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The present work aims to study the nonlinear effective thermal conductivity of heterogeneous composite-like geomaterials by using
a numerical approach based on the immersed interface method (IIM). This method is particularly efficient at solving the diffusion
problem in domains containing inner boundaries in the form of perfect or imperfect interfaces between constituents. In this paper,
this numerical procedure is extended in the framework of non linear behavior of constituents and interfaces. The performance of
the developed tool is then demonstrated through the studies of temperature- and pressure-dependent effective thermal conductivity
of geomaterials with imperfect interfaces.

1. Introduction

The estimation of the effective transfer properties of het-
erogeneous media such as geomaterials is still nowadays
a challenging research field despite perpetual advances of
research and an increasing number of published works.
For this class of materials, the overall properties depend
not only on the properties of the matrix, the shape and
spatial distribution of inclusions, an the volume fractions
and properties of constituents, but also on the transfer field’s
distribution in the medium and, in many situations, on the
interfacial properties between phases.

An example of this type of problems is that of the
effective thermal conductivity of geomaterials with thermal
conductivity of constituents being a function of temperature
which lead to an overall nonlinear thermal conductivity. The
study of the temperature dependence of thermal conductivity
of porous medium like rocks and soils thas been intensively
carried out in the last decade due to the large number of appli-
cations such as geothermal reservoirs, underground storage
of nuclear waste, and petroleum and natural gas geology.
Various researches conducted on different types of rocks,
soils, and minerals have shown that the thermal conductivity

of geomaterials decreases when the temperature increases [1–
11] even if in some exceptional cases the conductivity slightly
increases with temperature.

In addition to the nonlinearity of constituent’s law, the
behavior of the interfaces and their state could also play an
important role on the nonlinearity of effective properties.
Very often these interfaces are favorite places of cracking by
debonding that generally leads to a modification of transport
properties of the interface.

From a numerical point of view, the effect of cracking at
the boundary of grains to the overall thermal conductivity
can be accounted for by considering the fully or partially
debonded inclusions embedded in the homogeneous matrix
of materials. This last feature is an important problem not
only in gesocience materials, but also in general engineering
science materials, and various modeling techniques have
been developed to deal with it such as perturbation expansion
method [12, 13] or adaptive finite element method [14, 15].
In particular, the immersed interface method (IIM), under
such conditions performs quitewell.Thismethod, considered
as an extension of the finite difference method for the case
of media with discontinuities in uniform Cartesian grid
points stencil, allows in the case of imperfect interfaces to
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capture the jump of state and/or flux variables across the
interface. Uniform Cartesian grids avoid mesh regeneration
and allow for fast flow solvers which contribute to the
simplicity and efficiency of the IIM method. Otherwise, the
IIM can be used in conjunction with the level set method
to treat various problems involving moving interface, non
linear interface and free boundary problems (such as Stefan
problems and crystal growth, the incompressible flows with
moving interface modeled by Navier-Stokes equations to
mention a few). Interested readers could refer to [16, 17] and
references cited therein for an overview of the advantages and
applications of this method.

In a previous work of the present authors [18], the
IIM was used to take into account the interfacial resistance
between linear constituent phases. In this context, the IIM
allows calculating the effective transfer properties and enables
demonstrating the role of various factors such as shape, size,
spatial distribution, and volume fraction of constituents as
well as their properties of constituents and those of interface
on overall effective properties.

In the present paper, this numerical approach is extended
to the evaluation of effective thermal conductivity of geo-
materials considering the nonlinearity of constituents and
the presence of imperfect interfaces. The paper is organized
as follows. Firstly, we describe the principle of IIM used to
solve the non linear heat transfer problem with the presence
of contact resistance. Then, the application of the numerical
procedure to evaluate the effective thermal conductivity of
non linear composite-like geomaterials is studied by counting
for the interfacial resistance between phases. In the whole
paper, a lower underlined symbol indicates a vector while a
bold one represents a second-order tensor.

2. Solving Nonlinear Heat Transfer Problem
by the Immersed Interface Method

2.1. Mathematical Model. The problem considered here is
that of a heterogeneous material constituted by a matrix
containing inclusions of smooth shapes whose properties are
different from that of the matrix. Moreover, the interfaces
between the matrix and any inclusion (Figure 1) are con-
sidered to be thin layers (no thickness) having their own
properties and sufficiently smooth to assure the existence
of all derivatives involved in equations developed later. The
interfaces are not necessarily perfect so that a jump in some
variables (state or/and flux variables) could be observed
across them. For the sake of simplicity, the presentation of
the method is limited here on 2D steady state heat transfer
problem without source. The extension of the method for
more general cases presents no conceptual difficulties. Local
behavior of each constituent phase of heterogeneous media is
characterized by the conservation and Fourier law written as

div (𝑞) = 0,

𝑞 = −K (𝑢) ⋅ grad (𝑢),
(1)

where 𝑞 and K stand for the flux and the second order tensor
of thermal conductivity. As the behavior of constituents is
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Figure 1: Schematic presentation of the problem of interface in a
uniform Cartesian grid for the interface problem.

assumed non linear, K is supposed to be a known function
of the temperature 𝑢.

Without losing the generality, in what follows, the
isotropic behavior will be considered; that is, K(𝑢) = 𝐾(𝑢) ⋅ 1
with 1 being unity second-order tensor. The combination of
these two equations leads to the following non linear partial
differential equation with respect to the unknown 𝑢:

div (K (𝑢) ⋅ grad (𝑢)) = 0. (2)

The technique of resolution of this type of elliptical equation
by IIM method was first used by [19] in the context of
magnetorheological fluids problem of perfect interface (i.e.,
assuming the continuity of flux 𝑞 and of the solution 𝑢 across
the interface). In the extended mathematical framework
adopted here, a jump of solution [𝑢] on the contact between
matrix and an inclusion is considered:

[𝑢] = 𝑢+ − 𝑢−,

[𝐾 (𝑢) 𝜕𝑢
𝜕𝑛

] = 𝐾+ (𝑢) 𝑢+
𝑛
− 𝐾− (𝑢) 𝑢−

𝑛
= 0

(3)

with 𝑛 being the outward oriented unitary normal vector to
the interface.

From a physical point of view, these conditions describe
an imperfect contact between phases (e.g., due to the presence
of the roughness or air film at the interface). This imperfec-
tion is often stated in thermal or hydraulic transport problems
even if it is very difficult to be measured experimentally.

A common hypothesis used by many authors (see, e.g.,
[12, 13, 18] and references cited therein) is to consider the
jump of the solution 𝑢 across the interface being proportional
to the normal component of flux across the interface, with
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the coefficient of proportionality being a characteristic inter-
face parameter, 𝛼, called the resistance of interface:

[𝑢] = 𝑢+ − 𝑢− = −𝛼 (𝑞 ⋅ 𝑛)

= 𝛼𝐾+ (𝑢) 𝑢+
𝑛
= 𝛼𝐾− (𝑢) 𝑢−

𝑛
.

(4)

It easy to observe that the perfect interface problem is a
special case of the problem with resistance of interface equal
to zero (𝛼 = 0).

Hereafter, the superscripts (+) and (−) present values
evaluated at two opposed sides of a given interface (Figure 1).

2.2. Iterative Resolution of Nonlinear Elliptical Equation by
Immersed Interface Method. Like finite difference method
fromwhich it has been derived, the IIMuses a uniformCarte-
sian grid which does not need to coincide with the interfaces
or boundaries of internal domains to obtain discretized form
of equation:

𝜕
𝜕𝑥

(𝐾
𝜕𝑢
𝑖,𝑗

𝜕𝑥
) + 𝜕

𝜕𝑦
(𝐾

𝜕𝑢
𝑖,𝑗

𝜕𝑦
)

=
𝑛𝑠

∑
𝑚=1

𝛾
𝑚
𝑢
𝑖+𝑖𝑚,𝑗+𝑗𝑚

+ 𝐶
𝑖,𝑗
= 0.

(5)

This equation is written at each node of the grid with
coordinates (𝑥

𝑖
, 𝑦
𝑗
), identified in the 2D case by the couple of

indexes (𝑖, 𝑗). Since the behavior of constituents is supposed
non linear, then 𝐾 = 𝐾(𝑢

𝑖,𝑗
). To resolve the system of

(2) obtained by the discretization of differential equation,
we use the so-called substitution method, similar to that
proposed by [19]. Following this scheme, from an initial guess
of solution 𝑢0, the (𝑘 + 1)th iterative step consists to obtain a
new estimation of solution 𝑢𝑘+1 of partial derivative equation
employing the known information of the previous step 𝑢𝑘.

Bearing in mind spatial and temporal discretization, the
solution 𝑢 and the thermal conductivity𝐾must be written as
𝑢
𝑖,𝑗
= 𝑢𝑘+1(𝑥

𝑖
, 𝑦
𝑗
) and𝐾 = 𝐾(𝑢𝑘

𝑖,𝑗
). However, in order to keep

simple formulas, this dependency is omitted from notation
but it is implicitly assumed for the rest of the paper. Other
parameters 𝑛𝑠 and 𝛾

𝑚
represent, respectively, the number

of grid points and the weighting coefficient of 𝑚th node
involved in the evaluation of the solution at point (𝑥

𝑖
, 𝑦
𝑗
), and

indexes 𝑖𝑚 and 𝑗𝑚 take values in the set {0, ±1, ±2, . . .}. Since
𝛾
𝑚
coefficients, indexes 𝑖𝑚 and 𝑗𝑚, and the correction term

𝐶
𝑖,𝑗
depend on point (𝑖, 𝑗), it needs to be written 𝛾

𝑖𝑗𝑚
. Again

for the sake of simplicity, this dependency is omitted from
notation and is assumed implicitly. Furthermore, a constant
number of stencils is kept for all nodes of the same type but
different for regular and irregular points.

A regular point is a grid node away from the interface (see
Figure 1) for which the centered FDM differentiation scheme
of differential equation to be solved is used. For such nodes,
the stencil contains five points so that 𝑛𝑠 = 5. All nodes where
the approximation of solution involves only points on the
same side of the interface are regular points and the approx-
imation of solution at these points coincides with classical

formula of a standard five points stencil. For these points
the approximation of the partially derivative equation to the
second-order accuracy demonstrates a vanishing correction
term (𝐶

𝑖,𝑗
= 0) and is given as follows:

𝜕
𝜕𝑥

(𝐾
𝜕𝑢
𝑖,𝑗

𝜕𝑥
) + 𝜕

𝜕𝑦
(𝐾

𝜕𝑢
𝑖,𝑗

𝜕𝑦
)

=
𝐾
𝑖,𝑗−1/2

ℎ2
𝑢
𝑖,𝑗−1

+
𝐾
𝑖−1/2,𝑗

ℎ2
𝑢
𝑖−1,𝑗

+
𝐾
𝑖+1/2,𝑗

ℎ2
𝑢
𝑖+1,𝑗

+
𝐾
𝑖,𝑗+1/2

ℎ2
𝑢
𝑖,𝑗+1

−
𝐾
𝑖,𝑗−1/2

+ 𝐾
𝑖−1/2,𝑗

+ 𝐾
𝑖+1/2,𝑗

+ 𝐾
𝑖,𝑗+1/2

ℎ2
𝑢
𝑖,𝑗
+ 𝑂 (ℎ3) ,

(6)

where

𝐾
𝑖,𝑗
= 𝐾 (𝑢𝑘 (𝑥

𝑖
, 𝑦
𝑗
)) , 𝑢

𝑖,𝑗
= 𝑢𝑘+1 (𝑥

𝑖
, 𝑦
𝑗
) ,

𝐾
𝑖±1/2,𝑗

= 1
2
(𝐾
𝑖,𝑗
+ 𝐾
𝑖±1,𝑗

) ,

𝐾
𝑖,𝑗±1/2

= 1
2
(𝐾
𝑖,𝑗
+ 𝐾
𝑖,𝑗±1

) .

(7)

If the grid point is near the interface, the points involved in
the approximation of the solution would be frommaterials in
both sides of interface.These points are called irregulars since
the use of the standard five points stencil does not insure any
more the second-order accuracy of the solution. As discussed
in a [18, 20] and [16, 17, 19] a good choice in order to maintain
the second-order accuracy at irregular points is to take a
stencil of nine points, that is, for these irregular nodes 𝑛𝑠 = 9.

The procedure of constructing a second order accurate
solution at irregular points is detailed in the previously men-
tioned references and is briefly described here. Let (𝑥∗, 𝑦∗) be
the projection on the interface of an irregular node (𝑥

𝑖
, 𝑦
𝑗
).

A local coordinates system attached to the projected point
is assumed with two axis (𝜉, 𝜂) coinciding with normal and
tangential directions of the interface at this point (Figure 1):

𝜉 = (𝑥 − 𝑥∗) cos 𝜃 + (𝑦 − 𝑦∗) sin 𝜃,

𝜂 = − (𝑥 − 𝑥∗) sin 𝜃 + (𝑦 − 𝑦∗) cos 𝜃,
(8)

with 𝜃 being the angle between 𝑥 and 𝜉 axes.
The relationship between the global and local coordinates

systems gives

𝑢
𝜉
= 𝑢
𝑥
cos 𝜃 + 𝑢

𝑦
sin 𝜃; 𝑢

𝜂
= −𝑢
𝑥
sin 𝜃 + 𝑢

𝑦
cos 𝜃;

𝐾
𝜉
= 𝐾
𝑥
cos 𝜃 + 𝐾

𝑦
sin 𝜃; 𝐾

𝜂
= −𝐾
𝑥
sin 𝜃 + 𝐾

𝑦
cos 𝜃,

(9)

where 𝑢
𝑥
and𝐾

𝑥
indicate, respectively, the derivative of 𝑢 and

𝐾 with respect to 𝑥.
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It is then possible to replace the original discretized
equation (5) by one written in the local coordinate of (𝜉, 𝜂):

𝜕
𝜕𝑥

(𝐾
𝜕𝑢
𝑖,𝑗

𝜕𝑥
) + 𝜕

𝜕𝑦
(𝐾

𝜕𝑢
𝑖,𝑗

𝜕𝑦
)

= 𝜕
𝜕𝜉

(𝐾
𝜕𝑢
𝑖,𝑗

𝜕𝜉
) + 𝜕

𝜕𝜂
(𝐾

𝜕𝑢
𝑖,𝑗

𝜕𝜂
)

=
𝑛𝑠

∑
𝑚=1

𝛾
𝑚
𝑢
𝑖+𝑖𝑚,𝑗+𝑗𝑚

+ 𝐶
𝑖,𝑗
.

(10)

Further, in respect of local coordinates system, the solution
𝑢
𝑖+𝑖𝑚,𝑗+𝑗𝑚

at a grid point could be written as a Taylor
expansion at (𝑥∗, 𝑦∗) so that

𝑢 (𝑥
𝑖+𝑖𝑚

, 𝑦
𝑗+𝑗𝑚

) = 𝑢 (𝜉
𝑚
, 𝜂
𝑚
)

= 𝑢± + 𝜉
𝑚
𝑢±
𝜉
+ 𝜂
𝑚
𝑢±
𝜂
+ 1
2
𝜉2
𝑚
𝑢±
𝜉𝜉

+ 1
2
𝜂2
𝑚
𝑢±
𝜂𝜂
+ 𝜉
𝑚
𝜂
𝑚
𝑢±
𝜉𝜂
+ 1
2
𝜉
𝑚
𝜂2
𝑚
𝑢±
𝜉𝜂𝜂

+ 𝑂 (ℎ3) .

(11)

The reasons of keeping third-order derivative of solution 𝑢
𝜉𝜂𝜂

in Taylor’s development (11) are related to their presence on
the interface conditions relations as it will be clear later (see
(15)). Additionally, the values 𝑢±, 𝑢±

𝜉
, 𝑢±
𝜂
, 𝑢±
𝜉𝜉
, 𝑢±
𝜂𝜂
, 𝑢±
𝜉𝜂
, and 𝑢±

𝜉𝜂𝜂

in (11) represent the solution and its derivatives determined at
projection point (𝑥∗, 𝑦∗) of the interface. The (+) or (−) sign
is chosen depending on whether (𝜉

𝑚
, 𝜂
𝑚
) belongs to the (+)

or (−) side of the interface.
By replacing in (10) each component 𝑢

𝑖+𝑖𝑚,𝑗+𝑗𝑚
as given

by (11) and rearranging terms, the following expression of the
truncation error at an irregular point is obtained (𝑖, 𝑗):

𝜅
𝑖,𝑗
= 𝑎
1
𝑢− + 𝑎

2
𝑢+ + 𝑎

3
𝑢−
𝜉
+ 𝑎
4
𝑢+
𝜉

+ 𝑎
5
𝑢−
𝜂
+ 𝑎
6
𝑢+
𝜂
+ 𝑎
7
𝑢−
𝜉𝜉
+ 𝑎
8
𝑢+
𝜉𝜉
+ 𝑎
9
𝑢−
𝜂𝜂

+ 𝑎
10
𝑢+
𝜂𝜂
+ 𝑎
11
𝑢−
𝜉𝜂
+ 𝑎
12
𝑢+
𝜉𝜂
+ 𝑎
13
𝑢−
𝜉𝜂𝜂

+ 𝑎
14
𝑢+
𝜉𝜂𝜂

− 𝐶
𝑖,𝑗
+ 𝑂(max

𝑚

󵄨󵄨󵄨󵄨𝛾𝑚
󵄨󵄨󵄨󵄨 ℎ
3) .

(12)

The coefficients {𝑎
1
, 𝑎
2
, . . . , 𝑎

14
} of (12) depend on the

position of the stencil point relative to the interface:

𝑎
1
= ∑
(𝑚∈𝑀−)

𝛾
𝑚
; 𝑎

2
= ∑
(𝑚∈𝑀+)

𝛾
𝑚
;

𝑎
3
= ∑
(𝑚∈𝑀−)

𝛾
𝑚
𝜉
𝑚
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4
= ∑
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𝛾
𝑚
𝜉
𝑚
;

𝑎
5
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𝛾
𝑚
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𝑚
; 𝑎
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𝛾
𝑚
𝜂
𝑚
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𝑎
7
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𝛾
𝑚
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𝑚
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8
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𝛾
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𝑚
;

𝑎
9
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𝛾
𝑚
𝜂2
𝑚
; 𝑎

10
= 1
2

∑
(𝑚∈𝑀+)

𝛾
𝑚
𝜂2
𝑚
;

𝑎
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= ∑
(𝑚∈𝑀−)

𝛾
𝑚
𝜉
𝑚
𝜂
𝑚
; 𝑎
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𝛾
𝑚
𝜉
𝑚
𝜂
𝑚
;

𝑎
13
= 1
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𝛾
𝑚
𝜉
𝑚
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𝑚
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14
= 1
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∑
(𝑚∈𝑀+)

𝛾
𝑚
𝜉
𝑚
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𝑚
,

(13)

where the sets𝑀± are defined as

𝑀± = {𝑚 : (𝜉
𝑚
, 𝜂
𝑚
) ∈ Ω±} . (14)

At this end it is important to specify the relations of the
solution and its derivatives at both sides of the interface. After
some algebraicmanipulation, from the contact conditions (3)
the following relations are deduced:

𝑢+ = 𝑢− + 𝛼𝐾−𝑢−
𝜉
, 𝑢+

𝜉
= 𝜌𝑢−
𝜉
,

𝑢+
𝜂
= (1 − 𝛼𝜒󸀠󸀠𝐾−) 𝑢−

𝜂
+ 𝛼𝐾−
𝜂
𝑢−
𝜉
+ 𝛼𝐾−𝑢−

𝜉𝜂
,

𝑢+
𝜉𝜉
= 𝜌𝑢−
𝜉𝜉

−
[𝐾+
𝜂
𝑢+
𝜂
− 𝐾−
𝜂
𝑢−
𝜂
+ 𝐾+
𝜉
𝑢+
𝜉
− 𝐾−
𝜉
𝑢−
𝜉
+ 𝐾+𝑢+

𝜂𝜂
− 𝐾−𝑢−

𝜂𝜂
]

𝐾+
;

𝑢+
𝜂𝜂

= 𝑢−
𝜂𝜂
− 𝜒󸀠󸀠 (𝑢+

𝜉
− 𝑢−
𝜉
) + 𝛼 (𝜒󸀠󸀠𝐾−

𝜉
+ 𝐾−
𝜂𝜂
) 𝑢−
𝜉
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𝜂
(𝑢−
𝜉𝜂
− 𝜒󸀠󸀠𝑢−

𝜂
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𝜂
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𝜉𝜂
− 𝜒󸀠󸀠𝑢−

𝜂
)

+ 𝛼𝐾− (𝜒󸀠󸀠𝑢−
𝜉𝜉
+ 𝑢
𝜉𝜂𝜂

− 2𝜒󸀠󸀠𝑢−
𝜂𝜂
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2

𝐾−𝑢−
𝜉
,

𝑢+
𝜉𝜂
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𝜂
𝑢−
𝜉
− 𝐾+
𝜂
𝑢+
𝜉
)

𝐾+
+ 𝜌 (𝑢−

𝜉𝜂
− 𝜒󸀠󸀠𝑢−

𝜂
) + 𝜒󸀠󸀠𝑢+

𝜂
,

𝑢+
𝜉𝜂𝜂

= 𝜌𝑢−
𝜉𝜂𝜂

+ 𝜒󸀠󸀠 (𝜌𝑢−
𝜉𝜉
− 𝑢+
𝜉𝜉
)

+
[𝑢−
𝜉
(𝜒󸀠󸀠𝐾−

𝜉
+ 𝐾−
𝜂𝜂
) − 𝑢+
𝜉
(𝜒󸀠󸀠𝐾+

𝜉
+ 𝐾+
𝜂𝜂
)]

𝐾+

+ 2
[𝐾−
𝜂
𝑢−
𝜉𝜂
− 𝐾+
𝜂
𝑢+
𝜉𝜂
− 𝜒󸀠󸀠 (𝐾−

𝜂
𝑢−
𝜂
− 𝐾+
𝜂
𝑢+
𝜂
)]

𝐾+

− 2𝜒󸀠󸀠 (𝜌𝑢−
𝜂𝜂
− 𝑢+
𝜂𝜂
) ,

(15)

with 𝜌 = 𝐾−/𝐾+. The curvature 𝜒󸀠󸀠 of the interface at (𝑥∗,
𝑦∗) is the second order derivative of function 𝜉 = 𝜒(𝜂) with
respect to 𝜂. We note also that at (𝑥∗, 𝑦∗) we have 𝜒(0) = 0
and for a smooth interface (as assumed here) 𝜒󸀠(0) = 0.

The interface relations (15) are used to recast (12) in a
compact form using only quantities from one side of the
interface (theΩ− side, e.g.):

𝜅
𝑖,𝑗
= 𝐵
1
𝑢− + 𝐵

2
𝑢−
𝜉
+ 𝐵
3
𝑢−
𝜂
+ 𝐵
4
𝑢−
𝜉𝜉
+ 𝐵
5
𝑢−
𝜂𝜂

+ 𝐵
6
𝑢−
𝜉𝜂
+ 𝐵
7
𝑢−
𝜉𝜂𝜂

+ 𝑂(max
𝑚

󵄨󵄨󵄨󵄨𝛾𝑚
󵄨󵄨󵄨󵄨 ℎ
3) ,

(16)

where 𝐵
𝑖
(𝑖 = 1, 7) are expressions of coefficients

{𝑎
1
, 𝑎
2
, . . . , 𝑎

14
} and other quantities used in (15). Since we
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are looking for a second order accuracy, the coefficients
𝐵
𝑖
of 𝜅
𝑖,𝑗

expression must vanish in the same time with
the correction term 𝐶

𝑖,𝑗
. These constraints lead to following

system of equations with respect to variables 𝑎
𝑖
:

𝑎
1
+ 𝑎
2
= 0,

𝑎
2
𝛼𝐾− + 𝑎

3
+ 𝑎
4
𝜌 + 𝑎
6
𝛼𝐾−
𝜂
+ 𝑎
8
𝑐(2)
8

+ 𝑎
10
𝑐(2)
10

+ 𝑎
12
𝑐(2)
12

+ 𝑎
14
𝑐(2)
14

= 𝐾−
𝜉
,

𝑎
5
+ 𝑎
6
(1 − 𝛼𝜒󸀠󸀠𝐾−) + 𝑎

8
𝑐(3)
8

− 2𝛼𝜒󸀠󸀠𝐾−
𝜂
𝑎
10

+ 𝑎
14
𝑐(3)
14

+ 𝜒󸀠󸀠 (1 − 𝜌 − 𝛼𝜒󸀠󸀠𝐾−) 𝑎
12
= 𝐾−
𝜂
,

𝑎
7
+ (𝜌 − 𝛼𝜒󸀠󸀠𝐾−) 𝑎

8
+ 𝛼𝜒󸀠󸀠𝐾−𝑎

10
+ 3𝛼(𝜒󸀠󸀠)

2

𝐾−𝑎
14
= 𝐾−,

𝑎
9
+ (1 − 2𝛼𝜒󸀠󸀠𝐾−) 𝑎

10
+ (𝜌 − 1 + 2𝛼𝜒󸀠󸀠𝐾−) 𝑎

8

+ 3𝜒󸀠󸀠 (1 − 𝜌 − 2𝛼𝜒󸀠󸀠𝐾−) 𝑎
14
= 𝐾−,

𝛼𝐾−𝑎
6
− (2𝛼𝐾−

𝜂
− 𝛼𝜌𝐾+

𝜂
) 𝑎
8
+ 2𝛼𝐾−

𝜂
𝑎
10
+ 𝑎
11

+ (𝜌 + 𝛼𝜒󸀠󸀠𝐾−) 𝑎
12
+ 𝑎
14
𝑐(6)
14

= 0,

− 𝛼𝐾−𝑎
8
+ 𝛼𝐾−𝑎

10
+ 𝑎
13
+ (𝜌 + 3𝛼𝜒󸀠󸀠𝐾−) 𝑎

14
= 0,

(17)

where

𝑐(2)
8

= − (𝛼𝐾−
𝜂
𝐾+
𝜂
+ 𝛼𝐾+𝐾−

𝜂𝜂
− 𝐾−
𝜉
+ 𝜌𝐾+
𝜉
) /𝐾+

− (1 + 𝛼𝐾−
𝜉
− 𝜌) 𝜒󸀠󸀠 + 𝛼𝐾−(𝜒󸀠󸀠)

2

,

𝑐(2)
10

= 𝜒󸀠󸀠 (1 − 𝜌) + 𝛼𝐾−
𝜂𝜂
+ 𝛼𝜒󸀠󸀠 (𝐾−

𝜉
− 𝜒󸀠󸀠𝐾−) ,

𝑐(2)
12

=
(𝐾−
𝜂
− 𝜌𝐾+
𝜂
)

𝐾+
+ 𝛼𝜒󸀠󸀠𝐾−

𝜂
,

𝑐(2)
14

=
(−2𝐾−

𝜂
𝐾+
𝜂
+ 2𝜌(𝐾+

𝜂
)
2

)

(𝐾+)2

+
(𝛼𝜒󸀠󸀠𝐾−

𝜂
𝐾+
𝜂
+ 𝐾−
𝜂𝜂
− 𝜌𝐾+
𝜂𝜂
)

𝐾+

+ 3𝜒󸀠󸀠 (𝛼𝐾−
𝜂𝜂
+ 𝜒󸀠󸀠 + 𝛼𝜒󸀠󸀠𝐾−

𝜉
− 𝜌𝜒󸀠󸀠 (1 + 𝛼𝜒󸀠󸀠𝐾+)) ,

𝑐(3)
8

=
(𝐾−
𝜂
− 𝐾+
𝜂
)

𝐾+
+ 𝛼𝜒󸀠󸀠 (2𝐾−

𝜂
+ 𝜌𝐾+
𝜂
) ,

𝑐(3)
14

=
−𝜒󸀠󸀠 (3𝐾−

𝜂
− 𝐾+
𝜂
− 2𝜌𝐾+

𝜂
)

𝐾+
− (𝜒󸀠󸀠)

2

(6𝛼𝐾−
𝜂
+ 𝛼𝜌𝐾+

𝜂
) ,

𝑐(6)
14

=
2 (𝐾−
𝜂
− 𝜌𝐾+
𝜂
)

𝐾+
+ 𝛼𝜒󸀠󸀠 (6𝐾−

𝜂
+ 𝜌𝐾+
𝜂
) .

(18)

Since all coefficients 𝑎
𝑖
are defined as functions of 𝛾

𝑚
(see

(13)), one could write the system (17) in a compact form as

[A] ⋅ 𝛾 = 𝑏 (19)

with the vector 𝛾 = [𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑛𝑠
]𝑡 and 𝑏 = [0, 𝐾−

𝜉
, 𝐾−
𝜂
, 𝐾−,

𝐾−, 0, 0]𝑡.
Thus, the central point to obtain the solution of the

problem (2) by using IIM is to construct and resolve the
system (19). Note that, at irregular points, the set of (19)
could be obtained using at least six points stencil as proposed
in the original IIM method [21]. However, as discussed in
some recent works [16, 17, 19], nine-point stencil (𝑛𝑠 = 9) is
preferred because the resulting linear system of equations is
in this case a block tridiagonal one.

However, using of a nine points stencil (𝑛𝑠 = 9) leads
to an underdetermined system (19) whose solution could be
obtained by using the maximum principle [16, 17, 19] and an
optimization approach. For that, the following constrained
quadratic optimization problem is considered:

min
𝛾

{1
2
󵄩󵄩󵄩󵄩𝛾 − 𝑔󵄩󵄩󵄩󵄩

2

2
} , (20)

with

𝛾
𝑚
≥ 0 if (𝑖𝑚, 𝑗𝑚) ̸= (0, 0) ,

𝛾
𝑚
< 0 if (𝑖𝑚, 𝑗𝑚) = (0, 0) .

(21)

In this equation, the vector 𝑔 = [𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑛𝑠
]𝑡 has the

following components:

𝑔
𝑚
=
𝐾
𝑖+𝑖𝑚/2,𝑗+𝑗𝑚/2

ℎ2
,

if (𝑖𝑚, 𝑗𝑚) ∈ {(−1, 0) , (1, 0) , (0, −1) , (0, 1)} ,

𝑔
𝑚
= −

𝐾
𝑖,𝑗−1/2

+ 𝐾
𝑖−1/2,𝑗

+ 𝐾
𝑖+1/2,𝑗

+ 𝐾
𝑖,𝑗+1/2

ℎ2
,

if (𝑖𝑚, 𝑗𝑚) = (0, 0) ,
𝑔
𝑚
= 0 otherwise.

(22)

This vector 𝑔 represents in effect the coefficients of the
standard five points stencil to whom the solution of the
optimization problem has to coincide in case of continuous
properties of constituent phases (i.e., when [𝐾] = 0).

The existence of the solution of the optimization problem
(20) as well as the convergence of the substitution method in
that case has been demonstrated in [16, 17] and will not be
discussed here. We just mention that, as in a previous work
of these authors [18], this optimization problem is solved by
using the optimization toolbox available inMATLAB.

2.3. Computing Solution, Its Derivatives at Interface, and
Effective Properties. As previously outlined, the non linear
transfer problem is treated here by using an iterative proce-
dure consisting for each iteration to solve a linearized partial
differential equation. The resolution of this later by using
the IIM method needs to determine the set of weighting
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coefficients 𝛾
𝑚
. At each irregular point, these coefficients have

to be evaluated by solving an undetermined system via an
optimization approach. The coefficients 𝐾±, 𝐾±

𝜉
, and 𝐾±

𝜂
of

this system of (17) are in reality defined as functions of the
solution 𝑢(𝑥∗, 𝑦∗) at interface. For the substitution scheme
followed here, these coefficients are calculated at each step
from the solution of the previous iteration 𝑢𝑘 at projection
point (𝑥∗, 𝑦∗).

The solution value at this point 𝑢(𝑥∗, 𝑦∗) is interpolated
from solution at grid points using a least squares scheme. For
this interpolation, grid points situated at the same side of the
considered point (𝑥

𝑖
, 𝑦
𝑗
) are used. As discussed in chapter

6 of [17] as well as in the contribution of [19], using this
approach by involving in least squares approximation at least
six points of the same side avoids to use the interface relations
and maintains the second order accuracy. For example, if the
irregular point (𝑥

𝑖
, 𝑦
𝑗
) belongs toΩ−, one can interpolate the

solution at its projection point (𝑥∗, 𝑦∗) from the values of
points in the same sideΩ− as follows:

𝑢− (𝑥∗, 𝑦∗) = ∑
(𝑥
𝑚

,𝑦
𝑛

)∈Ω
−

,|(𝑥
𝑚

,𝑦
𝑛

)−(𝑥
∗

,𝑦
∗

)|≤𝑅
𝜀

𝛾
𝑚,𝑛

𝑢
𝑚,𝑛

, (23)

where 𝑅
𝜀
can be chosen between 4.1ℎ and 6.1ℎ.

The same method of least squares scheme is also used to
calculate the derivatives of the solution 𝑢

𝑥
and 𝑢
𝑦
using 𝑢

𝜉
by

applying relation (9). Note that once the value of the solution
𝑢− is known (and so are the values of 𝐾− = 𝐾(𝑢−)) as well
as its derivative 𝑢−

𝜉
atΩ− side of the interface, it is possible to

evaluate the respective values at the other sideΩ+ of interface
by using the following interface relation:

𝑢+ = 𝑢− + 𝛼𝐾−𝑢−
𝜉
; 𝐾+ = 𝐾 (𝑢+) . (24)

The same approach can be used to determine the coeffi-
cients 𝐾−

𝑥
and 𝐾−

𝑦
at (𝑥∗, 𝑦∗) by involving values of 𝐾

𝑚,𝑛
=

𝐾(𝑢
𝑚,𝑛

) determined at grid points situated at the same side
Ω− (or Ω+). We obtain finally 𝐾±

𝜉
and 𝐾±

𝜂
from the relation

written in (9).
Once all coefficients of the finite difference scheme are

known, it is possible to solve the system of (5) and obtain
the solution (𝑢𝑘+1) of the (𝑘 + 1)th step at all grid nodes.
The iterative calculation is finished when the convergence
criterion is reached. For all numerical simulations presented
in the next sections, the norm of residue of the iterative
scheme is fixed to 10−6.These results numerically confirm the
convergence of the iterative procedure which is obtained after
only a small number of iteration (∼5 iterations).

From the solution of the transfer problem, one could use
it to calculate the overall conductivity of the heterogeneous
media from the well-known relation of volume average
quantities:

⟨𝑞⟩ = −Keff ⋅ {⟨grad (𝑢)⟩ + 1
|Ω|

∫
Γ

𝛼 [𝑞 (𝑠) ⋅ 𝑛 (𝑠)] 𝑛 (𝑠) 𝑑𝑠} ,

(25)

where ⟨⋅⟩ denotes the average over all elements of the
representative volume.

3. Variation of the Effective Thermal
Conductivity of Geomaterials with respect
to Temperature and Pressure

3.1. Temperature Dependence. Beginning from the pioneer
work of [3], the temperature-dependent thermal proper-
ties of geomaterials have been studied for a long time
in relation with various engineering applications such as
geothermal reservoirs, underground storage of nuclear waste
or petroleum and natural gas geology. This subject is always
in continuous progress with a remarkable number of results
conducted on different types of soils and rocks in the last
decade [2, 4, 6–9]. A general tendency of decreasing of
thermal conductivity as a function of temperature can be
stated from these contributions. At the same time, a thermal
damage is reported as a consequence of the contrast of
constituent properties of geomaterials when the temperature
increases. This type of damage known as thermal cracking
developed principally in contacts of constituent phases of the
heterogeneous media like geomaterials.

In this part, we use the IIM method to solve the problem
of effective thermal conductivity estimation of geomaterials
whose constituent thermal conductivities depend on temper-
ature. In addition, the effects of cracking interfaces with tem-
perature on the effective thermal conductivity are considered
using imperfect interface. In that case, the nonlinearity of
effective thermal property reflects not only the nonlinearity of
the intrinsic properties of matrix and inclusions but also the
properties of interfaces, which when debonding produce an
extra thermal resistance. In order to describe the progressive
cracking of interfaces when the temperature evolves, the
properties of interface are supposed to vary with coordinates
following a known function. In the simplest case a piecewise
interfacial resistance function that takes some values for
debonding parts of interfaces and some other values for intact
ones could be used. As an example, the debonding parts
of the interface of a circular inclusion could be given in
function of an angle 𝜙 measured from an arbitrary chosen
direction (Figure 2). In extreme cases, full interface could be
considered as debonded. One could anticipate that, because
of the temperature dependent conductivity of local con-
stituents and interface debonding, the overall conductivity
would be highly temperature dependent [14, 15, 22–26]. As
demonstrated in a previous contribution from the authors
[18], the contact resistance leads also to a size-dependent
behavior of heterogeneous materials as observed in reality:
for the same volumetric fraction of inclusions, a more
pronounced effect of the interface is observed for smaller
inclusions. If not otherwise stated in following simulations,
the size of inclusion is equal to 𝑅 = 1 𝜇m.

For the sake of clarity, the geometry as well as the
initial and boundary conditions of the considered problem
is depicted in Figure 2. More precisely, a constant initial
temperature 𝑢 is considered in whole sample, and the mixed
boundary conditions consist in applying the temperatures 𝑢
and 𝑢 + Δ𝑢 at the two opposing faces (to the Oy direction
in the examples presented here) of the rectangular domain,
whereas the zero heat flux is supposed to be to two other
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Figure 2: (a) Single partial debonding of circular inclusion. (b) Double partial debonding of circular inclusion.

faces in the orthogonal direction (faces normal to the Ox
direction) to the first. In what follows, a constant 320 × 320
grid is used for all calculations. This value obtained from
the analysis of the sensitivity of numerical results to the grid
density in previous work [18] gives excellent agreement with
the analytical solutions in the context of the linear problem.

For illustration purposes, we consider a sample of
Callovo-Oxfordian argillite (see, e.g., [18] for a brief descrip-
tion) constituted by a claymatrix with quartz inclusions at the
mesoscopic level. The constant thermal conductivity of the
matrix is taken as𝐾

1
(𝑢) = 1.8 (W ⋅m−1 ⋅K−1). Otherwise the

thermal conductivity of quartz significantly decreases with
temperature and following evolution is reported in published
works [1, 3]:𝐾

2
(𝑢) = 7.7/(0.0045×𝑢−0.3863) (W ⋅m−1 ⋅K−1).

It must emphasize however that despite simple expressions
of thermal conductivities used for this material, one could
use any expression provided by experimental considerations.
Concerning the thermal resistance of interface in debonded
parts, an arbitrary value is taken equal to 10−6 (m2 ⋅K ⋅W−1),
while perfect interface conditions (𝛼 = 0) are supposed for
bonded parts.

For simulations, firstly the sample of heterogeneousmate-
rial with a single circular inclusions and partially (simple or
double) debonded interface is considered. As the illustration
in Figure 3, the temperature fields are presented on the mate-
rial containing a single circular inclusion with, respectively,
simple and double debonding interface. The debonding,
introduced in these simulations as an extra resistance of
the interface, is the reason of temperature jumps manifested
in the temperature profiles (Figure 4), respectively, in one
side and in two sides of inclusion according to debonding
interface geometry (single partial debonding in Figure 2(a)
or double partial debonding in Figure 2(b)).

The variation of the overall thermal conductivity of the
considered heterogeneous material with temperature as well
as with the volume fraction of constituents is shown in
Figure 5. Firstly, due to the decrease of the thermal

conductivity of solid inclusion, the same tendency is obtained
for the homogenized thermal property. The reduction
between 300∘K and 500∘K of this property is much more
pronounced in case of perfect interface with higher volume
fraction of minerals inhomogeneity (Figure 5(a)). For the
perfect interface case, the effective thermal conductivity is
always higher than that of the clay matrix𝐾

1
= 1.8 (W ⋅m−1 ⋅

K−1) because of a higher thermal conductivity of inclusion in
all considered range of temperature. On the contrary, in the
case of fully debonded interface, under the effect of thermal
resistance of the interface, the effective thermal conductivity
could be smaller than that of the matrix (Figure 5(b)).

During thermal cracking, interfaces debonding is pro-
gressive. If this debonding is orientated and happened prefer-
entially at some directions, then the overall properties could
become anisotropic. Such situation is simulated by suppos-
ing a partially debonding of a circular inclusion. Figure 6
illustrates the evolution of effective thermal conductivities in
the vertical and horizontal directions in such situation. In
both directions the thermal conductivity decreases when the
debonding angle (angle 𝜙2(𝑏)) increases from 𝜙 = 0 (perfect
interface) to 𝜙 = 𝜋/2. However, because of the orientation of
the debonded part of the interface, the thermal conductivity
in the vertical direction decreases quicker than in horizontal
direction introducing an anisotropy on macroscopic thermal
conductivity of the homogenized material.

While single inclusion structure model assumes a peri-
odic material, in cases when this hypothesis is not satisfied
a more realistic description of the microstructure is needed.
The IIM could be successfully used in such conditions where
complex structures are studied. This feature is illustrated
here by considering a clayey rock with 60 quartz inclusions
counting for 20% of the volume. While all inclusions have
the same diameter, their positions are randomly obtained by
using aMonte Carlo procedure. As described in our previous
work [18], the number of inclusion used in simulations is
sufficient for having convergent results for homogenized
thermal conductivity of the random medium.
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Figure 3: Temperature field in the heterogeneousmedia with. (a) Double partial debonding of circular inclusion; (b) single partial debonding
of circular inclusion.

For illustration purposes, we consider a hypothetic crack-
ing evolution described by a linear evolution of debonding
angle with temperature 𝜙 = 𝑎 × 𝑢 + 𝑏 with 𝑎 = 𝜋/300 and
𝑏 = −273×𝜋/300, whichmeans that the interfaces are perfect
at 273∘K and completely debonded at 573∘K. Note also that
the position of debonded part is randomly generated at the
boundary of each inclusion.

The contours of temperature field in elementary repre-
sentative volume at some temperature levels are presented in
Figure 7, in which one could clearly distinguish the progres-
sive debonding of inclusions illustrated by the increase of the
debonded arc length of inclusions. Finally, as performed in
Figure 8(a), the comparison between two cases of perfectly
bonded and partially debonded of random inclusions has
elucidated the important increase of the nonlinearity of
effective thermal conductivity with temperature in the latter

case. Further, due to the random distribution of circular
inclusions as well as the debonded part of each inclusion,
these numerical results always display the quasi-isotropic of
the overall thermal property where𝐾𝑦𝑦eff /𝐾

𝑥𝑥

eff ≈ 1 as observed
in Figure 8(b).

3.2. Pressure Dependence. In addition to the temperature
dependence, the variation of the thermal conductivity of geo-
materials with respect to applied pressure is also an important
issue of research. Based on experimental results realized on
different types of rock,many authors showed that the increase
of pressure augments the thermal conductivity of materials
[2, 27–29]. For example, in their work, Abdulagatova et
al. [28] measured the thermal conductivity of sandstone at
pressures up to 400MPa. They found that the thermal con-
ductivity of a rock increases rapidly between 0.1 and 100MPa,
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Figure 4: Distribution of temperature following the vertical and horizontal cuts at the center of circular inclusion: (a) double partial
debonding; (b) single partial debonding.

and at high pressure (>100MPa), a weak linear dependence
of the thermal conductivity with pressure was observed.
The increasing effect of pressure on thermal behavior was
explained by the closure of microcrack which caused the
approaching of the rock grains to each other at moderate
pressure. If pressure is still further increased, the reduction
of the rock’s intrinsic porosity may take place. These results
confirm the observation presented in the previous work of
Clauser and Huenges [1].

The influence of pressure on the effective thermal con-
ductivity will be carried out here by supposing that the

applied pressure will close continuously the debonded part of
inclusions.This simplification aims to illustrate the evolution
of the thermal conductivity under pressure but obviously a
more sophisticated study needs to be conducted to explicitly
account for the mechanism of this closure of debonded
inclusions. This case of study can be realized in the context
of the thermomechanical coupled behaviour of geomaterials
and will be discussed in our near future work. Thus, in the
present paper, we will define the variation of debonding
angle with respect to pressure as follows: 𝜙 = 𝜙

0
(1 +

(𝑃/𝑃
0
)𝑛)(1−𝑛)/𝑛. This function presents a rapid decrease of
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Figure 5: Effective thermal conductivity 𝐾𝑦𝑦eff as a function of temperature and volume fraction of inclusion: (a) case of perfect interface; (b)
case of completely debonded interface.
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Figure 6: Effective thermal conductivity as a function of temperature anddebonding angle: (a) vertical direction𝐾𝑦𝑦eff ; (b) horizontal directions
𝐾𝑥𝑥eff .

debonding angle with moderate pressure 𝑃 and is inversely
proportional with high pressure. Otherwise, to take into
account the temperature effect, the initial debonding angle 𝜙

0

of random inclusions may vary as a function of temperature
as considered in previous section. As an example, in Figure 9,
we present the variation of the effective thermal conductivity
of the heterogeneous rock with respect to pressure as well
as temperature with the value 𝑃

0
= 10MPa and 𝑛 = 2.

These results show the quick increase of the overall thermal
conductivity between the atmospheric pressure and 100MPa,
while a quasi linear evolution can be observed for the range
of pressure from 100MPa to 200MPa.

3.3. Comparison with Experimental Results. In this subsec-
tion, we compare our numerical prediction with some exper-
imental results published in the literature. As an example, in
their contribution, Jobmann and Buntebarth [7] investigated
the evolution of the thermal conductivity of the bentonite-
quartz mixture with respect to temperature within 20∘C to
150∘C. Their main purpose of using this admixture is to
accelerate the heat flow through the geotechnical barrier
consisting of bentonite for the deep geological disposal of
waste. To increase the thermal conductivity of the barrier,
which needs to be similar to ones of the host rock, different
quartz contents in the admixture have been tested. The grain
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Figure 7: Contour of temperature in the heterogeneous media at different state of applied temperature.
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size of quartzwas about 0.3mm.The results of thesemeasures
showed that the thermal conductivity of the bentonite-
quartz mixtures slightly increase with respect to the quartz
content. Moreover, due to the temperature dependence of the
thermal conductivity of quartz while the thermal property of
bentonite is almost constant about 0.95 (W ⋅ m−1 ⋅ K−1), the
overall thermal conductivity of the mixture decreases with
respect to temperature.

In Figure 10, we present the comparison of the numerical
and experimental results with different quartz content of the
bentonite-quartzmixture. In these numerical simulations the
thermal resistance of interface is equal to 2 × 10−4 (m2 ⋅
K ⋅ W−1) while the two coefficients of the debonding angle’s
evolution function with temperature (see Section 3.1) are 𝑎 =
𝜋/720 and 𝑏 = −53 × 𝜋/720, respectively. These values are
obtained from an inverse analysis so that both experiment

and simulation agree at best. We can state that the tendency
observed in the experiment is well captured by the numerical
estimations using the IIM method.

4. Conclusions

The immersed interface method (IIM) was adapted in the
present work to solve the elliptical transfer equation taking
into account the contact resistance of interface in non linear
heterogeneous composite-like geomaterials. This numerical
tool is then used to derive the temperature- and pressure-
dependent effective thermal conductivity of geomaterial
with imperfect contact between matrix and inclusion. The
imperfection of interface modeled as the partial or full
debonding of inclusions is created during a thermophysical
phenomenon called thermal cracking under heat load while
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Figure 9: Effective thermal conductivity of the randomly heterogeneous media as a function of pressure and temperature.
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a continuous closure of this imperfect interface is considered
under pressure. The numerical results highlight that the
overall conductivity at the macroscale depend strongly on
the applied temperature and pressure through the state of
debonding inclusions. The efficiency of numerical tool is
demonstrated both in periodic structures and random ones
allowing us to study in details temperature fields in a hetero-
geneous material with interfaces and its effective properties
counting for the role of the microstructure complexity on the
overall properties.
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