods to research some

properties of convergence for relaxation factor 0 < 𝜔 < 1.
The MI methods have been widely used in the treatment
of certain nonlinear parabolic and elliptic differential equa-
tions. For instance, in the study of certain subsonic flows
and molecular interactions, the equation Δ𝑢 = 𝑢

2 is of
fundamental importance [18]. For parabolic problems with
time delays we refer to [20]. In addition, we also utilize
MI schemes to handle nonlinear problems on analysis of
numerical results for semiconductor equations [21–23] and
the Poisson Boltzmann equation [24].

Consider the nonlinear boundary-value problem:

− [(D(1)𝑢
𝑥
)
𝑥
+ (D(2)𝑢

𝑦
)
𝑦
] = 𝑓 (𝑥, 𝑦, 𝑢) , in Ω,

𝛼
𝜕𝑢

𝜕V
+ 𝛽𝑢 = 𝑔 (𝑥, 𝑦) , on 𝜕Ω,

(1)

in a two-dimensional domain Ω with boundary 𝜕Ω, where
𝜕𝑢/𝜕V is the outward normal derivative of 𝑢 on 𝜕Ω, D(𝑙) ≡
D(𝑙)(𝑥, 𝑦), 𝑙 = 1, 2, are positive functions on Ω ≡ Ω ∪ 𝜕Ω,
𝛼 ≡ 𝛼(𝑥, 𝑦) and 𝛽 ≡ 𝛽(𝑥, 𝑦) are nonnegative functions on
𝜕Ω with 𝛼 + 𝛽 > 0, and 𝑓 and 𝑔 are given functions in their
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respective domains. For the nonlinear function𝑓, we give two
assumptions:

(i)

𝑓 is uniformly bounded for −∞ < 𝑢 < ∞; (H1)

(ii) if |𝑢|, |V| ≤ 𝑐, then there exists a function H(𝑐), such
that for all 𝑥, 𝑦 ∈ Ω we have
󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑦, 𝑢) − 𝑓 (𝑥, 𝑦, V)󵄨󵄨󵄨󵄨 ≤ H (𝑐) ⋅ |𝑢 − V| . (H2)

Applying the finite difference method to (1), we obtain a
system of nonlinear algebraic equations in a compact form:

𝐴𝑈 = 𝐹 (𝑈) + 𝐺
∗
. (2)

Suppose that A can be written in the splitting form 𝐴 =

D−L−U, whereD,−L, and−U are the diagonal, lower-off-
diagonal, and upper-off-diagonal matrices of 𝐴, respectively.
We consider that linear SOR method can be combined with
nonlinear MI scheme to obtain a nonlinear SOR monotone
iterative method for solving nonlinear equations which gives
rise to the terminology “SORMI”. The basic idea of this
method joiningMImethod which depends essentially on the
monotone parameter Γ is that by introducing an acceleration
parameter one can construct a sequence to accelerate the
convergence. The algorithm is similar to the SOR method.
Roughly speaking, given an initial vector 𝑈(0), the SORMI
method generates a sequence of iterates {𝑈(𝑚)}, 𝑚 = 0, 1, . . .,
by solving the equation:

(D + Γ − 𝜔L) 𝑈
(𝑚+1)

= [(1 − 𝜔) (D + Γ) + 𝜔U] 𝑈
(𝑚)

+ 𝜔 [Γ𝑈
(𝑚)

+ 𝐹 (𝑈
(𝑚)

) + 𝐺
∗
] ,

(3)

where 𝜔 is a relaxation factor. Under some suitable assump-
tions in aspect of the nonlinear function and thematrix norm
generated from this method, we can prove the boundedness
and convergence of the resulting sequences. Moreover, the
sequences can accomplish monotonic convergence in the
iterative process when some suitable relaxation factors are
chosen.

The structure of the paper is as follows. In Section 2, we
brieflymake a description for discretization process to obtain
algebraic equations formodel (1) and state some properties of
thematrix. Section 3 deals with themonotone parameter and
constructs the SORMI scheme. We show the boundedness
and convergence of the SORMI sequence in Sections 4 and
5. Moreover, we offer another proof for the convergence of
the SORMI sequence in the case 0 < 𝜔 < 1. In Section 6,
we solve a one dimensional problem, and a logistic model
in population growth problem and numerical results of the
method are also given to verify the theoretical analysis. The
final section is for some concluding remarks.

2. A Finite Difference Discretization

We discuss problem (1) in a rectangular domainΩ = (0, 𝑙
1
) ×

(0, 𝑙
2
). Let ℎ = 𝑙

1
/𝑛, 𝑘 = 𝑙

2
/𝑚, and let 𝑥

𝑖
= 𝑖ℎ, 𝑦

𝑗
= 𝑗𝑘 for

𝑖 = 0, 1, 2, . . . , 𝑛, 𝑗 = 0, 1, 2, . . . , 𝑚. The set of points (𝑥
𝑖
, 𝑦
𝑗
)

in Ω and Ω ≡ Ω ∪ 𝜕Ω are defined, respectively, by Υ and Υ.
When no confusion arises we write a point (𝑥

𝑖
, 𝑦
𝑗
) in Υ by

(𝑖, 𝑗) ∈ Υ. Define

𝑢
𝑖,𝑗
= 𝑢 (𝑥

𝑖
, 𝑦
𝑗
) ,

𝑓
𝑖,𝑗
(𝑢
𝑖,𝑗
) = 𝑓 (𝑥

𝑖
, 𝑦
𝑗
, 𝑢 (𝑥
𝑖
, 𝑦
𝑗
)) ,

𝑔
𝑖,𝑗
= 𝑔 (𝑥

𝑖
, 𝑦
𝑗
) .

(4)

The finite difference method for differential and boundary
operators in (1) leads to a discrete system in the form

𝑎
𝑖𝑗
𝑢
𝑖𝑗
− 𝑏
𝑖𝑗
𝑢
𝑖−1,𝑗

− 𝑏
󸀠

𝑖𝑗
𝑢
𝑖+1,𝑗

− 𝑐
𝑖𝑗
𝑢
𝑖,𝑗−1

− 𝑐
󸀠

𝑖𝑗
𝑢
𝑖,𝑗+1

= ℎ𝑘𝑓
𝑖𝑗
(𝑢
𝑖𝑗
) + 𝑔
∗

𝑖𝑗
,

(5)

for all (𝑖, 𝑗) ∈ Υ, where the coefficients 𝑎
𝑖𝑗
, 𝑏
𝑖𝑗
, 𝑏󸀠
𝑖𝑗
, 𝑐
𝑖𝑗
, and 𝑐󸀠

𝑖𝑗
are

associated with the diffusion coefficients D(𝑙)
𝑖𝑗

≡ D(𝑙)(𝑥
𝑖
, 𝑦
𝑗
),

𝑙 = 1, 2, as well as the boundary coefficients 𝛼
𝑖𝑗
≡ 𝛼(𝑥

𝑖
, 𝑦
𝑗
)

and 𝛽
𝑖𝑗

≡ 𝛽(𝑥
𝑖
, 𝑦
𝑗
), 𝑔∗
𝑖𝑗
is associated with the boundary

functions 𝑔
𝑖𝑗
, and

𝑏
0𝑗
= 𝑏
󸀠

𝑛𝑗
= 𝑐
𝑖0
= 𝑐
󸀠

𝑖𝑚
= 0

for 𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚,

𝑔
∗

𝑖𝑗
= 0 for 𝑖 = 1, 2, . . . , 𝑛 − 1, 𝑗 = 1, 2, . . . , 𝑚 − 1.

(6)

Typical choice of the coefficients in (5) for the interior mesh
points is given by

𝑏
𝑖𝑗
= (

𝑘

ℎ
)D(1) (𝑥

𝑖
−
ℎ

2
, 𝑦
𝑗
) ,

𝑏
󸀠

𝑖𝑗
= (

𝑘

ℎ
)D(1) (𝑥

𝑖
+
ℎ

2
, 𝑦
𝑗
) ,

𝑐
𝑖𝑗
= (

ℎ

𝑘
)D(2) (𝑥

𝑖
, 𝑦
𝑗
−
𝑘

2
) ,

𝑐
󸀠

𝑖𝑗
= (

ℎ

𝑘
)D(2) (𝑥

𝑖
, 𝑦
𝑗
+
𝑘

2
) ,

𝑎
𝑖𝑗
= 𝑏
𝑖𝑗
+ 𝑏
󸀠

𝑖𝑗
+ 𝑐
𝑖𝑗
+ 𝑐
󸀠

𝑖𝑗
, ((𝑖, 𝑗) ∈ Υ)

(7)

(e.g., see [25]). For the boundary points (𝑥
𝑖
, 𝑦
𝑗
), where 𝑖 =

0, 𝑛 or 𝑗 = 0,𝑚, the above coefficients are associated with the
boundary coefficients 𝛼

𝑖𝑗
and 𝛽

𝑖𝑗
, and possess the property

(for the case 𝛼 > 0),
𝑎
𝑖𝑗
≥ 𝑏
𝑖𝑗
+ 𝑏
󸀠

𝑖𝑗
+ 𝑐
𝑖𝑗
+ 𝑐
󸀠

𝑖𝑗
for 𝑖 = 0, 𝑛 or 𝑗 = 0,𝑚. (8)

Furthermore, strict inequality in (8) holds for at least one (𝑖, 𝑗)
when the boundary condition is not of pure Neumann con-
dition. In either case, these coefficients satisfy the condition

𝑏
𝑖𝑗
≥ 0, 𝑏

󸀠

𝑖𝑗
≥ 0, 𝑏

𝑖𝑗
+ 𝑏
󸀠

𝑖𝑗
> 0,

𝑐
𝑖𝑗
≥ 0, 𝑐

󸀠

𝑖𝑗
≥ 0,

𝑎
𝑖𝑗
≥ 𝑏
𝑖𝑗
+ 𝑏
󸀠

𝑖𝑗
+ 𝑐
𝑖𝑗
+ 𝑐
󸀠

𝑖𝑗
, ((𝑖, 𝑗) ∈ Υ) .

(9)
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Condition (9) is our basic hypothesis for the boundedness
and the convergence of the SORMI sequence. Nowwe rewrite
system (5) in a compact form:

𝐴𝑈 = 𝐹 (𝑈) + 𝐺
∗
. (10)

Definition 1. A real 𝑛 × 𝑛 matrix 𝐴 = (𝑎
𝑖𝑗
) with 𝑎

𝑖𝑗
≤ 0 for

all 𝑖 ̸= 𝑗 and 𝑎
𝑖𝑖
> 0 for all 1 ≤ 𝑖 ≤ 𝑛 is an M-matrix if 𝐴 is

nonsingular, and 𝐴−1 ≥ 0 [2].

Obviously,𝐴 is a diagonally dominant with strict inequal-
ity for at least one (𝑖, 𝑗). Since the domain Υ is connected,
the above property implies that 𝐴 is nonsingular, and 𝐴

−1
≥

0. Hence, 𝐴 is an M-matrix. This implies that for any
nonnegative diagonal matrix D, (𝐴 + D)

−1 exists and is
nonnegative.

Remark 2. Nonnegative matrices play a crucial role in the
theory of matrices. They are important in the study of
convergence of iterative methods and arise in many appli-
cations including economics, queuing theory, and chemical
engineering. Let 𝐴 = (𝑎

𝑖𝑗
) and 𝐵 = (𝑏

𝑖𝑗
) be two real 𝑛 × 𝑟

matrices. Then, 𝐴 ≥ 𝐵 (𝐴 > 𝐵) if 𝑎
𝑖𝑗

≥ 𝑏
𝑖𝑗
(> 𝑏
𝑖𝑗
) for

all 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑟. If 𝑂 is the null matrix and
𝐴 ≥ 𝑂 (> 𝑂), we say that 𝐴 is a nonnegative (positive)
matrix. Since column vectors are 𝑛 × 1 matrices, we will
use the terms nonnegative and positive vector throughout. A
theorem which has important consequences on the analysis
of iterative methods should be stated. Let 𝐵 be a nonnegative
matrix. Then 𝜌(𝐵) < 1 if and only if 𝐼 − 𝐵 is nonsingular and
(𝐼−𝐵)

−1 is nonnegative, where 𝜌(𝐵) is the spectral radius of𝐵.

Remark 3. In reality, the four conditions in the definition of
M-matrix are somewhat redundant, and equivalent condi-
tions that are more rigorous will be (i) 𝑎

𝑖𝑗
≤ 0 for all 𝑖 ̸= 𝑗,

(ii) 𝐴 is nonsingular, and (iii) 𝐴−1 ≥ 0. The condition, 𝑎
𝑖𝑖
> 0

for all 𝑖, is implied by the other three. Moreover, let 𝐷 be the
diagonal of𝐴, and𝐵 ≡ 𝐼−𝐷

−1
𝐴.We can also obtain 𝜌(𝐵) < 1.

A comparison theorem is as follows.
Let 𝐴 and 𝐵 be two 𝑛 × 𝑛M-matrices, with 𝐴 ≥ 𝐵. Then

we have 𝐵−1 ≥ 𝐴
−1.

Remark 4. Let us look in more detail at the algebraic system
(10) [26, 27].The connectedness assumption ofΩ ensures that
𝐴 is irreducible. Condition (9) implies that 𝐴 is irreducibly
diagonally dominant [28]. Let 𝐴 = D − B, where D is the
diagonal matrix of 𝐴. It can be shown that 0 < 𝜌(B) < 1,
using Perron-Frobenius theorem and the theory of regular
splittings. A theorem states the following.

If 𝐴 = (𝑎
𝑖𝑗
) is a real 𝑛 × 𝑛matrix with 𝑎

𝑖𝑗
≤ 0 for all 𝑖 ̸= 𝑗,

then the following are equivalent.

(i) 𝐴 is nonsingular, and 𝐴−1 > 0.

(ii) The diagonal entries of 𝐴 are positive real numbers.
B is nonnegative, irreducible, and convergent.

Thus, we know that 𝐴 is a diagonally dominantM-matrix.

3. The SORMI Method

We now arrive to construct the SORMI sequence.

Definition 5. A vector 𝑈̃ ≡ (𝑢̃
00
, 𝑢̃
10
, . . . , 𝑢̃

𝑛0
, . . . , 𝑢̃

0𝑚
, 𝑢̃
1𝑚
,

. . . , 𝑢̃
𝑛𝑚
)
𝑇 with (𝑛+1)×(𝑚+1) components is called an upper

solution of (10) if

𝐴𝑈̃ ≥ 𝐹 (𝑈̃) + 𝐺
∗
, (11)

and 𝑈̂ ≡ (𝑢̂
00
, 𝑢̂
10
, . . . , 𝑢̂

𝑛0
, . . . , 𝑢̂

0𝑚
, 𝑢̂
1𝑚
, . . . , 𝑢̂

𝑛𝑚
)
𝑇 is called a

lower solution of (10) if

𝐴𝑈̂ ≤ 𝐹 (𝑈̂) + 𝐺
∗
. (12)

We say that 𝑈̃ and 𝑈̂ are ordered if 𝑈̃ ≥ 𝑈̂. Given any ordered
upper and lower solutions 𝑈̃, 𝑈̂, we set

⟨𝑈̂, 𝑈̃⟩ ≡ {𝑈 : 𝑈̂ ≤ 𝑈 ≤ 𝑈̃} . (13)

Define

𝛾
𝑖𝑗
≡ max{−

𝜕𝑓
𝑖𝑗

𝜕𝑢
(𝑢
𝑖𝑗
) : 𝑢̂
𝑖𝑗
≤ 𝑢
𝑖𝑗
≤ 𝑢̃
𝑖𝑗
} ,

𝛾
+

𝑖𝑗
≡ max {0, 𝛾

𝑖𝑗
} ,

Γ ≡ ℎ𝑘 ⋅ diag (𝛾
00
, 𝛾
10
, . . . , 𝛾

𝑛0
, 𝛾
01
,

𝛾
11
, . . . , 𝛾

𝑛1
, . . . , 𝛾

0𝑚
, 𝛾
1𝑚
, . . . , 𝛾

𝑛𝑚
) ,

(14)

where 𝛾
𝑖𝑗
is any nonnegative scalar satisfying 𝛾

𝑖𝑗
≥ 𝛾
+

𝑖𝑗
, and

𝑢̃
𝑖𝑗
and 𝑢̂

𝑖𝑗
are the components of 𝑈̃ and 𝑈̂, respectively. Then

problem (10) is equivalent to

(𝐴 + Γ)𝑈 = Γ𝑈 + 𝐹 (𝑈) + 𝐺
∗
. (15)

Suppose that 𝐴 can be written in the splitting form 𝐴 =

D−L−U, whereD,−L, and−U are the diagonal, lower-off-
diagonal, and upper-off-diagonal matrices of 𝐴, respectively.
The elements of D are positive, and those of L and U are
nonnegative. Given an initial iterate vector 𝑈

(0), the SOR
method for solving the linear system 𝐴𝑈 = 𝑏 is

(D − 𝜔L) 𝑈
(𝑚+1)

𝐿
= [(1 − 𝜔)D + 𝜔U] 𝑈

(𝑚)

𝐿
+ 𝜔𝑏, (16)

where 𝜔 is a relaxation factor, and 𝑈(0)
𝐿

= 𝑈
(0). Moreover, the

Gauss-SeidelMImethod for solving the nonlinear system (15)
is defined by

(D + Γ −L) 𝑈
(𝑚+1)

𝐺𝑆
= (Γ +U) 𝑈

(𝑚)

𝐺𝑆
+ 𝐹 (𝑈

(𝑚)

𝐺𝑆
) + 𝐺
∗
. (17)

Thus, we define the SORMImethod for solving the nonlinear
system (15) by

(D + Γ − 𝜔L) 𝑈
(𝑚+1)

𝑠
= [(1 − 𝜔) (D + Γ) + 𝜔U] 𝑈

(𝑚)

𝑠

+ 𝜔 [Γ𝑈
(𝑚)

𝑠
+ 𝐹 (𝑈

(𝑚)

𝑠
) + 𝐺
∗
] .

(18)
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4. The Boundedness of the SORMI Sequences

Before the convergence analysis of the method, we want to
ask whether the SORMI sequences are bounded. Now we
consider the property.

Lemma 6. Given a pair of upper and lower solutions 𝑈̃, 𝑈̂ of
(10), let U, V be two vectors with (𝑛 + 1) × (𝑚+1) components,
and 𝑈̃ ≥ 𝑈 ≥ 𝑉 ≥ 𝑈̂. Then

Γ𝑈 + 𝐹 (𝑈) ≥ Γ𝑉 + 𝐹 (𝑉) . (19)

Proof. Let 𝑢
𝑖𝑗

and V
𝑖𝑗

be the components of 𝑈 and 𝑉,
respectively. By the mean value theorem,

−[

𝑓 (𝑥
𝑖
, 𝑦
𝑗
, 𝑢
𝑖𝑗
) − 𝑓 (𝑥

𝑖
, 𝑦
𝑗
, V
𝑖𝑗
)

𝑢
𝑖𝑗
− V
𝑖𝑗

] = −

𝜕𝑓
𝑖𝑗

𝜕𝑢
(𝑤
𝑖𝑗
) , (20)

where𝑤
𝑖𝑗
lies between V

𝑖𝑗
and 𝑢
𝑖𝑗
. From (14), we have 𝛾

𝑖𝑗
≥ 𝛾
+

𝑖𝑗
.

Hence

−ℎ𝑘[

𝑓 (𝑥
𝑖
, 𝑦
𝑗
, 𝑢
𝑖𝑗
) − 𝑓 (𝑥

𝑖
, 𝑦
𝑗
, V
𝑖𝑗
)

𝑢
𝑖𝑗
− V
𝑖𝑗

] ≤ ℎ𝑘𝛾
+

𝑖𝑗
≤ ℎ𝑘𝛾

𝑖𝑗
,

ℎ𝑘𝛾
𝑖𝑗
⋅ 𝑢
𝑖𝑗
+ ℎ𝑘𝑓

𝑖𝑗
(𝑢
𝑖𝑗
) ≥ ℎ𝑘𝛾

𝑖𝑗
⋅ V
𝑖𝑗
+ ℎ𝑘𝑓

𝑖𝑗
(V
𝑖𝑗
) .

(21)

This completes the proof.

In [2, page 83], the theorem is stated as follows.

Theorem 7. If 𝐴 ≥ 𝑂 is an 𝑛 × 𝑛matrix, then 𝜅 > 𝜌(𝐴) if and
only if 𝜅𝐼 − 𝐴 is nonsingular, and (𝜅𝐼 − 𝐴)

−1
≥ 𝑂, where 𝜌(𝐴)

is a spectral radius of 𝐴.

Hence, we quote the above theorem to obtain the follow-
ing lemma.

Lemma 8. The matrix (D + Γ − 𝜔L) in (18) is nonsingular,
and (D + Γ − 𝜔L)

−1 is nonnegative for 0 < 𝜔 < 2.

Proof. From the splitting form of𝐴 and (14), we have (D+Γ−

𝜔L) = (𝑎
𝑖𝑗
+ℎ𝑘𝛾
𝑖𝑗
)𝐼−𝜔L, 𝑖 = 0, 1, 2, . . . , 𝑛, 𝑗 = 0, 1, 2, . . . , 𝑚,

where 𝑎
𝑖𝑗
+ ℎ𝑘𝛾

𝑖𝑗
> 0. Since 0 < 𝜔 < 2, 𝜔L ≥ 𝑂,

and 𝜔L is a strictly lower triangle matrix. It follows that all
eigenvalues of 𝜔L are zeros, and thus 𝜌(𝜔L) = 0. Hence,
𝑎
𝑖𝑗
+ ℎ𝑘𝛾

𝑖𝑗
> 𝜌(𝜔L). By Theorem 7, (D + Γ − 𝜔L)

−1
=

[(𝑎
𝑖𝑗
+ ℎ𝑘𝛾

𝑖𝑗
)𝐼 − 𝜔L]

−1
≥ 𝑂.

Definition 9. Let the vector 𝑈 = (𝑢
00
, 𝑢
10
, . . . , 𝑢

𝑛0
, . . .,

𝑢
0𝑚
, 𝑢
1𝑚
, . . . , 𝑢

𝑛𝑚
)
𝑇. We define |𝑈| = (|𝑢

00
|, |𝑢
10
|, . . . , |𝑢

𝑛0
|,

. . . , |𝑢
0𝑚
|, |𝑢
1𝑚
|, . . . , |𝑢

𝑛𝑚
|)
𝑇.

Definition 10. Let 𝑈 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
)
𝑇
∈ R𝑛. The vector 2-

norm is usually defined by ‖𝑈‖ = (Σ
𝑛

𝑖=1
𝑢
2

𝑖
)
1/2.

Definition 11. Let ‖ ⋅‖ be a vector 2-norm.The inducedmatrix
2-norm of an 𝑛 × 𝑛matrix 𝐴 is defined by

‖𝐴‖ = sup
𝑈 ̸= 0

‖𝐴𝑈‖

‖𝑈‖
. (22)

Let {𝑈(𝑚)
𝑠

}
∞

𝑚=0
be a sequence generated by the SORMImethod

with initial vector 𝑈(0)
𝑠

∈ ⟨𝑈̂, 𝑈̃⟩, where 𝑈̃, 𝑈̂ are upper and
lower solutions of (10), respectively. We have the following.

Lemma 12. ‖𝑈‖ ≤ ‖|𝑈̂| + |𝑈̃|‖ for any 𝑈 ∈ ⟨𝑈̂, 𝑈̃⟩. In fact,
‖𝑈‖ = ‖|𝑈|‖.

Proof. Let 𝑈 = (𝑢
00
, 𝑢
10
, . . . , 𝑢

𝑛0
, . . . , 𝑢

0𝑚
, 𝑢
1𝑚
, . . . , 𝑢

𝑛𝑚
)
𝑇,

𝑈̂ = (𝑢̂
00
, 𝑢̂
10
, . . . , 𝑢̂

𝑛0
, . . . , 𝑢̂

0𝑚
, 𝑢̂
1𝑚
, . . . , 𝑢̂

𝑛𝑚
)
𝑇, 𝑈̃ = (𝑢̃

00
, 𝑢̃
10
,

. . . , 𝑢̃
𝑛0
, . . . , 𝑢̃

0𝑚
, 𝑢̃
1𝑚
, . . . , 𝑢̃

𝑛𝑚
)
𝑇. Since 𝑈 ∈ ⟨𝑈̂, 𝑈̃⟩, 𝑢̂

𝑖𝑗
≤

𝑢
𝑖𝑗
≤ 𝑢̃
𝑖𝑗
for all 𝑖 = 0, 1, 2, . . . , 𝑛, 𝑗 = 0, 1, 2, . . . , 𝑚. Hence,

𝑢
𝑖𝑗
≤
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
≤ max {󵄨󵄨󵄨󵄨󵄨𝑢̂𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
,
󵄨󵄨󵄨󵄨󵄨
𝑢̃
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
} ≤

󵄨󵄨󵄨󵄨󵄨
𝑢̂
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑢̃
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
,

(

𝑛

∑

𝑖=0

𝑚

∑

𝑗=0

𝑢
2

𝑖𝑗
)

1/2

≤ [

[

𝑛

∑

𝑖=0

𝑚

∑

𝑗=0

(
󵄨󵄨󵄨󵄨󵄨
𝑢̂
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑢̃
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
)
2
]

]

1/2

;

(23)

that is, ‖𝑈‖ ≤ ‖|𝑈̂| + |𝑈̃|‖ for any 𝑈 ∈ ⟨𝑈̂, 𝑈̃⟩.

To prove that the SORMI sequences are bounded, we
must define several values about matrix and vector norms.

Notations and Assumptions. (a) Let 𝑀
1

def
= ‖𝑈̂‖ + ‖𝑈̃‖. By

Lemma 12,
󵄩󵄩󵄩󵄩󵄩
𝑈
(0)

𝑠

󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨
𝑈̂
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑈̃
󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩
𝑈̂
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑈̃
󵄩󵄩󵄩󵄩󵄩
= 𝑀
1
. (24)

(b) In (H1), we assume that 𝑓
𝑖𝑗
(𝑢
𝑖𝑗
) is uniformly bounded for

−∞ < 𝑢
𝑖𝑗
< ∞, and 𝑔

∗

𝑖𝑗
is known boundary value; that is,

there exists 𝛿 > 0 such that |ℎ𝑘𝑓
𝑖𝑗
(𝑢
𝑖𝑗
) + 𝑔
∗

𝑖𝑗
| ≤ 𝛿 for −∞ <

𝑢
𝑖𝑗
< ∞, where ℎ and 𝑘 are mesh sizes. By Definition 10, (5)

and (10), we have

󵄩󵄩󵄩󵄩𝐹 (𝑈) + 𝐺
∗󵄩󵄩󵄩󵄩 ≤ [(𝑛 + 1) × (𝑚 + 1) × 𝛿

2
]
1/2

= 𝛿√𝑁. (25)

(c) Define

𝑀
2
= ‖𝐸‖ =

󵄩󵄩󵄩󵄩󵄩
(D + Γ − 𝜔L)

−1󵄩󵄩󵄩󵄩󵄩
,

‖𝐵‖ =
󵄩󵄩󵄩󵄩󵄩
(D + Γ − 𝜔L)

−1
[(1 − 𝜔)D + Γ + 𝜔U]

󵄩󵄩󵄩󵄩󵄩
,

(26)

and assume that

‖𝐵‖ < 1. (H3)

(d) Consider two vectors:

𝑈
1

def
= 𝑈̂ − 𝜔(D + Γ − 𝜔L)

−1
(D + Γ) (𝑈̃ − 𝑈̂) ,

𝑈
2

def
= 𝑈̃ + 𝜔(D + Γ − 𝜔L)

−1
(D + Γ) (𝑈̃ − 𝑈̂) .

(27)

Since 0 < 𝜔 < 2, (D + Γ − 𝜔L)
−1

≥ 𝑂, D + Γ ≥ 𝑂, and
𝑈̃ ≥ 𝑈̂, we know that [𝜔(D + Γ − 𝜔L)

−1
(D + Γ)(𝑈̃ − 𝑈̂)] is a

nonnegative vector. It follows that 𝑈
1
≤ 𝑈̂ ≤ 𝑈̃ ≤ 𝑈

2
. Let

⟨𝑈
1
, 𝑈
2
⟩

def
= {𝑈 : 𝑈

1
≤ 𝑈 ≤ 𝑈

2
} ,

𝑀
3

def
=

󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑈1
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑈2
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩 .

(28)
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Then
𝑀
3
=
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑈1
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑈2
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑈1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑈2

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑈̂ − 𝜔(D + Γ − 𝜔L)

−1
(D + Γ) (𝑈̃ − 𝑈̂)

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑈̃ + 𝜔(D + Γ − 𝜔L)

−1
(D + Γ) (𝑈̃ − 𝑈̂)

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑈̂
󵄩󵄩󵄩󵄩󵄩
+ 𝜔

󵄩󵄩󵄩󵄩󵄩
(D + Γ − 𝜔L)

−1
(D + Γ)

󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩󵄩
𝑈̃
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑈̃
󵄩󵄩󵄩󵄩󵄩
)

+
󵄩󵄩󵄩󵄩󵄩
𝑈̃
󵄩󵄩󵄩󵄩󵄩
+ 𝜔

󵄩󵄩󵄩󵄩󵄩
(D + Γ − 𝜔L)

−1
(D + Γ)

󵄩󵄩󵄩󵄩󵄩
(
󵄩󵄩󵄩󵄩󵄩
𝑈̃
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑈̃
󵄩󵄩󵄩󵄩󵄩
)

< ∞.

(29)

(e) Define

𝑀
4
= max {𝑀

1
, 2𝛿√𝑁𝑀

2
} . (30)

Theorem 13. Let 𝑈̃, 𝑈̂ be a pair of ordered upper and lower
solutions of (10), respectively, and let {𝑈(𝑚)

𝑠
}
∞

𝑚=0
be a sequence

generated by (18) with initial vector 𝑈(0)
𝑠

∈ ⟨𝑈̂, 𝑈̃⟩. Then, the
iterative sequence {𝑈(𝑚)

𝑠
}
∞

𝑚=0
is bounded for 0 < 𝜔 < 2.

Proof. By (28) and (30), we can choose a constant 𝑀 =

max{𝑀
3
,𝑀
4
/(1 − ‖𝐵‖)}.

Consider two cases of the sequence {𝑈(𝑚)
𝑠

}.

Case 1. Let 𝑈(𝑚−1)
𝑠

∈ ⟨𝑈̂, 𝑈̃⟩. Then

(D + Γ − 𝜔L) 𝑈
(𝑚)

𝑠
= [(1 − 𝜔) (D + Γ) + 𝜔U] 𝑈

(𝑚−1)

𝑠

+ 𝜔 [Γ𝑈
(𝑚−1)

𝑠
+ 𝐹 (𝑈

(𝑚−1)

𝑠
) + 𝐺
∗
]

≤ D𝑈
(𝑚−1)

𝑠
+ Γ𝑈
(𝑚−1)

𝑠
− 𝜔D𝑈

(𝑚−1)

𝑠

− 𝜔Γ𝑈
(𝑚−1)

𝑠
+ 𝜔U𝑈

(𝑚−1)

𝑠

+ 𝜔 [Γ𝑈̃ + 𝐹 (𝑈̃) + 𝐺
∗
]

≤ D𝑈
(𝑚−1)

𝑠
+ Γ𝑈
(𝑚−1)

𝑠
− 𝜔D𝑈

(𝑚−1)

𝑠

− 𝜔Γ𝑈
(𝑚−1)

𝑠
+ 𝜔U𝑈

(𝑚−1)

𝑠

+ 𝜔 [Γ𝑈̃ + 𝐴𝑈̃]

≤ D𝑈̃ + Γ𝑈̃ − 𝜔D𝑈̂ − 𝜔Γ𝑈̂ + 𝜔U𝑈̃

+ 𝜔Γ𝑈̃ + 𝜔D𝑈̃ − 𝜔L𝑈̃ − 𝜔U𝑈̃

= 𝜔 (D + Γ) (𝑈̃ − 𝑈̂)

+ (D + Γ − 𝜔L) 𝑈̃.

(31)

By (27) and (D + Γ − 𝜔L)
−1

≥ 0, we obtain

𝑈
(𝑚)

𝑠
≤ 𝑈̃ + 𝜔(D + Γ − 𝜔L)

−1
(D + Γ) (𝑈̃ − 𝑈̂) = 𝑈

2
. (32)

Similarly,

(𝐷 + Γ − 𝜔L) 𝑈
(𝑚)

𝑠
≥(D + Γ − 𝜔L) 𝑈̂ − 𝜔 (D + Γ) (𝑈̃ − 𝑈̂) ,

(33)

and thus

𝑈
(𝑚)

𝑠
≥ 𝑈̂ − 𝜔(D + Γ − 𝜔L)

−1
(D + Γ) (𝑈̃ − 𝑈̂) = 𝑈

1
.

(34)

So 𝑈
1
≤ 𝑈
(𝑚)

𝑠
≤ 𝑈
2
. By Lemma 12 and (28), we obtain

󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑚)

𝑠

󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑈1
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑈2
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩 = 𝑀
3
≤ 𝑀. (35)

Case 2. Let 𝑈(𝑚−1)
𝑠

∉ ⟨𝑈̂, 𝑈̃⟩. Then

(D + Γ − 𝜔L) 𝑈
(𝑚)

𝑠
= [(1 − 𝜔) (D + Γ) + 𝜔U] 𝑈

(𝑚−1)

𝑠

+ 𝜔 [Γ𝑈
(𝑚−1)

𝑠
+ 𝐹 (𝑈

(𝑚−1)

𝑠
) + 𝐺
∗
]

= [(1 − 𝜔)D + Γ + 𝜔U] 𝑈
(𝑚−1)

𝑠

+ 𝜔 [𝐹 (𝑈
(𝑚−1)

𝑠
) + 𝐺
∗
] .

(36)

By (26), we have

𝑈
(𝑚)

𝑠
= (D + Γ − 𝜔L)

−1
[(1 − 𝜔)D + Γ + 𝜔U] 𝑈

(𝑚−1)

𝑠

+ 𝜔(D + Γ − 𝜔L)
−1
[𝐹 (𝑈

(𝑚−1)

𝑠
) + 𝐺
∗
]

= 𝐵𝑈
(𝑚−1)

𝑠
+ 𝜔𝐸 [𝐹 (𝑈

(𝑚−1)

𝑠
) + 𝐺
∗
] .

(37)

Consider the iterative process. An induction argument gives

𝑈
(1)

𝑠
= 𝐵𝑈
(0)

𝑠
+ 𝜔𝐸 [𝐹 (𝑈

(0)

𝑠
) + 𝐺
∗
] ,

𝑈
(2)

𝑠
= 𝐵𝑈
(1)

𝑠
+ 𝜔𝐸 [𝐹 (𝑈

(1)

𝑠
) + 𝐺
∗
]

= 𝐵 {𝐵𝑈
(0)

𝑠
+ 𝜔𝐸 [𝐹 (𝑈

(0)

𝑠
) + 𝐺
∗
]}

+ 𝜔𝐸 [𝐹 (𝑈
(1)

𝑠
) + 𝐺
∗
]

= 𝐵
2
𝑈
(0)

𝑠
+ 𝜔𝐵𝐸 [𝐹 (𝑈

(0)

𝑠
) + 𝐺
∗
]

+ 𝜔𝐸 [𝐹 (𝑈
(1)

𝑠
) + 𝐺
∗
] ,

...

𝑈
(𝑚)

𝑠
= 𝐵
𝑚
𝑈
(0)

𝑠
+ 𝜔𝐵
𝑚−1

𝐸 [𝐹 (𝑈
(0)

𝑠
) + 𝐺
∗
]

+ 𝜔𝐵
𝑚−2

𝐸 [𝐹 (𝑈
(1)

𝑠
) + 𝐺
∗
]

+ ⋅ ⋅ ⋅ + 𝜔𝐵𝐸 [𝐹 (𝑈
(𝑚−2)

𝑠
) + 𝐺
∗
]

+ 𝜔𝐸 [𝐹 (𝑈
(𝑚−1)

𝑠
) + 𝐺
∗
] .

(38)
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Hence, fromDefinition 11, (H3), (24), (25), (26), (30), and 0 <
𝜔 < 2, we obtain

󵄩󵄩󵄩󵄩󵄩
𝑈
(1)

𝑠

󵄩󵄩󵄩󵄩󵄩
≤ ‖𝐵‖ ⋅

󵄩󵄩󵄩󵄩󵄩
𝑈
(0)

𝑠

󵄩󵄩󵄩󵄩󵄩
+ 𝜔 ⋅ ‖𝐸‖ ⋅

󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑈
(0)

𝑠
) + 𝐺
∗󵄩󵄩󵄩󵄩󵄩

≤ 𝑀
1 ‖𝐵‖ + 2𝛿√𝑁𝑀

2

≤ 𝑀
4
(‖𝐵‖ + 1) ≤

𝑀
4

1 − ‖𝐵‖
≤ 𝑀,

󵄩󵄩󵄩󵄩󵄩
𝑈
(2)

𝑠

󵄩󵄩󵄩󵄩󵄩
≤ ‖𝐵‖

2 󵄩󵄩󵄩󵄩󵄩
𝑈
(0)

𝑠

󵄩󵄩󵄩󵄩󵄩
+ 𝜔 ‖𝐵‖ ⋅ ‖𝐸‖ ⋅

󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑈
(0)

𝑠
) + 𝐺
∗󵄩󵄩󵄩󵄩󵄩

+ 𝜔 ‖𝐸‖ ⋅
󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑈
(1)

𝑠
) + 𝐺
∗󵄩󵄩󵄩󵄩󵄩

≤ 𝑀
1‖𝐵‖
2
+ 2𝛿√𝑁𝑀

2 ‖𝐵‖ + 2𝛿√𝑁𝑀
2

≤ 𝑀
4
(‖𝐵‖
2
+ ‖𝐵‖ + 1) ≤

𝑀
4

1 − ‖𝐵‖
≤ 𝑀,

...

󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑚)

𝑠

󵄩󵄩󵄩󵄩󵄩
≤ ‖𝐵‖

𝑚 󵄩󵄩󵄩󵄩󵄩
𝑈
(0)

𝑠

󵄩󵄩󵄩󵄩󵄩
+ 𝜔‖𝐵‖

𝑚−1
‖𝐸‖ ⋅

󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑈
(0)

𝑠
) + 𝐺
∗󵄩󵄩󵄩󵄩󵄩

+ 𝜔‖𝐵‖
𝑚−2

‖𝐸‖ ⋅
󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑈
(1)

𝑠
) + 𝐺
∗󵄩󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ + 𝜔 ‖𝐵‖ ⋅ ‖𝐸‖ ⋅
󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑈
(𝑚−2)

𝑠
) + 𝐺
∗󵄩󵄩󵄩󵄩󵄩

+ 𝜔 ‖𝐸‖ ⋅
󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑈
(𝑚−1)

𝑠
) + 𝐺
∗󵄩󵄩󵄩󵄩󵄩

≤ 𝑀
4
(‖𝐵‖
𝑚
+ ⋅ ⋅ ⋅ + ‖𝐵‖ + 1) ≤

𝑀
4

1 − ‖𝐵‖
≤ 𝑀.

(39)

Thus, by Cases 1 and 2, there exists𝑀 > 0, such that ‖𝑈(𝑚)
𝑠

‖ ≤

𝑀 for all𝑚 ∈ {0} ∪N, and the proof is completed.

5. The Convergence of the SORMI Sequences

In (H2), we assume that if |𝑢|, |V| ≤ 𝑐, then there is a function
H(𝑐), such that |𝑓(𝑥, 𝑦, 𝑢) − 𝑓(𝑥, 𝑦, V)| ≤ H(𝑐) ⋅ |𝑢 − V|.
From Theorem 13, we have shown the boundedness of the
SORMI sequences; that is, there exists a constant 𝑀 such
that ‖𝑈(𝑘)

𝑠
‖ < 𝑀 = max{𝑀

3
,𝑀
4
/(1 − ‖𝐵‖)}. Let 𝑐

𝑘
satisfy

max
0≤𝑖≤𝑚, 0≤𝑗≤𝑛

|𝑢
(𝑘)

𝑖𝑗
| ≤ 𝑐

𝑘
. So 0 ≤ 𝑐

𝑘
< 𝑀 for all 𝑘. Let

𝑐
0
= sup

𝑘=1,2,...
{𝑐
𝑘
}. 𝑐
0
exists and 0 ≤ 𝑐

0
< 𝑀. Hence, we can

find the constant 𝜆 def
= H(𝑐

0
). So we have

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑥
𝑖
, 𝑦
𝑗
, 𝑢
𝑖𝑗
) − 𝑓 (𝑥

𝑖
, 𝑦
𝑗
, V
𝑖𝑗
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝜆

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑖𝑗
− V
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨󵄨
ℎ𝑘𝑓 (𝑥

𝑖
, 𝑦
𝑗
, 𝑢
𝑖𝑗
) − ℎ𝑘𝑓 (𝑥

𝑖
, 𝑦
𝑗
, V
𝑖𝑗
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝜆ℎ𝑘

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑖𝑗
− V
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
,

|𝐹 (𝑈) − 𝐹 (𝑉)| ≤ 𝜆ℎ𝑘 |𝑈 − 𝑉| .

(40)

Then we obtain the inequality:

‖𝐹 (𝑈) − 𝐹 (𝑉)‖ = ‖|𝐹 (𝑈) − 𝐹 (𝑉)|‖

≤ 𝜆ℎ𝑘 ‖|𝑈 − 𝑉|‖ = 𝜆ℎ𝑘 ‖𝑈 − 𝑉‖ .

(41)

Theorem 14. Let 𝑈̃, 𝑈̂ be a pair of ordered upper and lower
solutions of (10), respectively, and let {𝑈(𝑚)

𝑠
}
∞

𝑚=0
be a sequence

generated by the SORMI method with initial vector 𝑈(0)
𝑠

∈

⟨𝑈̂, 𝑈̃⟩. Suppose that

𝜂
def
= ‖𝐵‖ + 𝜔𝜆ℎ𝑘 ‖𝐸‖ < 1, 0 < 𝜔 < 2, (H4)

where 𝐵 and 𝐸 are defined by (26). Then the sequence
{𝑈
(𝑚)

𝑠
}
∞

𝑚=0
is convergent for 0 < 𝜔 < 2.

Proof. By Theorem 13, {𝑈(𝑚)
𝑠

}
∞

𝑚=0
is bounded for 0 < 𝜔 < 2.

Hence, ∃𝑀 > 0, such that ‖𝑈(𝑚)
𝑠

‖ ≤ 𝑀 for all 𝑚 ∈ {0} ∪ N.
Since 𝜂 = ‖𝐵‖ + 𝜔𝜆ℎ𝑘‖𝐸‖ < 1, and 0 < 𝜔 < 2, then, for every
𝜀 > 0, ∃𝑁 ∈ N, such that 𝜂𝑛 < 𝜀/2𝑀 for all 𝑛 ≥ 𝑁. Let
𝑘 ≥ 𝑚 ≥ 𝑁. By (37), we have

𝑈
(𝑘)

𝑠
− 𝑈
(𝑚)

𝑠
= {𝐵𝑈

(𝑘−1)

𝑠
+ 𝜔𝐸 [𝐹 (𝑈

(𝑘−1)

𝑠
) + 𝐺
∗
]}

− {𝐵𝑈
(𝑚−1)

𝑠
+ 𝜔𝐸 [𝐹 (𝑈

(𝑚−1)

𝑠
) + 𝐺
∗
]}

= 𝐵 (𝑈
(𝑘−1)

𝑠
− 𝑈
(𝑚−1)

𝑠
)

+ 𝜔𝐸 [𝐹 (𝑈
(𝑘−1)

𝑠
) − 𝐹 (𝑈

(𝑚−1)

𝑠
)] .

(42)

Hence, from 0 < 𝜔 < 2 and (41), we obtain
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑘)

𝑠
− 𝑈
(𝑚)

𝑠

󵄩󵄩󵄩󵄩󵄩
=
󵄩󵄩󵄩󵄩󵄩
𝐵 (𝑈
(𝑘−1)

𝑠
− 𝑈
(𝑚−1)

𝑠
)

+ 𝜔𝐸 [𝐹 (𝑈
(𝑘−1)

𝑠
) − 𝐹 (𝑈

(𝑚−1)

𝑠
)]
󵄩󵄩󵄩󵄩󵄩

≤ ‖𝐵‖ ⋅
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑘−1)

𝑠
− 𝑈
(𝑚−1)

𝑠

󵄩󵄩󵄩󵄩󵄩

+ 𝜔 ‖𝐸‖ ⋅
󵄩󵄩󵄩󵄩󵄩
𝐹 (𝑈
(𝑘−1)

𝑠
) − 𝐹 (𝑈

(𝑚−1)

𝑠
)
󵄩󵄩󵄩󵄩󵄩

≤ ‖𝐵‖ ⋅
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑘−1)

𝑠
− 𝑈
(𝑚−1)

𝑠

󵄩󵄩󵄩󵄩󵄩

+ 𝜔𝜆ℎ𝑘 ‖𝐸‖ ⋅
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑘−1)

𝑠
− 𝑈
(𝑚−1)

𝑠

󵄩󵄩󵄩󵄩󵄩

= (‖𝐵‖ + 𝜔𝜆ℎ𝑘 ‖𝐸‖) ⋅
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑘−1)

𝑠
− 𝑈
(𝑚−1)

𝑠

󵄩󵄩󵄩󵄩󵄩

= 𝜂
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑘−1)

𝑠
− 𝑈
(𝑚−1)

𝑠

󵄩󵄩󵄩󵄩󵄩
.

(43)

Inductively we have
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑘)

𝑠
− 𝑈
(𝑚)

𝑠

󵄩󵄩󵄩󵄩󵄩
≤ 𝜂
𝑚 󵄩󵄩󵄩󵄩󵄩

𝑈
(𝑘−𝑚)

𝑠
− 𝑈
(0)

𝑠

󵄩󵄩󵄩󵄩󵄩
. (44)

Hence,
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑘)

𝑠
− 𝑈
(𝑚)

𝑠

󵄩󵄩󵄩󵄩󵄩
≤ 𝜂
𝑚 󵄩󵄩󵄩󵄩󵄩

𝑈
(𝑘−𝑚)

𝑠
− 𝑈
(0)

𝑠

󵄩󵄩󵄩󵄩󵄩

≤ 𝜂
𝑚
(
󵄩󵄩󵄩󵄩󵄩
𝑈
(𝑘−𝑚)

𝑠

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑈
(0)

𝑠

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝜂
𝑚
× 2𝑀 <

𝜀

2𝑀
× 2𝑀 = 𝜀.

(45)

We have proved that {𝑈(𝑚)
𝑠

}
∞

𝑚=0
is a Cauchy sequence for 0 <

𝜔 < 2. It implies that {𝑈(𝑚)
𝑠

}
∞

𝑚=0
is convergent for 0 < 𝜔 <

2.
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Furthermore, we provide another proof about the con-
vergence of the SORMI sequences for 0 < 𝜔 < 1 without
the assumptions (H3) and (H4). Denote the sequence by
{𝑈
(𝑚)

𝑠
}
∞

𝑚=0
when 𝑈

(0)
= 𝑈̃ and by {𝑈(𝑚)

𝑠
}
∞

𝑚=0
when 𝑈

(0)
= 𝑈̂,

and refer to them as the maximal and minimal sequences,
respectively. The following theorem gives some monotone
property of these sequences.

Theorem 15. The maximal and minimal sequences {𝑈(𝑚)
𝑠

}
∞

𝑚=0

and {𝑈
(𝑚)

𝑠
}
∞

𝑚=0
given by (18) with 𝑈̃ = 𝑈

(0)

𝑠
and 𝑈̂ = 𝑈

(0)

𝑠

possess the monotone property

𝑈̂ ≤ 𝑈
(𝑚)

𝑠
≤ 𝑈
(𝑚+1)

𝑠
≤ 𝑈
(𝑚+1)

𝑠
≤ 𝑈
(𝑚)

𝑠
≤ 𝑈̃, 𝑚 = 1, 2, . . . .

(46)

Moreover for each 𝑚, 𝑈(𝑚)
𝑠

and 𝑈
(𝑚)

𝑠
are ordered upper and

lower solutions.

Proof. We will use induction to complete the proof of mono-
tone property. First, let𝑊(0) = 𝑈

(0)

𝑠
− 𝑈
(1)

𝑠
= 𝑈̃ − 𝑈

(1)

𝑠
. From

(11), (18), and 0 < 𝜔 < 1,

(D + Γ − 𝜔L)𝑊
(0)

= (D + Γ − 𝜔L) 𝑈̃ − (D + Γ − 𝜔L) 𝑈
(1)

𝑠

= (D + Γ − 𝜔L) 𝑈̃

− { [(1 − 𝜔) (D + Γ) + 𝜔U] 𝑈
(0)

𝑠

+ 𝜔 [Γ𝑈
(0)

𝑠
+ 𝐹 (𝑈

(0)

𝑠
) + 𝐺
∗
]}

= 𝜔 (D −L −U) 𝑈̃ − 𝜔 [𝐹 (𝑈̃) + 𝐺
∗
]

= 𝜔 {𝐴𝑈̃ − [𝐹 (𝑈̃) + 𝐺
∗
]} ≥ 0.

(47)

By Lemma 8, we obtain 𝑊
(0)

≥ 0. This leads to 𝑈
(1)

𝑠
≤ 𝑈
(0)

𝑠
.

Similarly let 𝑉(0) = 𝑈
(0)

𝑠
− 𝑈
(1)

𝑠
= 𝑈̂ − 𝑈

(1)

𝑠
, and use (12) to

obtain

(D + Γ − 𝜔L) 𝑉
(0)

= 𝜔 {𝐴𝑈̂ − [𝐹 (𝑈̂) + 𝐺
∗
]} ≤ 0. (48)

Since (D+Γ−𝜔L)
−1

≥ 0, it implies that𝑈(1)
𝑠

≥ 𝑈
(0)

𝑠
. Secondly,

let𝑊(1) = 𝑈
(1)

𝑠
− 𝑈
(1)

𝑠
. By (18),

(D + Γ − 𝜔L)𝑊
(1)

= (D + Γ − 𝜔L) 𝑈
(1)

𝑠

− (D + Γ − 𝜔L) 𝑈
(1)

𝑠

= { [(1 − 𝜔) (D + Γ) + 𝜔U] 𝑈
(0)

𝑠

+𝜔 [Γ𝑈
(0)

𝑠
+ 𝐹 (𝑈

(0)

𝑠
) + 𝐺
∗
]}

− { [(1 − 𝜔) (D + Γ) + 𝜔U] 𝑈
(0)

𝑠

+𝜔 [Γ𝑈
(0)

𝑠
+ 𝐹 (𝑈

(0)

𝑠
) + 𝐺
∗
]}

= {(1 − 𝜔) (D + Γ) + 𝜔U}

× (𝑈
(0)

𝑠
− 𝑈
(0)

𝑠
)

+ 𝜔 [Γ (𝑈
(0)

𝑠
− 𝑈
(0)

𝑠
) + 𝐹 (𝑈

(0)

𝑠
)

−𝐹 (𝑈
(0)

𝑠
) ] .

(49)

We have from Lemma 6, 𝑈(0)
𝑠

≥ 𝑈
(0)

𝑠
, and the nonnegative

property of [(1 − 𝜔)(D + Γ) + 𝜔U] that (D + Γ − 𝜔L)𝑊
(1)

≥

0. It follows from Lemma 8 again that 𝑊(1) ≥ 0. The above
conclusions imply that

𝑈
(0)

𝑠
≤ 𝑈
(1)

𝑠
≤ 𝑈
(1)

𝑠
≤ 𝑈
(0)

𝑠
. (50)

We finally assume that 𝑈(𝑚−1)
𝑠

≤ 𝑈
(𝑚)

𝑠
≤ 𝑈
(𝑚)

𝑠
≤ 𝑈
(𝑚−1)

𝑠
for

some𝑚 > 1. Let𝑊(𝑚) = 𝑈
(𝑚)

𝑠
− 𝑈
(𝑚+1)

𝑠
, and by (18) we have

(D + Γ − 𝜔L)𝑊
(𝑚)

= {(1 − 𝜔) (D + Γ) + 𝜔U}

× (𝑈
(𝑚−1)

𝑠
− 𝑈
(𝑚)

𝑠
)

+ 𝜔 [Γ (𝑈
(𝑚−1)

𝑠
− 𝑈
(𝑚)

𝑠
)

+𝐹 (𝑈
(𝑚−1)

𝑠
) − 𝐹 (𝑈

(𝑚)

𝑠
)] .

(51)

Since 𝑈(𝑚)
𝑠

≤ 𝑈
(𝑚−1)

𝑠
, we have (D + Γ − 𝜔L)𝑊

(𝑚)
≥ 0. So

𝑊
(𝑚)

≥ 0 which shows that 𝑈(𝑚+1)
𝑠

≤ 𝑈
(𝑚)

𝑠
. Similarly, let

𝑉
(𝑚)

= 𝑈
(𝑚)

𝑠
−𝑈
(𝑚+1)

𝑠
and𝑊(𝑚+1) = 𝑈

(𝑚+1)

𝑠
−𝑈
(𝑚+1)

𝑠
simultane-

ously. We see that

(D + Γ − 𝜔L) 𝑉
(𝑚)

= {(1 − 𝜔) (D + Γ) + 𝜔U}

× (𝑈
(𝑚−1)

𝑠
− 𝑈
(𝑚)

𝑠
)

+ 𝜔 [Γ (𝑈
(𝑚−1)

𝑠
− 𝑈
(𝑚)

𝑠
)

+𝐹 (𝑈
(𝑚−1)

𝑠
) − 𝐹 (𝑈

(𝑚)

𝑠
)]

≤ 0,

(D + Γ − 𝜔L)𝑊
(𝑚+1)

= {(1 − 𝜔) (D + Γ) + 𝜔U}

× (𝑈
(𝑚)

𝑠
− 𝑈
(𝑚)

𝑠
)

+ 𝜔 [Γ (𝑈
(𝑚)

𝑠
− 𝑈
(𝑚)

𝑠
)

+ 𝐹 (𝑈
(𝑚)

𝑠
) − 𝐹 (𝑈

(𝑚)

𝑠
)]

≥ 0.

(52)
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By (D + Γ − 𝜔L)
−1

≥ 0, we have 𝑉(𝑚) ≤ 0, and𝑊
(𝑚+1)

≥ 0.
Hence, 𝑈(𝑚)

𝑠
≤ 𝑈
(𝑚+1)

𝑠
, and 𝑈

(𝑚+1)

𝑠
≥ 𝑈
(𝑚+1)

𝑠
. The proof of

monotone property (46) is completed.
To show that 𝑈(𝑚)

𝑠
is an upper solution for each 𝑚, we

observe from (18) that

(D + Γ − 𝜔L) 𝑈
(𝑚)

𝑠
= { [(1 − 𝜔) (D + Γ) + 𝜔U] 𝑈

(𝑚−1)

𝑠

+𝜔 [Γ𝑈
(𝑚−1)

𝑠
+ 𝐹 (𝑈

(𝑚−1)

𝑠
) + 𝐺
∗
]} ,

𝜔D𝑈
(𝑚)

𝑠
− 𝜔L𝑈

(𝑚)

𝑠
= 𝜔D𝑈

(𝑚)

𝑠
−D𝑈

(𝑚)

𝑠

+D𝑈
(𝑚−1)

𝑠
− 𝜔D𝑈

(𝑚−1)

𝑠

+ Γ𝑈
(𝑚−1)

𝑠
− Γ𝑈
(𝑚)

𝑠
+ 𝜔U𝑈

(𝑚−1)

𝑠

+ 𝜔𝐹 (𝑈
(𝑚−1)

𝑠
) + 𝜔𝐺

∗
,

𝜔D𝑈
(𝑚)

𝑠
− 𝜔L𝑈

(𝑚)

𝑠
= (1 − 𝜔)D (𝑈

(𝑚−1)

𝑠
− 𝑈
(𝑚)

𝑠
)

+ 𝜔U𝑈
(𝑚−1)

𝑠
+ Γ (𝑈

(𝑚−1)

𝑠
− 𝑈
(𝑚)

𝑠
)

+ 𝜔𝐹 (𝑈
(𝑚−1)

𝑠
) + 𝜔𝐺

∗
.

(53)

By 0 < 𝜔 < 1 and (46), we obtain

𝜔D𝑈
(𝑚)

𝑠
− 𝜔L𝑈

(𝑚)

𝑠
≥ 𝜔U𝑈

(𝑚)

𝑠
+ 𝜔Γ (𝑈

(𝑚−1)

𝑠
− 𝑈
(𝑚)

𝑠
)

+ 𝜔𝐹 (𝑈
(𝑚−1)

𝑠
) + 𝜔𝐺

∗
,

𝜔 (D −L −U) 𝑈
(𝑚)

𝑠
≥ 𝜔 [Γ (𝑈

(𝑚−1)

𝑠
− 𝑈
(𝑚)

𝑠
)

+𝐹 (𝑈
(𝑚−1)

𝑠
) + 𝐺
∗
] ,

𝐴𝑈
(𝑚)

𝑠
≥ Γ (𝑈

(𝑚−1)

𝑠
− 𝑈
(𝑚)

𝑠
) + 𝐹 (𝑈

(𝑚−1)

𝑠
) + 𝐺
∗
.

(54)

By Lemma 6, we have

𝐴𝑈
(𝑚)

𝑠
≥ 𝐹 (𝑈

(𝑚)

𝑠
) + 𝐺
∗
. (55)

This shows that 𝑈(𝑚)
𝑠

is an upper solution for each 𝑚. Simi-
larly, we have

𝐴𝑈
(𝑚)

𝑠
≤ 𝐹 (𝑈

(𝑚)

𝑠
) + 𝐺
∗
; (56)

that is, for each𝑚,𝑈(𝑚)
𝑠

is a lower solution, and thus the proof
is completed.

Theorem 16. Let 𝑈̃, 𝑈̂ be a pair of ordered upper and lower
solutions of (10). Then the sequences {𝑈

(𝑚)

𝑠
}
∞

𝑚=0
, {𝑈(𝑚)
𝑠

}
∞

𝑚=0

given by (18) with 𝑈(0)
𝑠

= 𝑈̃ and 𝑈(0)
𝑠

= 𝑈̂ converge monotoni-
cally to solutions 𝑈

𝑠
and 𝑈

𝑠
of (10), respectively, where

𝑈
𝑠

def
= (𝑢
00
, 𝑢
10
, . . . , 𝑢

𝑛0
, . . . , 𝑢

0𝑚
, 𝑢
1𝑚
, . . . , 𝑢

𝑛𝑚
)
𝑇

,

𝑈
𝑠

def
= (𝑢
00
, 𝑢
10
, . . . , 𝑢

𝑛0
, . . . , 𝑢

0𝑚
, 𝑢
1𝑚
, . . . , 𝑢

𝑛𝑚
)
𝑇

.

(57)

Moreover,

𝑈̂ ≤ 𝑈
(𝑚)

𝑠
≤ 𝑈
(𝑚+1)

𝑠
≤ 𝑈
𝑠
≤ 𝑈
𝑠
≤ 𝑈
(𝑚+1)

𝑠
≤ 𝑈
(𝑚)

𝑠
≤ 𝑈̃,

𝑚 = 1, 2, . . . ,

(58)

and if 𝑈∗ is any solution in ⟨𝑈̂, 𝑈̃⟩, then 𝑈
𝑠
≤ 𝑈
∗
≤ 𝑈
𝑠
.

Proof. By Theorem 15, the limits lim𝑈
(𝑚)

= 𝑈
𝑠
and

lim𝑈
(𝑚)

= 𝑈
𝑠
as 𝑚 → ∞ exist, and the relation (58) also

holds. Letting𝑚 → ∞ in (18) shows that𝑈
𝑠
and𝑈

𝑠
are solu-

tions of (15). The equivalence between (10) and (15) ensures
that𝑈

𝑠
and𝑈

𝑠
are solutions of (10). Now if𝑈∗ is a solution in

⟨𝑈̂, 𝑈̃⟩, then 𝑈̃ and𝑈∗ are ordered upper and lower solutions.
Using 𝑈

(0)

𝑠
= 𝑈̃ and 𝑈

(0)

𝑠
= 𝑈
∗, Theorem 15 implies that

𝑈
(𝑚)

𝑠
≥ 𝑈
∗ for every 𝑚. Letting 𝑚 → ∞ gives 𝑈

𝑠
≥ 𝑈
∗. A

similar argument using𝑈∗ and 𝑈̂ as ordered upper and lower
solutions yields 𝑈∗ ≥ 𝑈

𝑠
. This proves the theorem.

In Theorem 16, 𝑈
𝑠
and 𝑈

𝑠
are often called maximal

and minimal solutions in ⟨𝑈̂, 𝑈̃⟩, respectively. In general,
these two solutions are not necessarily the same. Let 𝐴 be
symmetric. Then 𝐴 has real and positive eigenvalues [2].
However, if 𝜎 < 𝜇, where 𝜇 is the smallest positive eigenvalue
of 𝐴 and

𝜎 ≡ max{
𝜕𝑓
𝑖𝑗

𝜕𝑢
(𝑢
𝑖𝑗
) : 𝑢̂
𝑖𝑗
≤ 𝑢
𝑖𝑗
≤ 𝑢̃
𝑖𝑗
, (𝑖, 𝑗) ∈ Υ} , (59)

then the following theorem holds.

Theorem 17. Let the conditions in Theorem 16 hold. If either
𝜎 ≤ 0 or 𝜎 < 𝜇 and 𝐴 is symmetric, then 𝑈

𝑠
= 𝑈
𝑠
and is the

unique solution of (10).

Proof. Let𝑊 = 𝑈
𝑠
−𝑈
𝑠
and 𝑢

𝑖𝑗
and 𝑢

𝑖𝑗
be the components of

𝑈
𝑠
and𝑈

𝑠
, respectively. By (58), we have𝑊 ≥ 0. On the other

hand, by the mean value theorem, we have

𝑓 (𝑥
𝑖
, 𝑦
𝑗
, 𝑢
𝑖𝑗
) − 𝑓 (𝑥

𝑖
, 𝑦
𝑗
, 𝑢
𝑖𝑗
)

𝑢
𝑖𝑗
− 𝑢
𝑖𝑗

=

𝜕𝑓
𝑖𝑗

𝜕𝑢
(𝑢
𝑖𝑗
) ≤ 𝜎, (60)
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where 𝑢
𝑖𝑗
lies between 𝑢

𝑖𝑗
and 𝑢

𝑖𝑗
. Hence,

𝐴𝑊 = 𝐴(𝑈
𝑠
− 𝑈
𝑠
) = 𝐴𝑈

𝑠
− 𝐴𝑈

𝑠

= 𝐹 (𝑈
𝑠
) + 𝐺
∗
− 𝐹 (𝑈

𝑠
) − 𝐺
∗

= 𝐹 (𝑈
𝑠
) − 𝐹 (𝑈

𝑠
)

≤ 𝜎 (𝑈
𝑠
− 𝑈
𝑠
)

= 𝜎𝑊,

(61)

and thus

(𝐴 − 𝜎𝐼)𝑊 ≤ 0. (62)

Case 1. If 𝜎 ≤ 0. From the form of 𝐴, (𝐴 − 𝜎𝐼) is strictly
diagonally dominant. It follows that (𝐴 − 𝜎𝐼)

−1
≥ 0, and thus

𝑊 ≤ 0.

Case 2. If 𝜎 < 𝜇. Since 𝜇 is the smallest positive eigenvalue
of 𝐴, then 𝜇

−1 is the biggest positive eigenvalue of 𝐴−1. From
Theorem 7 and 𝐴−1 ≥ 0, we have

𝜎
−1

> 𝜇
−1

≥ 𝜌 (𝐴
−1
) ,

(𝜎
−1
𝐼 − 𝐴
−1
)
−1

≥ 0,

𝜎
−1
𝐴
−1
(𝜎
−1
𝐼 − 𝐴
−1
)
−1

≥ 0,

(𝐴 − 𝜎𝐼)
−1

≥ 0.

(63)

Hence,𝑊 ≤ 0. So we know that𝑊 = 0. This proves 𝑈
𝑠
= 𝑈
𝑠
.

The uniqueness follows from the relation 𝑈
𝑠
≥ 𝑈
∗
≥ 𝑈
𝑠
for

any solution 𝑈
∗
∈ ⟨𝑈̂, 𝑈̃⟩.

Remark 18. For system (1), the well-known method of upper
and lower solutions with SORMI is applied for the case 0 <

𝜔 < 1 (seeTheorems 15, 16, and 17).However, the nonnegative
property of (1 − 𝜔)(D + Γ) + 𝜔U is not available when
𝜔 > 1. A new approach for solving this problem by the
boundedness of the SORMI sequences and Cauchy sequence
property is proposed. To make sure of the convergence of the
SORMI sequences, the assumptions (H1), (H2), and (H3) are
necessary. But it should be pointed out that these constraints
are not easy to be verified. It is important to weaken these
constraints when the SORMI method is applied to realistic
problems. Fixed point theory is a powerful tool to overcome
this problem for further study.

6. Numerical Results

Assume that the matrix 𝐴 of (10) is an 𝑛 × 𝑛 matrix. The
componentwise SORMI algorithm is given as follows:

𝑢
(𝑚+1)

𝑖
= 𝜔[

[

(

𝑖−1

∑

𝑗=1

𝑎
𝑖𝑗
𝑢
(𝑚+1)

𝑗
+

𝑛

∑

𝑗=𝑖+1

𝑎
𝑖𝑗
𝑢
(𝑚)

𝑗

+𝛾
𝑖
𝑢
(𝑚)

𝑖
+ ℎ𝑘𝑓

𝑖
(𝑢
(𝑚)

𝑖
) + 𝑔
∗

𝑖
) (𝑎
𝑖𝑖
+ 𝛾
𝑖
)
−1
]

]

+ (1 − 𝜔) 𝑢
(𝑚)

𝑖
, 𝑖 = 1, . . . , 𝑛.

(64)

Another equivalent form is

𝑢
(𝑚+1)

𝑖
= 𝜔[

[

(

𝑖−1

∑

𝑗=1

𝑎
𝑖𝑗
𝑢
(𝑚+1)

𝑗
+

𝑛

∑

𝑗=𝑖+1

𝑎
𝑖𝑗
𝑢
(𝑚)

𝑗

+ℎ𝑘𝑓
𝑖
(𝑢
(𝑚)

𝑖
) + 𝑔
∗

𝑖
)(𝑎
𝑖𝑖
+ 𝛾
𝑖
)
−1
]

]

+ (1 −
𝜔𝑎
𝑖𝑖

𝑎
𝑖𝑖
+ 𝛾
𝑖

)𝑢
(𝑚)

𝑖
, 𝑖 = 1, . . . , 𝑛.

(65)

The main requirement for the application of the various MI
schemes is the existence of a pair of ordered upper and lower
solutions. To ensure the existence, the nonlinear function 𝑓

must have some necessary conditions. Hence, in Section 1,
we require that 𝑓

𝑖𝑗
(𝑢
𝑖𝑗
) is uniformly bounded in R. Now we

present some numerical results with two test problems.

Example 19. Consider the one-dimensional boundary value
problem:

− 𝑢
󸀠󸀠
= −

1

2
𝑢 +

5

2
𝜋 sin (√2𝑥) −

1

2
𝑥 sin (√2𝜋) ,

0 < 𝑥 < 𝜋, 𝑢 (0) = 𝑢 (𝜋) = 0.

(66)

The exact solution is

𝑢 (𝑥) = 𝜋 sin (√2𝑥) − 𝑥 sin (√2𝜋) . (67)

Let 𝑓(𝑥, 𝑢) = (−1/2)𝑢 + (5/2)𝜋 sin(√2𝑥) − (1/2)𝑥 sin(√2𝜋),
and choose Γ = diag(2, 2, . . . , 2), 𝑈(0)

𝑠
= (0, 0, . . . , 0)

𝑇. Then,

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑢
1
) − 𝑓 (𝑥, 𝑢

2
)
󵄨󵄨󵄨󵄨 =

1

2

󵄨󵄨󵄨󵄨𝑢1 − 𝑢
2

󵄨󵄨󵄨󵄨

def
= H (𝑐)

󵄨󵄨󵄨󵄨𝑢1 − 𝑢
2

󵄨󵄨󵄨󵄨 .

(68)

Hence we choose 𝜆 = 1/2. We examine the assumptions
(H3) and (H4) and the convergence of the SORMI sequences.
The numerical results are given in Table 1, and the exact and
approximate solutions are shown in Figure 1. Moreover, we
sketch the relation between the numbers of iterations and
relaxation factors 𝜔 by Figure 2.
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Table 1: Numbers of iterations and 𝜂 values for Example 19.

𝜔 0.2 0.25 0.3 0.4 0.5 0.6
Number of iterations 18330 14745 12268 9046 7024 5626
‖𝐵‖ 0.9999 0.9998 0.9998 0.9997 0.9997 0.9996
𝜂 0.9999 0.9999 0.9999 0.9999 0.9998 0.9998
𝜔 0.8 1.0 1.2 1.6 1.8 1.9
Number of iterations 3800 2645 1837 751 342 127
‖𝐵‖ 0.9994 0.9992 0.9990 0.9985 0.9982 0.9980
𝜂 0.9997 0.9996 0.9995 0.9993 0.9992 0.9991
𝜔 1.92 1.95 1.96 1.97 1.98 1.99
Number of iterations 151 236 295 381 535 940
‖𝐵‖ 0.9979 0.9979 0.9979 0.9978 0.9978 0.9978
𝜂 0.9991 0.9990 0.9990 0.9990 0.9990 0.9990
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Figure 1: The exact and approximate solutions for Example 19.
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Figure 2: Numbers of iterations and 𝜔 values for Example 19.

The numbers of iterations for the SORMI method are
listed in Table 1. We focus on the SORMI method with 𝜔 =

1.9. The number of iterations is 127. Compared with it, the
Jacobi and Gauss-Seidel MI methods require 4905 and 2645
iterations, respectively. The resulting increase in the speed of
convergence is very dramatic.Moreover, the values of ‖𝐵‖ and
𝜂 in Table 1 are smaller than 1 which verify our theory of the
boundedness and convergence for the SORMI method.

Example 20. As the second test problem, consider the logistic
model in population growth problem with nonlinear func-
tion

𝑓 (𝑥, 𝑦, 𝑢) = 𝜎𝑢 (1 − 𝑢) + 𝑞 (𝑥, 𝑦) , (69)

where 𝜎 is a positive constant, and 𝑞(𝑥, 𝑦) is a possible
internal source [6]. The discretized function is given by

𝑓
𝑖𝑗
(𝑢
𝑖𝑗
) = 𝜎𝑢

𝑖𝑗
(1 − 𝑢

𝑖𝑗
) + 𝑞
𝑖𝑗
. (70)

For physical reasons, we suppose that𝑓(𝑥, 𝑦, 𝑢) ≥ 0, 𝑞(𝑥, 𝑦) ≥
0, and 𝑔(𝑥, 𝑦) ≥ 0, such that 𝑈̂ = 0 is a lower solution of (10).
For upper solution, consider the following.

Case 1. 𝑞(𝑥, 𝑦) > 0 and 𝑔(𝑥, 𝑦) > 0. (i) If the upper
solution is dependent on 𝜎, define 𝐾(1) = 𝜎/4 + 𝑞 + 𝑔

∗
, 𝑉 =

(𝐾
(1)
, 𝐾
(1)
, . . . , 𝐾

(1)
), and 𝐴𝑈̃ = 𝑉. Then 𝑈̃ is an upper

solution, where 𝑞 and 𝑔∗ are any upper bounds of 𝑞
𝑖,𝑗
and 𝑔∗
𝑖,𝑗
,

respectively. (ii) If upper solution is independent of 𝜎, then
𝑈̃ = 𝑃+𝑉

∗ is an upper solution,where𝑃 def
= (1, 1, . . . , 1)

𝑇, and
𝑄 is the vector with components 𝑞

𝑖,𝑗
which satisfies𝑄+𝐺

∗
=

𝐴𝑉
∗.

Case 2. (i) If 𝑔 = 0, then 𝑈̃ = (𝐾,𝐾, . . . , 𝐾)
𝑇 is an upper

solution, where𝐾 is a constant which satisfies 𝜎𝐾(𝐾−1) ≥ 𝑞.
(ii) If 𝑞 = 𝑔 = 0, then 𝑈̃ = 𝑃 is an upper solution.
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We now give a model problem where the exact solution is
known explicitly [6]. This problem is given by

− (𝑢
𝑥𝑥

+ 𝑢
𝑦𝑦
) = 𝜎𝑢 (1 − 𝑢) + 𝑞 (𝑥, 𝑦) ,

0 < 𝑥 < 1, 0 < 𝑦 < 2,

𝑢
𝑥
(0, 𝑦) = 𝑢 (1, 𝑦) = 𝑢 (𝑥, 0) = 𝑢 (𝑥, 2) = 0.

(71)

It is easy to verify that when 𝜎 = 𝜋
2
/4 and

𝑞 (𝑥, 𝑦) = 2 sin(
𝜋𝑦

2
) +

𝜋
2

4
(1 − 𝑥

2
)
2

sin2 (
𝜋𝑦

2
) , (72)

the exact solution of (71) is given by

𝑢 (𝑥, 𝑦) = (1 − 𝑥
2
) sin(

𝜋𝑦

2
) . (73)

Since 0 ≤ 𝑞(𝑥, 𝑦) ≤ 2 + 𝜋
2
/4 for (𝑥, 𝑦) ∈ [0, 1] × [0, 2], the

constant pair 𝑈̃ = (𝐾,𝐾, . . . , 𝐾)
𝑇 and 𝑈̂ = 0 are ordered

upper and lower solutions whenever (𝜋2/4)𝐾(𝐾 − 1) ≥ 2 +

𝜋
2
/4 with 𝐾 = 2. Hence, (71) is case 2 whenever 𝑔 = 0, and

we have the upper and lower solutions 𝑈̂ = (0, 0, . . . , 0)
𝑇 and

𝑈̃ = (2, 2, . . . , 2)
𝑇. Let 𝑓(𝑥, 𝑦, 𝑢) = (𝜋

2
/4)𝑢(1 − 𝑢) + 𝑞(𝑥, 𝑦).

We define

𝛾 = max
0≤𝑢≤2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑓 (𝑥, 𝑦, 𝑢)

𝜕𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
3𝜋
2

4
, Γ = diag (𝛾, 𝛾, . . . , 𝛾)𝑇.

(74)

If 0 ≤ 𝑢
1
, 𝑢
2
≤ 𝑐, then

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑦, 𝑢
1
) − 𝑓 (𝑥, 𝑦, 𝑢

2
)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝜎𝑢1 (1 − 𝑢
1
) + 𝑞 (𝑥, 𝑦)

−𝜎𝑢
2
(1 − 𝑢

2
) − 𝑞 (𝑥, 𝑦)

󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝜎𝑢
1
− 𝜎𝑢
2

1
− 𝜎𝑢
2
+ 𝜎𝑢
2

2

󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝜎 (𝑢
2

2
− 𝑢
2

1
) − 𝜎 (𝑢

2
− 𝑢
1
)
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2

󵄨󵄨󵄨󵄨 .

(75)

The SORMI method takes 94 iterations with 𝜔 = 1.92 when
𝑈
(0)

= 0 is applied.The approximate solution is similar to the
exact solution as shown in Figure 3. Since they are similar, we
omit to sketch the exact solution figure. In comparison with
the SORMImethod, the Jacobi andGauss-SeidelMImethods
require 2243 and 1249 iterations, respectively. The reduction
of iterations is significant. The numerical results are listed in

Table 2: Numbers of iterations and 𝜂 values for Example 20.

𝜔 0.05 0.1 0.2 0.3
Number of iterations 28503 15706 8344 5612
‖𝐵‖ 0.9999 0.9997 0.9995 0.9992
𝜂 0.9999 0.9998 0.9996 0.9994
𝜔 0.4 0.5 0.8 1.0
Number of iterations 4155 3239 1775 1249
‖𝐵‖ 0.9989 0.9986 0.9976 0.9969
𝜂 0.9992 0.9989 0.9982 0.9976
𝜔 1.2 1.6 1.8 1.9
Number of iterations 881 386 200 104
‖𝐵‖ 0.9961 0.9943 0.9933 0.9928
𝜂 0.9970 0.9955 0.9947 0.9943
𝜔 1.92 1.95 1.97 1.99
Number of iterations 94 129 185 307
‖𝐵‖ 0.9927 0.9925 0.9924 0.9923
𝜂 0.9942 0.9942 0.9942 0.9944
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Figure 3: The approximate solution for Example 20.

Table 2. The relation between the numbers of iterations and
relaxation factors 𝜔 is shown in Figure 4. They verify our
theory of the boundedness and convergence for the SORMI
method again.

7. Conclusions

A new iterative method for solving nonlinear equations is
developed in this paper. It combines SOR method with
MI scheme and therefore gives rise to the terminology
“SORMI.” The boundedness and convergence of the SORMI
sequence are proven under some suitable assumptions. Some
numerical examples are given to verify our theory of the
boundedness and convergence for the SORMI method.
Moreover, the reduction of iterations is quite significant in
comparison with the Jacobi and Gauss-Seidel MI methods.
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Figure 4: Numbers of iterations and 𝜔 values for Example 20.
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