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This paper studies the stabilization of second-order switched homogeneous systems. We present results that solve the problem of
stabilizing a switched homogeneous system; that is, we establish necessary and sufficient conditions under which the stabilization
is assured. Moreover, given an initial condition, our method determines if there exists a switching law under which the solution
converges to the origin and, if there exists this switching law, how it is constructed. Finally, two numerical examples are presented
in order to illustrate the results.

1. Introduction

A switched system is a hybrid systemwhich consists of several
subsystems and a rule that orchestrates the switching among
them. In the last two decades, there has been increasing
interest in stability analysis and control design for switched
systems.Themotivation is frommany aspects. For example, a
system with several controllers can be regarded as a switched
system. Both discrete- and continuous-time switched sys-
tems have been studied from different aspects. Recently, for
discrete-time switched systems, the𝐻

∞
filtering problem has

been studied by including time delay [1–3]. Also, recent works
[4–6] have included the stabilization problem for this kind of
switched systems from different points of view.

The problem of stability has been focused in three main
problems [7, 8]: first, find conditions that guarantee that
the switched system is asymptotically stable under arbitrary
switching; second, define a class of switching laws under
which the switched system is stable; third, construct a
switching law that makes the switched system asymptotically
stable. Recently, the study of the stability has been extended
to the case when there exists time delay [9, 10].

For the last problem, there are basically two approaches
to stabilization for switched systems, one based on detailed
analysis of the vector field and the other one based on

Lyapunov theory. In papers such as [11, 12] or [13], Lyapunov
theory is employed to construct switching laws for a class of
switched systems totally composed of unstable subsystems.

With respect to the analysis of the vector field, for second-
order systems, some necessary and sufficient conditions for
stability/stabilizability have been obtained in [14–16] through
analysis on the structure of the vector field. In [16], the
problem of stabilizing two second-order switched linear
systems is solved; that is, a method to define switching laws
that decide when a switched system is stabilizable is given. In
[15], some results about the stabilization in the nonlinear case
are presented.

The switched homogeneous systems are a superclass
of switched linear systems. The stability of these systems
has been studied in [17–19] with the objective of finding
conditions underwhich the switched system is asymptotically
stable. Recently, in [20, 21], the problem of stability is
also studied. Aleksandrov et al. [20] investigate the stability
of these systems from the Lyapunov approach, and Tuna
[21] considers discrete-time homogeneous systems under
arbitrary switching. These papers solve the problem of
stability under arbitrary switching. However, for switched
homogeneous systems, the problem of stabilization, that is,
the problem of constructing a switching law that stabilizes the
system, is still open.
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In this work, we consider this problem; that is, we
search for a switching law that makes the switched homoge-
neous system asymptotically stable. By using the same idea
described in [15, 16], we can generalize the results in order
to solve the problem of stabilizing a switched homogeneous
system. Hence, we establish the conditions under which the
solution of a switched homogeneous system converges to the
origin under two types of switching laws. It is important to
remark that only the idea in [15] is used, and the results cannot
be directly applied to this type of switched systems because
the preliminary assumptions in [15] cannot be satisfied for
switched homogeneous systems.

The remainder of this paper is organized as follows. In
Section 2, the problem is formulated and the first results
are obtained. In Section 3, we present the switching laws
employed in order to establish the convergence. The results
that assure the convergence of these switched systems are
shown in Section 4. Two numerical examples are given
in Section 5 in order to illustrate the results. Finally, the
conclusions are provided in Section 6.

2. Preliminaries

Consider a switched nonlinear system

�̇� (𝑡) = 𝑓
𝜎(𝑡)

(𝑥 (𝑡)) , (1)

where 𝑓
𝑖
: 𝐷 → R2, 𝑖 = 1, 2, is a vector field of class

C1 in the open and connected set, 𝐷, 𝑥 ∈ R2, and 𝜎 :

[0,∞) → {1, 2} is a piecewise constant function called
switching law indicating the active subsystem at each instant.
Such a function 𝜎 has a finite number of discontinuities,
which we call switching times, on every bounded time interval
and takes a constant value on every interval between two
consecutive switching times.

Moreover, for 𝑖 = 1, 2, each coordinate of 𝑓
𝑖
is a

homogeneous function of grade 𝑚
𝑖
; that is, if 𝑓

𝑖
= (𝑓
1

𝑖
, 𝑓
2

𝑖
)

then 𝑓1
𝑖
(𝜆𝑥) = 𝜆

𝑚

𝑖
𝑓
1

𝑖
(𝑥) and 𝑓2

𝑖
(𝜆𝑥) = 𝜆

𝑚

𝑖
𝑓
2

𝑖
(𝑥), for any

𝑥 ∈ R2 and 𝜆 ∈ R.
Throughout the paper, we choose the orientation in R2

given by the canonical basis; that is, we will say that a basis
in the plane has the same orientation than the canonical basis
(positive orientation) if the determinant of the change of basis
matrix is strictly positive.

Under this orientation, given a point 𝑥 in the plane,
we will say that the trajectory of 𝑓

𝑖
has positive orientation

(clockwise direction) at 𝑥 if det(𝑓
𝑖
(𝑥), 𝑥) > 0. Similarly,

we will say that the trajectory of 𝑓
𝑖
has negative orientation

(counterclockwise direction) at 𝑥 if the determinant is nega-
tive. Note that if the determinant is null at 𝑥, it has no sense
to consider the orientation because {𝑓(𝑥), 𝑥} is not a basis for
R2. Under this assumption, we define 𝐺

𝑖
(𝑥) = det(𝑓

𝑖
(𝑥), 𝑥)

for 𝑖 = 1, 2.
We suppose that the origin is an unstable equilibrium

point for each subsystem 𝑓
1
and 𝑓

2
. In this work, we will use

a generalization of a weaker property than the classic concept
of stability.This concept was defined for the nonlinear case in
[22].

Definition 1 (see [22]). A state𝑥
0
∈ R2 is switched convergent

if there exists a switching law 𝜎
𝑥0
such that the solution of the

switched system (1) that starts at 𝑥(0) = 𝑥
0
converges to the

origin, that is, lim
𝑡→+∞

𝜙(𝑡; 𝑥
0
, 𝜎
𝑥0
) = 0, where 𝜙(⋅; 𝑥

0
, 𝜎
𝑥0
) is

the solution of the switched system (1) for 𝑥(0) = 𝑥
0
and the

switching law 𝜎
𝑥0
.

The switching laws under which a state is switched
convergent will be called convergent switching laws.

In order to study the convergence, it is important to
consider the set of points where the subsystems 𝑓

1
and

𝑓
2
are parallel. Hence, we define the function 𝐹(𝑥) =

det(𝑓
1
(𝑥), 𝑓
2
(𝑥)) and the set Ω = {𝑥 ∈ R2 : 𝐹(𝑥) = 0}.

In [15, 22], some conditions for 𝐹, 𝐺
1
, and 𝐺

2
are

necessary in order to apply the method of stabilization.
However, it is easy to prove that, for switched homogeneous
systems, these conditions are not satisfied. For this reason,
we must study the properties of these functions for switched
homogeneous systems and assume a new condition.

Assumption 2. For any 𝑥
0
∈ R2 \ {0} with 𝐹(𝑥

0
) = 0, it holds

that ∇𝐹(𝑥
0
) ̸= 0. Similarly, for any 𝑥

0
∈ R2 \ {0}with𝐺

𝑖
(𝑥
0
) =

0 for some 𝑖 = 1, 2, it holds that ∇𝐺
𝑖
(𝑥
0
) ̸= 0.

Now, the following result lets us obtain a consequence of
this assumption.

Proposition 3. Let be 𝑔 a real homogeneous function of grade
𝑚 and of class C1 in the open and connected set 𝐷 ⊂ R2. If
{𝑥 ∈ R2 : 𝑔(𝑥) = 0} ̸= {0} and ∇𝑔(𝑥

0
) ̸= 0 for any 𝑥

0
∈ R2 \ {0}

with 𝑔(𝑥
0
) = 0, then {𝑥 ∈ R2 : 𝑔(𝑥) = 0} ̸= {0} is equal to the

union of rays that go through the origin.

Proof. It is deduced from the definition of homogeneous
function.

Then, under Assumption 2, from the previous proposi-
tion, it is deduced that if the sets {𝑥 ∈ R2 : 𝐹(𝑥) = 0},
{𝑥 ∈ R2 : 𝐺

1
(𝑥) = 0} and {𝑥 ∈ R2 : 𝐺

2
(𝑥) = 0} are different

from the origin, they are equal to the union of rays that go
through the origin. Hence, if, for example, {𝑥 ∈ R2 : 𝐹(𝑥) =

0} is different from the origin, the complementary of this set is
equal to the planeminus some rays that go through the origin.
In order to identify these sets, we define the following.

Definition 4. Let 𝑙
1
and 𝑙
2
be two rays starting from the origin.

The set given by

{𝑥 ∈ R
2

: 𝑥 = 𝜇𝑧
1
+ (1 − 𝜇) 𝑧

2
, 𝑧
1
∈ 𝑙
1
, 𝑧
2
∈ 𝑙
2
, 0 ≤ 𝜇 ≤ 1}

(2)

will be called the cone delimited by 𝑙
1
and 𝑙
2
and denoted by

𝐶(0, 𝑙
1
, 𝑙
2
).

Therefore, with this definition, if {𝑥 ∈ R2 : 𝐹(𝑥) = 0}

is different from the origin, the complementary of this set is
equal to the union of several cones where it is satisfied that
𝐹(𝑥) > 0 or 𝐹(𝑥) < 0. In the same form, we have that if,
for example, {𝑥 ∈ R2 : 𝐺

𝑖
(𝑥) = 0} ̸= {0} for some 𝑖 = 1, 2,
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the complementary of this set is equal to the union of several
cones where it is satisfied that 𝐺

𝑖
(𝑥) > 0 or 𝐺

𝑖
(𝑥) < 0.

Throughout the paper, we also assume the following.

Assumption 5. {𝑥 ∈ R2 : 𝐹(𝑥) = 0} ̸= {0}.

We can assume this condition without loss of generality
because if it is not satisfied, there exists no switched conver-
gent state (see Proposition 2 in [15]). Therefore, in that case,
our study has no sense.

Under these two assumptions, two lemmas under which
the main results will be established can be proved in a similar
way to the lemmas presented in [15].

Lemma 6. Consider the switched homogeneous system (1). Let
𝑙
1
and 𝑙
2
be two different rays starting from the origin and

𝑥
0
∈ 𝑙
1
\ {0}. Suppose that, for each 𝑖 = 1, 2, the trajectory of 𝑓

𝑖

starting from 𝑥
0
is of clockwise direction (or counterclockwise)

and intersects the ray 𝑙
2
at 𝑥
𝑖
. Then,

(i) if 𝑙
1
, 𝑙
2
, and the trajectory of 𝑓

𝑖
, for 𝑖 = 1, 2, are

contained in the same connected component of {𝑥 ∈

R2 : 𝐹(𝑥) > 0}, then
𝑥1

 <
𝑥2

 (
𝑥2

 <
𝑥1

 𝑖𝑛 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑐𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒 𝑐𝑎𝑠𝑒) ;

(3)

(ii) if 𝑙
1
, 𝑙
2
, and the trajectory of 𝑓

𝑖
, for 𝑖 = 1, 2, are

contained in the same connected component of {𝑥 ∈

R2 : 𝐹(𝑥) < 0}, then
𝑥2

 <
𝑥1

 (
𝑥1

 <
𝑥2

 𝑖𝑛 𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑐𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒 𝑐𝑎𝑠𝑒) .

(4)

Before presenting the second lemma, we need to intro-
duce some notations. We will denote by 𝐸

1
the region

where the first subsystem is of clockwise direction and the
second one is of counterclockwise direction. Similarly, we
will denote by 𝐸

2
the region where the first subsystem is of

counterclockwise direction and the second one is of clockwise
direction.

Now, we know that, for each 𝑖 = 1, 2, the set {𝑥 ∈ R2 :

𝐺
𝑖
(𝑥) = 0} is equal to the origin or the union of rays that pass

through the origin. If the set {𝑥 ∈ R2 : 𝐺
𝑖
(𝑥) = 0} is equal to

{0}, we have that 𝐺
𝑖
(𝑥) > 0 for all 𝑥 ∈ R2 \ {0} or 𝐺

𝑖
(𝑥) < 0

for all 𝑥 ∈ R2 \ {0}. If, on the contrary, {𝑥 ∈ R2 : 𝐺
𝑖
(𝑥) = 0}

consists of several rays that pass through the origin,R2 \ {𝑥 ∈
R2 : 𝐺

𝑖
(𝑥) = 0} is equal to several cones where it is satisfied

that either𝐺
𝑖
(𝑥) > 0 or𝐺

𝑖
(𝑥) < 0, then the sets 𝐸

1
and 𝐸

2
are

empty, coincide withR\ {0}, or are the union of several cones
(see Figure 1).

Lemma 7. Let (1) be a switched homogeneous system, and
suppose that 𝐶(0, 𝑙

1
, 𝑙
2
) is a connected component of {𝑥 ∈ R2 :

𝐹(𝑥) < 0} ∩ 𝐸
1
. One supposes that the trajectory T

1
of 𝑓
1

goes from 𝑥
0
∈ 𝑙
1
to 𝑥
1
∈ 𝑙
2
(in clockwise direction) and

the trajectory T
2
of 𝑓
2
goes from 𝑥

1
∈ 𝑙
2
to 𝑥
2
∈ 𝑙
1
(in

counterclockwise direction); then, it holds that ‖𝑥
0
‖ < ‖𝑥

2
‖.

When C(0, 𝑙
1
, 𝑙
2
) is a connected component of {𝑥 ∈ R2 :

𝐹(𝑥) > 0} ∩ 𝐸
1
, it is obtained that ‖𝑥

0
‖ < ‖𝑥

2
‖.

A similar result can be enunciated for 𝐸
2
.

E1
E2

3

2

1

0

−1

−2

−3

−3 −2 −1 0 1 2 3

Figure 1: The sets 𝐸
1
and 𝐸

2
and the rays {𝑥 ∈ R2 : 𝐺

𝑖
(𝑥) = 0}.

3. Convergent Switching Laws

In order to establish the convergence, two types of switching
laws are presented in [15]. In this work, we use the same idea
to define the switching laws although, due to the particular
properties of the sets {𝑥 ∈ R2 : 𝐹(𝑥) = 0} and {𝑥 ∈ R2 :

𝐺
𝑖
(𝑥) = 0}, the definition of these switching laws is different.
Firstly, under the switching laws of type I, our goal is

that the solution rotates around the origin. For this reason,
if the solutions must rotate around the origin in clockwise
direction, it is easy to prove that the following must be
verified:

{𝑥 ∈ R
2

\ {0} : 𝐹 (𝑥) ≥ 0} ⊂ {𝑥 ∈ R
2

: 𝐺
1
(𝑥) > 0} ,

{𝑥 ∈ R
2

\ {0} : 𝐹 (𝑥) ≤ 0} ⊂ {𝑥 ∈ R
2

: 𝐺
2
(𝑥) > 0} .

(5)

In the same form, it can be proved that if the solution must
rotate around the origin in counterclockwise direction, it
must be verified that

{𝑥 ∈ R
2

\ {0} : 𝐹 (𝑥) ≤ 0} ⊂ {𝑥 ∈ R
2

: 𝐺
1
(𝑥) < 0} ,

{𝑥 ∈ R
2

\ {0} : 𝐹 (𝑥) ≥ 0} ⊂ {𝑥 ∈ R
2

: 𝐺
2
(𝑥) < 0} .

(6)

Under these conditions, we define the switching law of type I
in the following form.

Definition 8. Let (1) be a switched homogeneous system and
suppose that the condition (5) (resp., (6)) is satisfied.Given an
initial condition 𝑥

0
∈ R2 \ {0}, one will say that a switching

law 𝜎 is of type I if

(i) 𝜎(𝑡) = 1 (resp. 𝜎(𝑡) = 2) if 𝜙(𝑡; 𝑥
0
, 𝜎) ∈ {𝑥 ∈ R2 :

𝐹(𝑥) > 0},
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(ii) 𝜎(𝑡) = 2 (resp. 𝜎(𝑡) = 1) if 𝜙(𝑡; 𝑥
0
, 𝜎) ∈ {𝑥 ∈ R2 :

𝐹(𝑥) < 0},

where 𝜙 is the solution of the switched system (1) under the
switching law 𝜎 starting from 𝑥

0
.

The initial conditions 𝑥
0
∈ R2 for which there exists a

switching law of type I are called states of type I, and the
switched systems for which there exist switching laws of type
I are called switched systems of type I.

Now, for the switching laws of type II, as 𝐸
1
and 𝐸

2
are

equal toR2 \ {0} or the union of cones, we define a switching
law of type II in the following form.

Definition 9. Let (1) be a switched homogeneous system and
𝑥
0
∈ 𝐸
1
(resp., 𝐸

2
) a state. One says that a switching law is

of type II if one switchs whenever the trajectory intersects the
boundary of {𝑥 ∈ R2 : 𝐹(𝑥) < 0}∩𝐸

1
(resp., {𝑥 ∈ R2 : 𝐹(𝑥) >

0} ∩ 𝐸
2
).

It is important to note that the condition under which the
switching lawof type II can be defined is that {𝑥 ∈ R2 : 𝐹(𝑥) <

0} ∩ 𝐸
1
̸= 0 or {𝑥 ∈ R2 : 𝐹(𝑥) > 0} ∩ 𝐸

2
̸= 0.

4. Switched Convergence of Switched
Homogeneous Systems

In this section, we solve the problem of the convergence
of switched homogeneous systems by using the previous
switching laws.

In [15], the hypothesis of the result that assures the con-
vergence under switching laws of type I is not straightforward
to check. However, for switched homogeneous systems, in
order to solve the convergence, we only check the conditions
given in the previous section.

Theorem 10. Consider the switched homogeneous system (1).
Suppose that (5) or (6) is satisfied. Let 𝑥

0
∈ R2 \ {0} be a state.

It holds that 𝑥
0
is 𝜎-convergent for any switching law 𝜎 if and

only if 𝑥
0
is 𝜎
𝐼
-convergent for any switching law 𝜎

𝐼
of type I.

Proof. One of the implications is obvious. Therefore, we will
prove that if 𝑥

0
is convergent for any switching law, it is also

convergent for a switching law of type I. Firstly, as (5) or (6)
is satisfied, the solution for the switching law of type I rotates
around the origin. Thus, if we choose a ray 𝑙

1
contained in

{𝑥 ∈ R2 : 𝐹(𝑥) = 0}, there exists 𝑥
0
the point where the

solution intersects, for the first time, 𝑙
1
. Moreover, there exists

{𝑥
𝑛
: 𝑛 ∈ N}, the set of points where the solution of the system

initialized in 𝑥
0
under a switching law of type I intersects the

ray 𝑙
1
. Therefore, if we proceed as in the proof of Theorem 1

in [15], we can prove that the sequence (𝑥
𝑛
)
𝑛
converges to the

origin and, thus, the switching law of type I is convergent.

In [15], only a sufficient condition for the convergence
of switching laws of type II is presented. However, in this
case, more results are deduced from the study of this type of
switching laws. Firstly, we have the following proposition.

Proposition 11. Consider the switched homogeneous system
(1). If 𝐸

1
∩ {𝑥 ∈ R2 : 𝐹(𝑥) < 0} ̸= 0, then 𝑥

0
is switched

convergent for any 𝑥
0
∈ 𝐸
1
∩ {𝑥 ∈ R2 : 𝐹(𝑥) < 0}.

A similar result can be obtained for 𝐸
2
∩{𝑥 ∈ R2 : 𝐹(𝑥) >

0}.

Proof. Firstly, if 𝐸
1
∩ {𝑥 ∈ R2 : 𝐹(𝑥) < 0} ̸= 0, we have that

this set is equal to a cone. Therefore, there exist 𝑙
1
and 𝑙
2
such

that 𝐸
1
∩ {𝑥 ∈ R2 : 𝐹(𝑥) < 0} = 𝐶(0, 𝑙

1
, 𝑙
2
).

Moreover, if 𝑥
0
∈ 𝐸
1
∩ {𝑥 ∈ R2 : 𝐹(𝑥) < 0}, then it is

possible to define for 𝑥
0
a switching law of type II. Hence, the

solution under this switching law intersects the rays 𝑙
1
and

𝑙
2
. If we denote by {𝑥

𝑛
: 𝑛 ∈ N} the set of points where the

solution intersects, for example, the ray 𝑙
1
, from Lemma 7 it

is deduced that the sequence (𝑥
𝑛
)
𝑛
converges to the origin.

As the solution is bounded, we have that the solution also
converges to the origin.

Now, it is possible to obtain, in this case, a necessary and
sufficient condition for the switched convergence.

Theorem 12. Consider the switched homogeneous system (1).
Suppose that 𝐸

1
(resp., 𝐸

2
) is not empty. Let 𝑆

1
(resp., 𝑆

2
) be a

connected component of 𝐸
1
(resp., 𝐸

2
), 𝑥
0
∈ 𝑆
1
(resp., 𝑆

2
) and 𝜎

a switching law such that the solution under the switching law
𝜎 starting from 𝑥

0
is contained in 𝑆

1
. Then, 𝑥

0
is 𝜎-convergent

if and only if

𝑆
1
∩ {𝑥 ∈ R

2

: 𝐹 (𝑥) < 0} ̸= 0 ,

(𝑟𝑒𝑠𝑝. 𝑆
2
∩ {𝑥 ∈ R

2

: 𝐹 (𝑥) > 0} ̸= 0) .

(7)

Proof. Suppose that 𝑆
1
∩ {𝑥 ∈ R2 : 𝐹(𝑥) < 0} ̸= 0 (the proof is

similar with 𝑆
2
). Then, from Proposition 11, it is deduced that

𝑥
0
∈ 𝑆
1
is 𝜎II-convergent under a switching law 𝜎II of type

II. Moreover, by definition of the switching law of type II, the
solution under this switching law is contained in 𝑆

1
.

Suppose now that there exists a switching law 𝜎 such that
𝑥
0
is 𝜎-convergent and the solution is contained in 𝑆

1
but 𝑆
1
∩

{𝑥 ∈ R2 : 𝐹(𝑥) < 0} is empty. Then,

𝑆
1
⊆ {𝑥 ∈ R

2

: 𝐹 (𝑥) ≥ 0} . (8)

Therefore, 𝑆
1
is a cone so it is contained in {𝑥 ∈ R2 : 𝐹(𝑥) ≥

0}, which is equal to the union of cones.Thus, 𝑆
1
= 𝐶(0, 𝑙

1
, 𝑙
2
),

and in 𝑙
1
and 𝑙
2
, it is satisfied that 𝐺

1
(𝑥) = 0 or 𝐺

2
(𝑥) = 0.

Now, we can distinguish the following cases.

(i) For each 𝑥 ∈ 𝑙
1
∪ 𝑙
2
, 𝐺
1
(𝑥) = 0 (see Figure 2(a)).

(ii) For each 𝑥 ∈ 𝑙
1
∪ 𝑙
2
, 𝐺
2
(𝑥) = 0 (see Figure 2(b)).

(iii) For each𝑥 ∈ 𝑙
1
,𝐺
1
(𝑥) = 0 and for each𝑥 ∈ 𝑙

2
,𝐺
2
(𝑥) =

0 (see Figure 2(c)).
(iv) For each𝑥 ∈ 𝑙

1
,𝐺
2
(𝑥) = 0 and for each𝑥 ∈ 𝑙

2
,𝐺
1
(𝑥) =

0 (see Figure 2(d)).

Before studying each case, we can suppose, without loss
of generality, that 𝜎(0) = 1 and 𝑥

1
is the state where the first

switching is produced.
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Figure 2: Figures for the proof of Theorem 12.

If 𝐺
1
(𝑥) = 0 if 𝑥 ∈ 𝑙

1
∪ 𝑙
2
, let 𝑦

1
and 𝑦

2
be the states

where the trajectory of 𝑓
2
that goes through 𝑥

1
intersects 𝑙

1

and 𝑙
2
, respectively (see Figure 2(a)). Hence, we consider the

closed curve consisting of the union of this trajectory, the arc
[𝑦
1
, 0] of 𝑙

1
, and the arc [0, 𝑦

2
] of 𝑙
2
.Then, by the Jordan curve

theorem, there exist two regions that are open, connected,
and disjoint and whose union is the complementary set of the
union of the curves. LetR

1
denote the bounded regionwhose

boundaries are the considered curves. When, according to
the switching law 𝜎, the second switching is produced in
the trajectory of 𝑓

2
, we switch to the first subsystem and the

solution leavesR
1
so 𝐹(𝑥) ≥ 0.

If 𝑆
1
is delimited by the rays given by 𝐺

2
(𝑥) = 0, we con-

sider the trajectory of 𝑓
1
that goes through 𝑥

0
and intersects

𝑙
1
and 𝑙
2
at 𝑦
1
and 𝑦

2
, respectively (see Figure 2(b)). Again,

we define the closed curve consisting of this trajectory, the arc
[𝑦
2
, 0] of 𝑙

2
, and the arc [0, 𝑦

1
] of 𝑙
1
.Then, by the Jordan curve

theorem, there exist two regions that are open, connected,
and disjoint and whose union is the complementary set of the
union of the curves. LetR

1
denote the bounded regionwhose

boundaries are the considered curves. When, according to
the switching law 𝜎, the second switching is produced in
the trajectory of 𝑓

2
, we switch to the first subsystem and the

solution leavesR
1
so 𝐹(𝑥) ≥ 0.

When 𝐺
1
(𝑥) = 0 if 𝑥 ∈ 𝑙

1
and 𝐺

2
(𝑥) = 0 if 𝑥 ∈ 𝑙

2
, we

choose the trajectory of 𝑓
1
starting from 𝑥

0
that intersects 𝑙

2

at 𝑦
2
and the trajectory of𝑓

2
starting from 𝑥

0
that intersects 𝑙

1

at𝑦
1
(see Figure 2(c)). Now, the closed curve considered is the

union of the trajectories of 𝑓
1
and 𝑓

2
and the arcs [0, 𝑦

1
] and

[𝑦
2
, 0] of 𝑙

1
and 𝑙
2
, respectively. By the Jordan curve theorem,

there exist two regions that are open, connected, and disjoint
andwhose union is the complementary set of the union of the
curves. LetR

1
denote the bounded region whose boundaries

are the considered curves. Again, when the next switching is
produced, the solution goes into the unbounded region, so
𝐹(𝑥) ≥ 0.

Finally, suppose that 𝐺
2
(𝑥) = 0 if 𝑥 ∈ 𝑙

1
and 𝐺

1
(𝑥) = 0

if 𝑥 ∈ 𝑙
2
. Then, let 𝑦

1
be the point where the trajectory of

−𝑓
1
starting from 𝑥

0
intersects 𝑙

1
, and let 𝑦

2
be the point

where the trajectory of −𝑓
2
starting from 𝑥

1
intersects 𝑙

2
(see

Figure 2(d)). Consider the closed curve equal to the union of
the trajectories of 𝑓

1
and 𝑓

2
and the arcs [0, 𝑦

1
] and [0, 𝑦

2
]

of 𝑙
1
and 𝑙
2
, respectively. By the Jordan Curve Theorem, we

obtain a bounded regionR
1
. In this case, it is clear that when

the next switching is produced at 𝑥
1
, the solution goes into

the unbounded region.

Hence, in all cases, we have obtained a closed curve and
two regions (bounded and unbounded), and the solution,
in the next switching, goes into the unbounded region. As,
by hypothesis, the solution converges to the origin and is
contained in 𝑆

1
, this solutionmust go into the bounded region

R
1
and, thus, must intersect the closed curve. In particular,

it must intersect the arc that goes from 𝑦
1
to 𝑦
2
and is given

by the trajectories of 𝑓
1
and/or 𝑓

2
. We will prove that this is

not possible.
If the solution is given by the subsystem 𝑓

1
, it is clear that

it cannot intersect the arc of trajectory given by 𝑓
1
so they are

solutions of the same subsystem. And it cannot intersect the
arc of trajectory of 𝑓

2
so, in that case, we could find a state

𝑥 ∈ 𝑆
1
such that 𝐹(𝑥) < 0.

In the same form, if the solution is given by the subsystem
𝑓
2
, it is clear that it cannot intersect the arc of trajectory of 𝑓

2

so they are solutions of the same subsystem, and it cannot
intersect the trajectory of 𝑓

1
so, in that case, we could find a

state 𝑥 ∈ 𝑆
1
such that 𝐹(𝑥) < 0.

Therefore, as the solution cannot intersect the closed
curve, it cannot go into R

1
, but this is a contradiction; so

we have supposed that the solution converges to the origin
in 𝑆
1
.

In the previous result, we have proved the convergence
when the solution cannot leave a connected component of 𝐸

1

or 𝐸
2
. Our goal is proving the convergence without assuming

that the solution is in a cone. For this reason, the following
definition is needed.

Definition 13. Let 𝑆
1
be a connected component of 𝐸

1
. One

will say that 𝑆
1
is a sealed cone if it is a cone equal to𝐶(0, 𝑙

1
, 𝑙
2
)

such that 𝐺
1
(𝑥) = 0 if 𝑥 ∈ 𝑙

2
and 𝐺

2
(𝑥) = 0 if 𝑥 ∈ 𝑙

1
.

Similarly, given 𝑆
2
a connected component of 𝐸

2
, one will

say that 𝑆
2
is a sealed cone if it is a cone equal to 𝐶(0, 𝑙

1
, 𝑙
2
)

such that 𝐺
1
(𝑥) = 0 if 𝑥 ∈ 𝑙

1
and 𝐺

2
(𝑥) = 0 if 𝑥 ∈ 𝑙

2
.

Given an initial condition 𝑥
0
in the interior of a sealed

cone 𝑆
1
, if we choose the trajectory of 𝑓

1
, we know that this

trajectory is of clockwise direction and cannot intersect 𝑙
2
; so

in this ray, it holds that 𝐺
1
(𝑥) = 0. In the same manner, if we

choose the trajectory of 𝑓
2
, this trajectory cannot intersect 𝑙

1

so, in this ray, it holds that𝐺
2
(𝑥) = 0.Therefore, the following

result can be deduced.

Proposition 14. Consider the switched homogeneous system
(1). Suppose that 𝐸

1
(resp., 𝐸

2
) is not empty. If 𝑆

1
(resp., 𝑆

2
) is
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Figure 3: Solution and rays given by 𝐹(𝑥) = 0 in Example 1 (a) and Example 2 (b).

a sealed cone, for any 𝑥
0
∈ 𝑆
1
(resp., 𝑆

2
) and any switching law

𝜎, the solution of the switched system (1) is in 𝑆
1
(resp., 𝑆

2
).

This proposition proves that if the solution starts in a
sealed cone, it cannot leave this cone. Hence, by using the
previous theorem and this proposition, we have the following
result.

Corollary 15. Consider the switched homogeneous system (1).
Suppose that 𝐸

1
(resp., 𝐸

2
) is not empty. If 𝑆

1
(resp., 𝑆

2
) is a

sealed cone of 𝐸
1
(resp., 𝐸

2
) and 𝑥

0
∈ 𝑆
1
(resp., 𝑆

2
), then 𝑥

0
is

𝜎-convergent for some switching law 𝜎 if and only if

𝑆
1
∩ {𝑥 ∈ R

2

: det (𝐴
1
𝑥, 𝐴
2
𝑥) > 0} ̸= 0,

(𝑟𝑒𝑠𝑝. 𝑆
2
∩ {𝑥 ∈ R

2

: det (𝐴
1
𝑥, 𝐴
2
𝑥) < 0} ̸= 0) .

(9)

5. Numerical Examples

Now, in order to illustrate the results, two numerical examples
are presented.

Example 1. Consider a switched nonlinear system given by
(1), where the subsystems are defined as follows:

𝑓
1
(𝑥
1
, 𝑥
2
) = (

𝑥
3

1

6
−
𝑥
2

1
𝑥
2

2
+
𝑥
1
𝑥
2

2

3
− 𝑥
3

2
,
𝑥
2

1
𝑥
2

6
+
𝑥
3

2

3
) ,

𝑓
2
(𝑥
1
, 𝑥
2
) = (

5𝑥
3

1

2
−
𝑥
2

1
𝑥
2

2
+ 5𝑥
1
𝑥
2

2
− 𝑥
3

2
,

9𝑥
3

1

2
−
𝑥
2

1
𝑥
2

2
+ 9𝑥
1
𝑥
2

2
− 𝑥
3

2
) .

(10)

Firstly, this switched system is homogeneous because each
coordinate is homogeneous of grade 3. In order to apply the
results in the paper, we study the functions 𝐹, 𝐺

1
, and 𝐺

2
:

𝐹 (𝑥
1
, 𝑥
2
) =

1

12
(𝑥
2

1
+ 2𝑥
2

2
)
2

(9𝑥
2

1
− 33𝑥

1
𝑥
2
+ 4𝑥
2

2
) ,

𝐺
1
(𝑥
1
, 𝑥
2
) = −

1

2
𝑥
2

2
(𝑥
2

1
+ 𝑥
2

2
) ,

𝐺
2
(𝑥
1
, 𝑥
2
) = −

1

2
(−3𝑥
1
+ 𝑥
2
)
2

(𝑥
2

1
+ 2𝑥
2

2
) .

(11)

From the expressions of 𝐹, 𝐺
1
, and 𝐺

2
, it is deduced that

Assumptions 2 and 5 are satisfied. Furthermore, we have that
{𝑥 ∈ R2 : 𝐺

1
(𝑥) = 0} is equal to the ray given by 𝑥

2
= 0

and {𝑥 ∈ R2 : 𝐺
2
(𝑥) = 0} is equal to the ray given by

𝑥
2
= 3𝑥

1
. Moreover, the trajectories of both subsystems

are of counterclockwise direction for any initial condition.
Therefore, 𝐸

1
= 𝐸
2
= 0 and the switching laws of type II

cannot be defined.
Also, {𝑥 ∈ R2 : 𝐹(𝑥) = 0} is equal to two rays that

go through the origin. Moreover, it is easy to prove that (6)
holds; thus, we can define switching laws of type I and, by
Theorem 10, the switching laws determine the convergence of
the system.

Let see what happens for the initial condition 𝑥
0
= (1, 1).

First,𝐹(𝑥
0
) < 0; thus, according to the definition of switching

law of type I, we choose the first subsystem and switch when
the solution intersects the rays in {𝑥 ∈ R2 : 𝐹(𝑥) = 0}. In this
case, the solution converges to the origin (see Figure 3(a)).
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Example 2. Consider a switched nonlinear system given by
(1), where the subsystems are defined as follows:

𝑓
1
(𝑥
1
, 𝑥
2
) = (𝑥

3

1
−
𝑥
2

1
𝑥
2

2
+ 2𝑥
1
𝑥
2

2
− 𝑥
3

2
, 𝑥
2

1
𝑥
2
+ 2𝑥
3

2
) ,

𝑓
2
(𝑥
1
, 𝑥
2
) = (

7𝑥
3

1

2
+
𝑥
2

1
𝑥
2

2
+ 7𝑥
1
𝑥
2

2
+ 𝑥
3

2
,

−
25𝑥
3

1

2
−
3𝑥
2

1
𝑥
2

2
− 25𝑥

1
𝑥
2

2
− 3𝑥
3

2
) .

(12)

Firstly, this switched system is homogeneous because each
coordinate is homogeneous of grade 3. In order to apply the
results in the paper, we again study the functions 𝐹, 𝐺

1
, and

𝐺
2
:

𝐹 (𝑥
1
, 𝑥
2
) = −

1

4
(50𝑥
2

2
− 5𝑥
1
𝑥
2
− 𝑥
2

2
) (𝑥
2

1
+ 2𝑥
2

2
)
2

,

𝐺
1
(𝑥
1
, 𝑥
2
) = −

1

2
𝑥
2

2
(𝑥
2

1
+ 2𝑥
2

2
) ,

𝐺
2
(𝑥
1
, 𝑥
2
) =

1

2
(5𝑥
1
+ 𝑥
2
)
2

(𝑥
2

1
+ 2𝑥
2

2
) .

(13)

From the expressions of 𝐹, 𝐺
1
, and 𝐺

2
, it is deduced that

Assumptions 2 and 5 are satisfied. Furthermore, we have that
{𝑥 ∈ R2 : 𝐺

1
(𝑥) = 0} is equal to the ray given by 𝑥

2
= 0 and

{𝑥 ∈ R2 : 𝐺
2
(𝑥) = 0} is equal to the ray given by 𝑥

2
= −5𝑥

1
.

Moreover, the trajectory of𝑓
1
is of counterclockwise direction

and the trajectory of 𝑓
2
is of clockwise direction. Therefore,

𝐸
2
is the complementary of these rays, that is, equal to the

union of two cones.
Furthermore, as the set {𝑥 ∈ R2 : 𝐹(𝑥) = 0} is equal to

two rays and 𝐸
2
∩ {𝑥 ∈ R2 : 𝐹(𝑥) > 0} is not empty, the

switching laws of type II can be defined and are convergent
byTheorem 12. It is important to note that the cones in 𝐸

2
are

not sealed; thus, we cannot apply in this case Corollary 15.
In particular, if the initial condition is 𝑥

0
= (1, 1), then

𝑥
0
∈ 𝐸
2
but 𝐹(𝑥

0
) < 0. Thus, we first choose the subsystem

𝑓
1
until going into {𝑥 ∈ R2 : 𝐹(𝑥) > 0}. Then, we define a

switching law of type II, and, by Proposition 11, the switching
law of type II is convergent (see Figure 3(b)).

6. Conclusions

In this work, we have solved the problem of stabilization of a
second-order switched homogeneous system. Although the
idea in [16] for the linear case is used and the results for
nonlinear case in [15] are mentioned, it has been necessary
to study this kind of switched systems properly so it is not
possible to apply directly these results. Furthermore, the
study of this kind of switched systems generalizes the linear
case by reducing the number of cases to only two switching
laws.

As for future work, these results can be applied to
study the stabilization of switched nonlinear systems where
the conditions in [15] cannot be satisfied, for example, in
switched polynomial systems. Hence, it could be possible

to solve completely the problem of convergence of second-
order switched nonlinear systems. Furthermore, projections
may be employed to apply this research to the convergence
of higher order switched homogeneous systems. Finally, the
method could be employed in real process that can be
modelled by homogeneous systems.
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