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An implementation with the CUDA technology in a single and in several graphics processing units (GPUs) is presented for
the calculation of the forward modeling of gravitational fields from a tridimensional volumetric ensemble composed by unitary
prisms of constant density. We compared the performance results obtained with the GPUs against a previous version coded
in OpenMP with MPI, and we analyzed the results on both platforms. Today, the use of GPUs represents a breakthrough in
parallel computing, which has led to the development of several applications with various applications. Nevertheless, in some
applications the decomposition of the tasks is not trivial, as can be appreciated in this paper. Unlike a trivial decomposition of the
domain, we proposed to decompose the problem by sets of prisms and use different memory spaces per processing CUDA core,
avoiding the performance decay as a result of the constant calls to kernels functions which would be needed in a parallelization by
observations points. The design and implementation created are the main contributions of this work, because the parallelization
scheme implemented is not trivial. The performance results obtained are comparable to those of a small processing cluster.

1. Introduction

In recent years the number of publications about parallel
computing applications using the GPUs architecture has
remarkably increased. These applications represent an eco-
nomic and powerful way to access high-performance com-
puting [1, 2]. However, since the architecture of the GPU is
different to that of a conventional CPU, the programming
paradigm should be changed.This had led to the development
of a new research field within scientific computing which
explores the performance of the GPU to general purpose
applications, such as acoustic simulation [3], propagation
of seismic waves [4], seismic migration [5], molecular
engineering [6], fluid dynamics [7], even for astrophysical
simulations [8] and many other implementations. In a few

words, the objective of the general purpose computing in
GPU (GPGPU) is to develop new applications for those who
pretend to solve problems of numerical simulation requiring
as less computing time as possible.

Even though the GPUs have become an accessible plat-
form for general purpose programming, they still have some
limitations and its programming entails some difficulties
[2]. Compute unified device architecture (CUDA) is a set
of tools that includes mainly a compiler for an extension
of the C language, a set of libraries, and drivers for the
specific programming of NVIDIA cards. Despite that these
tools have eased the programming, it is still needed to know
with precision the architecture of the card with its several
memory levels to obtain the maximum performance. One
of the greatest drawbacks that can occur in CUDA is the
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handling of critical sections or shared memory, since there
are no proper instructions of exclusions, as is the case in
OpenMP [13].Therefore, when these difficulties are present in
the application design, it is necessary tomodify the strategy to
achieve a good performance. Implementing this application
in CUDA for the calculation of the direct model through a
prisms ensemble represents a big challenge; this is because the
memory regionwhere the calculations aremade (observation
grid) is shared and therefore requires different memory
allocations to avoid the data coherency problems produced
when two or more processing cores access the same memory
location at the same time. This drawback is not present, for
example, when a model is solved through finite differences
since the domain is divided between the cores and there is no
overlap in the data handled by each core [9].

One of the simplest parallelization options for this prob-
lem using CUDA consists of partitioning by the number
of prisms and to consequently divide the domain of the
observation grid between the device cores; this approach
avoids the handling of shared regions. However, this design
is extremely inefficient since for each prism it would be
necessary to make a call to the GPU. A typical problem of
fourteenmillion prismswould imply the execution of a kernel
by the same number, and each kernel call is computationally
expensive [11]. Therefore, we propose an efficient design
based on the partition by groups of prisms.

Additionally, we make experiments with double and
single precision to calculate the errors that can introduce the
single precision, and evenwhen its use reduces the computing
time from 30% to 50%, it is necessary to evaluate the effect
of the introduced error by using only seven significant digits
in the floating numbers and investigate if this error affects
considerably the result of the modeling. This analysis is
necessary since recently NVIDIA introduced TESLA K10
cards which handle single precision and aremore economical
than the TESLA K20 cards for double precision.

1.1. RelatedWork. Some related research works which imple-
ment an approach to calculate scalar and tensor gravity utiliz-
ing themassively parallel architecture of GPU can be found in
[12], in which a parametrization based on rectilinear blocks
with constant density within each block is used; however,
the results show that our design yields a better performance
using different memory allocations. Also a parallel program
was developed to estimate the correlation imaging for gravity
and gravity gradiometry data to provide a rapid approach
to equivalent estimation of objective bodies with different
density contrasts in the subsurface [17]; however, neither is
multi-GPU implementation.

1.2. Paper Organization. This paper is organized as follows:
in Section 2 we present the characteristics of the CUDA
platform and the tools we used, in Section 3 the application
design is explained, in Section 4 we present some numerical
experiments that were made, in Section 5 we detail the
validation of the code for double as well as single precision,
and finally in Section 6we compare against a 29-nodes cluster
and finally we present our conclusions.

2. Architecture of the Platform

As a general-purpose architecture, CUDA includes the hard-
ware that can have dedicated processing cards or cards
which also control the visualization of the monitor and the
software that includes the compiler, the card drivers, and
the libraries. The programming model in CUDA consists
of functions called kernels which are executed concurrently
by several light threads (CUDA threads). These threads are
grouped into blocks which can be of one, two, or even three
dimensions. Each block can contain a maximum number
of threads, defined by the architecture of the card which
is being used. The blocks are executed concurrently by the
stream multiprocessors (SMs) and the execution order is
nondeterministic. Each SM contains a set of microprocessors
which can be thought of as arithmetic logic units (ALUs) and
are known as CUDA cores. The threads within a block are
divided into groups of 32, called warps. A warp is executed
concurrently by the CUDA cores, and the number of cores
can be less than the size of the warp, as happens in the TESLA
C1060 card, which has eight cores per SM but supports one
warp. This configuration implies that 8 threads are executed
in parallel, but 32 are processed concurrently, and this means
that each core will process 4 threads previously assigned.

There is an implicit synchronization between kernel
calls; that is, the next kernel cannot be executed until the
previous one has finalized. There are some cards of a more
advanced architecture which allow the concurrent execution
of kernels, but this must be specified by the programmer.
The threads within the same block can be synchronized, but
synchronization between blocks cannot be achieved.

Understanding the different types and hierarchies of
memory of the NVIDIA cards is essential to be able to
take advantage of them. There are four types of memory:
global, constant, texture, and shared. The global memory is
analogous to the RAM memory used in a CPU. A CUDA
application requires several data transfers from the global
memory of the GPU to the CPU memory. The constant and
the texture memories are cache memories and read-only by
the SM. The content of the texture memory can be updated
through special functions. The shared memory is included
in each block of threads and is shared only by the threads in
the block and is extremely fast in comparison with the global
memory, but its deficiency lies in the fact that it is very limited
and its size is defined by the architecture.

The key, in general, to achieve an efficient code for GPU is
to correctly handle the access times (latency) to the memory,
that is, to carry out the least possible data transfers between
the global memory of the GPU and the principal memory of
the CPU [15], followed by few calls to the kernel functions.
This implies having a great amount of blocks to process
or having blocks with a great amount of threads. It is also
necessary to avoid an excessive read-write access to the global
memory, and preferable to use the shared memory, even
though a lot of times this is not possible since a great amount
of data is being handled and the shared memory becomes
insufficient.
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Figure 1: Construction of a prism of densities and its calculation
with respect to an observation grid.

3. Design of the Application for GPU

The application consists of calculating the gravimetric or
gradiometric response produced by a rectangular prismatic
body with constant density, in reference to a set of points
called observation points (see Figure 1) [16]. The set of
prisms is known as prisms ensemble and is not necessarily
regular. An ensemble of nonregular prisms can be configured
(Figure 3), with the only requisite being that they are not
superimposed. Since the gravitational field complies with the
superposition principle with respect to the observation, if 𝑓
is the calculated response at a point (𝑥, 𝑦), then the observed
response at the point 𝑓(𝑥, 𝑦) is given by

𝑓 (𝑥, 𝑦) =
𝑀

∑
𝑘=1

𝐺 (𝜌
𝑘
, 𝑥, 𝑦) , (1)

where 𝑀 is the total number of prisms and 𝜌 the density of
the prism.

It is well known that the function which can calculate the
gravimetric or gradiometric contribution for a given prism
and a set point can be rewritten as follows:

𝑔 = 𝑓 (𝑥
1
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1
) is the upper left vertex and (𝑥

2
, 𝑦
2
, 𝑧
2
) the

lower right vertex of the prism; (𝑥, 𝑦, 𝑧) is the observation
point and 𝜌 the density, as shown in Figure 2.

To be able to discretise the cube, we define 𝑥
𝑝
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as the face numbers in the directions 𝑥, 𝑦, and 𝑧, respectively.
If the cube is discretized in an homogeneous way, thenwe can
define 𝑀, the number of prisms, as 𝑀 = 𝑥
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each prism.We define𝑂 as the number of observation points,
which is determined by 𝑂 = 𝑁

𝑥
× 𝑁
𝑦
, where 𝑁

𝑥
and 𝑁

𝑦
are

the number of observation points in the 𝑥 and 𝑦 directions,

(xp, yp, zp)

(xr, yr, zr)

(xl, yl, zl)

Figure 2: Illustration of the calculation of the anomaly produced by
a prism with respect to an observation point.
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Figure 3: Illustration of an ensemble of irregular prisms.

respectively.Therefore, the number of timeswhich is required
to call the function defined in (2) to calculate the anomaly
produced by a component is 𝑀 × 𝑂.

The first step to develop a parallel program is to search
the finest granularity. This is important since CUDA handles
a fine granularity paradigm. In this case it can be thought
of parallelizing by prisms or by observation points, (see
Figure 4), that is, by the number of elements in 𝑀 or by
the number of elements in 𝑂. One of the requisites which
must be taken into consideration in the design is that it must
be scalable, and hybrid systems must be considered since
they are the most commonly used nowadays. However, many
times design and type of architecture cannot be separated,
especially when it is as specific as the CUDA architecture.
Following themethodology proposed by Foster [10], it is nec-
essary to analyze both parallelization schemes and examine
which yields the best performance. Nevertheless, since 𝑀 ≫
𝑂, in principle the best option of partitioning is by 𝑀, as
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Figure 4: Partitioning by observation points.

detailed in the next section, even though this design requires
a greater effort for its implementation.

3.1. Implementation in a Single GPU. The design for a GPU
will consist of generating an observation grid (memory space)
for each execution thread created in the TESLA card; in
other words, if we create 14 blocks, each one containing 32
execution threads, we would have generated 448 observation
grids.This design obeys the fact that we will select a partition
by prisms, which implies less calls to kernel functions and is
therefore more efficient in terms of execution time.

To give the correct dimension to our design, we analyze
the simplest option of parallelization, which consists of
partitioning the observation grid in thememory card for each
prism.

This method of parallelization is the most trivial since it
is enough to simply parallelize the cycle of the observations,
which can even be done by usingOpenACC, simplifying even
more the work and avoiding the creation of the kernel by the
programmer and leaving it to the compiler. However, a big
drawback of this method is the excessive number of calls to
the kernel function, which decreases performance since the
parallel region is created and closed on each call. Additionally,
it does not represent a big challenge design-wise to the point
that the scheme can be solved with a compiler which could
automatically generate parallel code.

On the other hand, the other parallelization option is to
do it by prisms; in other words, make the threads divide the
work by prisms. However, to avoid the coherence problems it
is necessary to create a different space of memory for each
execution thread, since it is not feasible to create just one
memory space for a single observation grid, shared by all of
the threads, since one of the principal problems which is not
easy to handle inCUDA is themutual exclusion of the threads
in shared zones.

As can be seen in Figure 5, it is required to create an
observation grid for each execution thread to avoid numerical
consistency problems; if only one grid is occupied for all
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·

·
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Figure 5: Partitioning by prisms using different memory spaces.

the threads, access conflicts will appear since several threads
would write in the same memory location.

The number of created grids is equal to the number of
created execution threads, and therefore the number of grids
would be equal to the number of blocks times the number
of threads contained in each block. This design allows the
process at the same time as many prisms as threads are
created, and therefore, for example, if 448 threads are created,
then the same number of prisms will be processed in parallel
in one kernel function execution and in the following call to
the kernel function another 448 prisms will be processed and
so successively until finalizing the process. In this way, the
thread 1 will process the prisms set {1, 449, 897, 1345, . . .}; in
fact, the number of times that the kernel function is called is
determined by

𝑝 = ⌈
𝑀

𝑇
⌉ , (3)

where 𝑀 is the number of prisms and 𝑇 is the number of
created threads, and consequently 𝑝 ≪ 𝑀. To exemplify that
the prisms partitioning is better, let us suppose that 14 blocks
are created, each one containing 512 execution threads, and
then a total of 7,168 observation grids are generated. If we
have a problem of 200,000 prisms, the number of calls to the
kernel will be ⌈200, 000/7, 168⌉ = 30, and 30 is much smaller
than 200,000. Therefore, we reduced the number of calls to
the kernel in a 6, 666𝑋 factor with respect to the partition by
observation points.
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If (K<=M) then
For each j from 1 to Ny

For each i from 1 to Nx

G(Thread,i,j) = Gz(parameters) + G(Thread,i,j);
End For

End For

Else

For each j from 1 to Ny

For each i from 1 to Nx

G(Thread, i, j) = G(Thread,i,j)+0.0
End For

End For

End if

Pseudocode 1

DO k = 1,T

!$acc parallel loop present (Gd,Gshared d)
collapse (2)
DO i = 1,Nx

DO j = 1,Ny

Gshared D(i,j) = Gd(k,i,j) + Gshared D(i,j);
END DO

END DO

!$acc end parallel loop
END DO

Pseudocode 2

Each thread will follow a scheme of processing over the
prisms as follows: a thread 𝑡 will process the sequence of
prisms

𝑇 × (𝑛 − 1) + 𝑡, (4)

where 𝑛 = 1, 2, 3, . . . , 𝑝.
The implementation will initially consist of coding in

device mode the functions which calculate the vecto-
rial components (𝑔

𝑥
, 𝑔
𝑦
, 𝑔
𝑧
) and the tensorial components

(𝑔
𝑥𝑥

, 𝑔
𝑦𝑦

, 𝑔
𝑧𝑧

, 𝑔
𝑥𝑦

, 𝑔
𝑥𝑧

, 𝑔
𝑦𝑧

), following the definition of (2).
The functions of type device can only be called by kernels and
are executed by a single CUDA thread.

To calculate any component it is necessary to allocate the
memory for a tridimensional array G of size 𝑇 × 𝑁

𝑥
× 𝑁
𝑦
.

We define ID = 𝑡 ⋅ 𝑥 + (𝑏 ⋅ 𝑥 − 1) × 𝑠 ⋅ 𝑥, where 𝑡 ⋅ 𝑥 is the
thread identifier, 𝑏 ⋅ 𝑥 the block identifier, and 𝑠 ⋅ 𝑥 the block
size. Notice that we write (𝑏 ⋅ 𝑥 − 1) because the thread and
block identifiers in FORTRAN-CUDAare numbered starting
from 1. We also define 𝐾 as 𝐾 = (𝑇) ∗ (𝐼 − 1) + ID, where
𝑇 is the number of created threads (equal to the number of
observation grids), while 𝐼 is the number of partition over the
set of prims 𝑀 in which it is working upon. The 𝐼 partition
of the set 𝑀 is a division of 𝑀 into nonoverlapping and
nonempty subsets of size𝑇 that cover all of𝑀.The subsets are
collectively exhaustive andmutually exclusive with respect to
the set 𝑀. The cardinality of the partition is determined by
𝑇 (4) and the number of partitions is defined by 𝑝 (3) and 𝐼
can take the values 1, 2, 3, . . . , 𝑝. The general scheme of the

computing kernel would be defined in Pseudocode 1, where
Gz receives the parameters defined in (2), which are:

(i) Xa(K), Ya(K), and Za(K), the position in 𝑥, 𝑦, and
𝑧, respectively, of the upper left vertex of the prism,

(ii) Xb(K), Yb(K), and Zb(K), the position in 𝑥, 𝑦, and
𝑧, respectively, of the lower right vertex of the prism,

(iii) Xm(i), Ym(j), and Elev(i,j), the location in 𝑥, 𝑦,
and 𝑧, respectively, of the observation point,

(iv) Rho(K), the density of the prism.

To calculate the final result of the anomaly it is necessary
to add all of the obtained results from the threads, this is, the
final anomaly 𝐺

𝑓
at a point (𝑖, 𝑗) is approximated as:

𝐺
𝑓

(𝑖, 𝑗) =
𝑇

∑
𝑘=1

𝐺 (𝑘, 𝑖, 𝑗) . (5)

To generate the reduction (the sum), we can make use of
the OpenACC which automatically generates the kernel, and
the structure in FORTRAN is as in Pseudocode 2.

In Pseudocode 2, Gshared is the bidimensional array
where the reduction is made, and Gd is the tridimensional
which contains the data of the anomaly generated by the
different threads.

3.2. Multi-GPU Implementation. There are diverse possibili-
ties to do the implementation using several GPUs [14]; one of
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them is to use the same libraries provided by CUDA4.0 to the
development of peer-to-peer applications to communicate
the GPUs within the same workstation; another possibility
would be to use OpenMP. Nevertheless, we consider that the
best option in this case is to use MPI since the number of
required messages is not intensive and, unlike OpenMP or
the peer-to-peer connection, it allows distributing the work
to several GPUs which are not even connected in the same
machine. In fact, the number of messages required to be sent
for a problem with 𝑞 MPI processes, each one controlling
a GPU, is 𝑞 itself; this is because each process sends its
observation grid. The estimated communication time 𝑡comm
to the complete application is

𝑡comm = 𝑞 (𝑡startup + 𝑡data) , (6)

where 𝑡startup is the necessary time to initialize the sending of
the data and 𝑡data = 𝑁

𝑥
× 𝑁
𝑦
is the size of the message, which

in this case is the number of observation points.
Due to the fact that the parallelization in MPI is explicit,

we need tomanually distribute the number of prisms through
a modular expression. Let us suppose that 𝑀 is the number
of prisms to calculate and that 𝑞 is the number of cards that
we are going to use. If every card is controlled by a process,
we define the start and end of prisms to process by 𝑞 as 𝑞start
and 𝑞end, respectively. We then calculate the integer 𝑠 as the
quotient of 𝑀 and the total number of processes 𝑞

𝑛
, and we

determine the remainder 𝑟, both as

𝑠 =
𝑀

𝑞
𝑛

,

𝑟 = mod (
𝑀

𝑞
𝑛

) .

(7)

Therefore
𝑞start = 𝑞 × 𝑠 + 1,

𝑞end = (𝑞 + 1) × 𝑠.
(8)

If 𝑟 ̸= 0 and 𝑞 < 𝑟, then we adjust as

𝑞start = 𝑞start + 𝑞,

𝑞end = 𝑞end + (𝑞 + 1) .
(9)

If 𝑟 ̸= 0 and 𝑞 ≥ 𝑟, then

𝑞start = 𝑞start + 𝑟,

𝑞end = 𝑞end + 𝑟.
(10)

In this way we can distribute the number of prisms𝑀 over 𝑞
𝑛

GPUs, in a balanced way.
Once the precedent distribution is done, we can occupy

the implementation of the previous section to process the
subset of local prisms for each GPU. Let us suppose that we
have two workstations containing 4 GPUs each one; then
in each station the cards will be numbered as 0, 1, 2, 3. To
correctly select a device for each process 𝑞, numbered from 0
to 7, we use the function

𝑓 (𝑞) = mod (𝑞, 𝑛
𝑑
) , (11)

where 𝑛
𝑑
(constant) is the number of devices per machine (in

this case 4). If 𝑞 = 4 then 𝑓(4) = 0, and this means that the
fifth process, numbered as 4, will be responsible of controlling
the device 0 of the second team. It is necessary to note that
this procedure works if the workload of processes is orderly
distributed; in other words, in the first machine the processes
0, 1, 2, 3 are addressed and in the second 4, 5, 6, 7. If this
distribution is not ordered, then the algorithm does not work
properly, which is why for some MPI implementation the
ordered flag can be specified as execution parameter, which
orderly distributes the workload.

After selecting a device per process, we proceed to
distribute the prisms between the 8 processes using (7). In
this way the balance for a problem of 251,946 prisms results
as follows:

𝑞
0

= {0, . . . , 31494},
𝑞
1

= {31495, . . . , 62988},
𝑞
2

= {62989, . . . , 94481},
𝑞
3

= {94482, . . . , 125974},
𝑞
4

= {125975, . . . , 157467},
𝑞
5

= {157468, . . . , 188960},
𝑞
6

= {188961, . . . , 220453},
𝑞
7

= {220454, . . . , 251946}.

After the subsets of prisms in which every card will work
are defined, we apply the scheme used in Section 3.1.

4. Performance Experiments

As experiment we use a synthetic case composed by an
ensemble of 700 × 700 × 50 prisms with 7 spheres of contrast
of variable density (Figure 6). The spheres are conformed by
251,946 prisms and an observation grid of 150×100 = 15, 000
points at an elevation of 100m. Therefore, the number of
calls to a function to calculate a component of the tensor or
vector is 3,779,190,000, which represents a high-performance
computing problem.

We performed experiments to calculate the vectorial
components 𝐺

𝑥
, 𝐺
𝑦
, and 𝐺

𝑧
, and the tensorial components

𝐺
𝑥𝑥
, 𝐺
𝑦𝑦
, 𝐺
𝑧𝑧
, 𝐺
𝑥𝑦
, 𝐺
𝑥𝑧
, and 𝐺

𝑦𝑧
in a single GPU, in a work-

station with 4 GPUs and with two workstations containing 4
GPUs each one.

The characteristics of the workstations where the experi-
ments took place are as follows:

(i) 2 Intel(R) Xeon(R) CPU X5690 @ 3.47GHz,
(ii) 6 real cores per processor,
(iii) hyperthreading technology disabled,
(iv) 12GB of RAMmemory,
(v) 4 TESLA Cards model C2070,
(vi) operating system Red Hat 6.3.

The principal characteristics that we can highlight of the
TESLA card C2070 are
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Figure 6: Synthetic problem setup with 7 spheres of variable density contrast (not scaled). Ensemble size of 22 km × 22 km × 8 km, 251,946
conform the spheres.

900

800

700

600

500

400

300

200

100

0

0 64 128 192 256 320 384 448 512

Block size

C
om

pu
tin

g 
tim

e (
s)

Double precision
Single precision

806 s

414 s

290 s

227 s
194 s

145 s
132 s

115 s 109 s 99 s 96 s 90 s90 s 84 s 84 s 81 s

442 s

225 s

152 s
116 s

95 s
81 s 75 s 74 s

52 s 49 s 45 s 42 s 42 s 39 s 39 s 37 s

Figure 7: Comparison of the execution time using a variable block
size in multiples of 32, in double and single precision.

(i) 14 multiprocessors (SM),
(ii) 32 cores per multiprocessor (448 total CUDA cores ),
(iii) 6 GB of global memory DDR5,
(iv) 515 theoretical GLOPS in double precision,
(v) 1.03 theoretical TFLOPS in single precision,
(vi) Frequency of the CUDA cores 1.15 GHz.

4.1. Performance of One Single Card. Thefirst experiment was
made in a C2070 card and consists of testing with different
block sizes, keeping the number of blocks fixed at 14.The size
of the selected block obeys the number of SMs available in the
card and varies inmultiples of 32 (warp size) until 512 threads
per block, which means 16 experiments.

In Figure 7, the obtained computing times to solve the
problem of the 7 spheres in double and single precision
are shown. Notice how by increasing the size of the block,
the execution time decreases exponentially to a limit or an
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Figure 8: Speed-up of the behavior by increasing the number of
threads per block in double and single precision, with its respective
quantity of global memory required.

asymptotic time which in double precision is of 81 s and
in single precision of 37 s. However, even when the best
computing time is obtained with a block of 512 threads,
this is the most memory-consuming setup. To improve the
understanding of the behavior we used the speed-up as a
metric, considering a block of 32 threads as the processing
unit, and we label the quantity of required memory for each
case.

By increasing the block size in multiples of the warp,
we increase what is known as multiprocessor occupancy. In
general, by increasing the occupancy we improve the use of
the SM, and in this application this phenomenon is observed.

The speed-up graph depicted in Figure 8 shows that the
computing time reduction is practically linear by increasing
the occupancy for both cases, single and double precision,
and later on it starts to stabilize, which means that in fact
we do obtain an increase in the performance if we increase
the block size in multiples of 32 threads. In the C2070 card,
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Figure 9: Comparison of the execution time using a variable grid
size in multiples of 14, in double and single precision.

the maximum number of threads with their own memory
space which could be created was 7,168 (14 blocks × 512
threads), with a size of 150 × 100 = 15, 000 elements, which
along with the number of prisms which must be previously
stored in the memory of the card add up 889MB in double
precision and 471MB in single precision. We observe that
the amount of used memory in GPU increases, but the
performance is improved. The number of blocks and their
size—the number of created threads—will depend on the
type of the card which is being used. There are several cards
of medium range which do not exceed 500MB of memory;
thus so many grids cannot be created.

We now examine the behavior of the performance if we
set the number of threads fixed at 32 per block and vary the
number of blocks from 14 to 224 inmultiples of 14.The results
of the execution times are shown in Figure 9, where it can be
noted that the minimum in execution time is reached, both
for single and double precision, when 112 blocks of 32 threads
are created. Later on the time increases and starts decreasing
againwhen 224 blocks are created. Comparingwith the graph
in Figure 7, the behavior produced by increasing the number
of blocks is not as stable as increasing the number of threads
per block since occupancy is not increased as only one warp
per block is handled.

It is necessary to note that even though 32 blocks of 512
threads and 224 blocks of 32 threads sum up 7,168 execution
threads, the second option is slower because it increases the
computing time in a 42% for double precision and 54% for
single precision. To simplify the writing, if we create 𝑛 blocks
with𝑚 threads, using double precision we write ⟨𝑛, 𝑚, 𝑑⟩ and
⟨𝑛, 𝑚, 𝑠⟩ in single precision.

In this particular case, the creation of many blocks is not
as efficient as increasing the number of threads, as shown in
the speed-up graph (Figure 10), considering every 14 blocks as
a processing unit. In this graph a decrease of the speed-up can
be clearly seen when reaching 126 blocks, but after this point
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Figure 10: Speed-up of the behavior by increasing the quantity of
blocks in double and single precision for a constant block size of 32
threads, with the respective quantity of required memory.
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the speed-up increases again until reaching at 224 blocks the
same value obtained at 112 blocks.

4.2. Performance Using Multi-GPUs. In this subsection we
analyze the performance using several GPUs integrated into
the same workstation and distributed in two workstations,
as was mentioned in Section 3.2; the choice to distribute the
work between several GPUs was MPI.The best configuration
found for this problem using only one C2070 card was to cre-
ate 14 blocks with 512 threads, so this configuration was used.
First we did experiments using four GPUs integrated into
the same workstation. The results with respect to computing
time are shown in Figure 11, where we considered a card as
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the optimal setup found for one single card.

a processing unit. It can be observed that the time decrease
is proportional to the number of cards and that in single
precision we reduced even more the time by a factor greater
than 2𝑋. The speed-up graph shows that the decrease of time
is almost linear for double and single precision (Figure 12).

We then analyzed the performance using the cards in a
distributed fashion. For this we used two workstations each
one with four internal cards interconnected by a network
of 1000 Gbytes. The results show that the communication
latency is negligible since there is no perceivable overload
because of the use of MPI. This is because the used MPI
functions are only required at the end of the calculation to
do the reductions. The configurations which are used in a
distributed fashion are (1 + 1) (A setup (1 + 1) means the use
of two cards in a distributed fashion, so a configuration (𝑚+𝑛)
implies 𝑚 cards in one workstation and 𝑛 in other), (2 + 1),
(2 + 2), (3 + 3), (4 + 4), and the execution times are shown in
Figure 13.

In the graph shown in Figure 13 it can be observed that
the execution times are practically the same for cases where
the application is executed both in a local or distributed
fashion. Thus, there is no difference between executing
with four cards in the same workstation or with two in
each workstation. With respect to the execution time, this
decreases proportionally to the number of cards; however,
in the cases where six and seven GPUs are used in one
configuration (3 + 3) and (4 + 3), respectively, the execution
times are the same since the work distribution requires the
same number of executions of the kernel for each card, in this
case 36. This happens because the number of prisms for the
case of 7 cards is not reduced for less than 7168 per card.

The behavior of the speed-up for a distributed execution
is represented in Figure 14. It can be observed a practically
linear speed-up and in some particular cases up to a super
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Figure 13: Execution time obtained using shared and distributed
graphics cards, in double and single precision. We can see that MPI
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Figure 14: Speed-up obtained using shared and distributed graphics
cards, in double and single precision.

speed-up, as is the case with the (3+3) configuration. Because
of this we consider that the performance is excellent.

4.3. Comparison against a Cluster. To get a better perspective
of the obtained performance with this CUDA implementa-
tion we compared it with the development made in OpenMP
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Figure 15: Comparison of the execution times for the calculation
of the tensorial components in double precision between a small
cluster against a single C2070 card, four C2070 cards in the same
workstation, and 8 C2070 cards distributed in two workstations.

with MPI for cluster, and we also compared the results
obtained in a cluster with the following characteristics:

(i) node: 1 Intel Xeon processors model X5550 with four
physical cores per processor (2 threads per core),

(ii) 29 processing nodes,

(iii) hyperthreading technology enabled,

(iv) 40GB of RAM per node,

(v) Red Hat 6.3 as operating system.

The results against which this implementation is com-
pared were obtained from a very efficient hybrid design and
its implementation using MPI and OpenMP for the calcu-
lation of the gravimetry and gradiometry. The comparison
of the results shows that, using 29 nodes of the cluster, it is
required an execution time of 30 s; in a C2070 card using
a ⟨14, 512, 𝑑⟩ configuration, the execution time is of 81 seg;
four C2070 cards in the same machine communicated by
MPI require 23 seg; and 8 distributed CUDA cards (4 per
workstation) demand 13 s.With these times we composed the
bar chart shown in Figure 15.

The comparison is made against 29 nodes because it is the
optimal number of nodes for the distribution in a problem of
251,946 prisms with an observation grid of 15,000 points. It
turns out that the cluster is 2.7X faster than a single CUDA
2070 card, but if we occupy 4 cards these are 1.3X times faster
than the cluster, and we can say that there is an approximate
equivalence, for this problem in particular, between 29 nodes
and 4 C2070 cards, but if we occupy 8 cards distributively,
these are 2.3X times faster than the cluster.

5. Validation of the Numerical CUDA Code

We now proceed to verify the quality of the numerical
solution produced using single card C2070 and four C2070
cards. The main objective of using the CUDA programming
is to reduce the computing time; however, the quality of the
numerical results must be validated and verified.

Table 1: Errors of the components of the gravimetric tensor,
calculated with CUDA in double precision, with respect to its
sequential counterpart in double precision.

Gravity components Error L2
1-GPU (DP)

Error L2
4-GPU (DP)

𝐺
𝑧

2.0582𝑒 − 09 2.0581𝑒 − 09

𝐺
𝑥

1.7107𝑒 − 09 1.7106𝑒 − 09

𝐺
𝑦 1.1162𝑒 − 09 1.1163𝑒 − 09

Table 2: Errors of the components of the gravimetric tensor,
calculatedwith CUDA in single precision, with respect its sequential
counterpart in double precision.

Gravity components Error L2
1-GPU (SP)

Error L2
4-GPU (SP)

𝐺
𝑧

1.3080 1.3080
𝐺
𝑥

0.8929 0.8929
𝐺
𝑦 0.9275 0.9275

Table 3: Errors of the components of the gradient tensor of gravity
in double precision, with respect to its sequential counterpart.

Gravity gradient
tensor components

Error L2
1-GPU (DP)

Error L2
4-GPU (DP)

𝐺
𝑧𝑧

4.6290𝑒 − 11 4.6373𝑒 − 11

𝐺
𝑥𝑥

7.7994𝑒 − 11 7.8030𝑒 − 11

𝐺
𝑦𝑦 8.8905𝑒 − 11 8.8935𝑒 − 11

𝐺
𝑥𝑦 5.3476𝑒 − 11 5.3503𝑒 − 11

𝐺
𝑥𝑧

9.2797𝑒 − 10 9.2792𝑒 − 10

𝐺
𝑦𝑧 2.7225𝑒 − 10 2.7207𝑒 − 10

Table 4: Errors of the components of the gradient tensor of gravity
in single precision, with respect to its sequential counterpart.

Gravity gradient
tensor components

Error L2
1-GPU (SP)

Error L2
4-GPU (SP)

𝐺
𝑧𝑧

0.0310 0.0310
𝐺
𝑥𝑥

0.0385 0.0385
𝐺
𝑦𝑦 0.0392 0.0392

𝐺
𝑥𝑦 0.0743 0.0743

𝐺
𝑥𝑧

0.3085 0.3085
𝐺
𝑦𝑧 0.3148 0.3148

To measure the error we use the formula of L2 norm, or
RMS, defined as [18]

𝑒 = √
1

𝑁
𝑥
𝑁
𝑦

𝑁
𝑥

∑
𝑖=1

𝑁
𝑦

∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑔
𝑝

𝑖,𝑗
− 𝑔𝑠
𝑖,𝑗

󵄨󵄨󵄨󵄨󵄨
2

, (12)

where 𝑔𝑐
𝑖,𝑗
is the component of the tensor calculated using the

GPU, and𝑔𝑠
𝑖,𝑗
is the component calculated serially in theCPU.

In Table 1 the errors of the components of the gravimetric
tensor parallelly calculated with a GPU are shown, using
the configuration of ⟨14, 512, 𝑑⟩, with respect to the serial
version.
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Figure 16: Component 𝑧 of the vector 𝐺(𝐺
𝑧
), (a) calculated in double precision, (b) calculated in single precision. Apparently no significant

differences are seen between the graphs; however there is the introduction of roughness in single precision.
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Figure 17: Zooming the component of the vector 𝐺
𝑧
, (a) calculated in double precision, (b) calculated in single precision. We can observe

clearly the roughness introduced by the single precision.
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Figure 18: Component 𝑧𝑧 of the tensor𝐺(𝐺
𝑧𝑧

), (a) calculated in double precision, (b) calculated in single precision. No significant differences
are noticed between the plots.
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Figure 19: Zooming the component of the tensor 𝐺
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rugosity is not introduced by the single precision.
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Figure 20: Absolute error of the components 𝐺
𝑧
calculated using four C2070 cards in (a) double precision and (𝑏) single precision with

respect to double precision CPU-cluster results.

The errors in single precision for the same configuration
⟨14, 512, 𝑠⟩ are shown in Table 2.

The errors of the components of the gradient tensor
of gravity calculated with CUDA in double precision, with
respect to its sequential counterpart, are shown in Table 3.

And finally in Table 4 the errors of the components of the
gradient tensor of gravity are shown, calculated with CUDA
in single precision, with respect to its sequential counterpart.

It is necessary to mention that the sequential version
is calculated in double precision and, as can be seen, there
is practically no difference between the CUDA version in
double precision and the reference solution. Nevertheless, in
single precision the calculation of the vectors produces an
error more significant than the calculation of the tensors.
To observe how the error propagates in single precision, we
show in Figure 16 the calculation of 𝐺

𝑧
in double and single

precision, using a single GPU.
As can be noted, apparently the same anomaly result is

reproduced both in double precision as in single, but in this
last one the numerical roughness is pronounced. To examine
this phenomenon in greater detail, we can zoom in Figure 16
to see with more detail the introduced rugosity depicted in
Figure 17.

However, the numerical rugosity problem in single preci-
sion is left to the criterion of anyone interested in the result,
since this precision requires practically 40% and 50% less in
computing time and global memory, respectively.

To note that the single precision does not always intro-
duce pronounced numerical rugosities, we can observe the
behavior of the calculation of 𝐺

𝑧𝑧
, which does not introduce

rugosity problems. Figure 18 is shows the 𝐺
𝑧𝑧

tensor calcu-
lated in double and single precision, and Figure 19 is zoomed
to focus on the detail.

Finally we mention that single precision can be used
if done properly, depending on the requirements of the
particular problem. The maximum absolute error found in
𝐺
𝑧
with single precision is of 0.0566 mGal and for 𝐺

𝑧𝑧
of

0.0011 Eotvos (see Figures 20 and 21). As we can see in the
calculation of 𝐺

𝑧𝑧
the introduced error is less than in 𝐺

𝑧
.

6. Conclusions

A parallel design for the calculation of the vectorial and
tensorial components of the gravity using CUDA was imple-
mented and validated. The numerical experiments and the
obtained metrics validate that the implementation is very
efficient and that it also produces good results with respect
to the numerical solution.

We showed that selecting the simplest or most trivial
parallelization technique does not necessarily leads to the best
performance or the best use of the platform. In our particular
case, even though the partitioning by prisms requires a
greater inversion in the design and implementation, this
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Figure 21: Absolute error of the components 𝐺
𝑧𝑧

calculated using four C2070 cards in (a) double precision and (b) single precision with
respect to double precision CPU-cluster results.

method is the most advantageous with respect to perfor-
mance because the transfers between the CPU and the GPU
areminimized,movingmore executable code to theGPU and
also the number of calls to the kernel functions is reduced.

The multi-GPU version using MPI as controller and
balancer of the workload was correctly implemented since it
produces practically the same results as those of the version
for just one GPU. In double precision we can say that there
is no difference between the calculations by the CPU and the
GPU.The single precision can be used with confidence in the
calculation of the tensorial components and, with appropriate
considerations, in the calculation of the vectorial components
as well.

It was shown that for our synthetic problem, approxi-
mately 29 nodes are equivalent to 4 four C2070 cards. This
obviously shows the economical benefit of using CUDA,
since it is cheaper to acquire 4 graphic cards than 29 nodes
of processing, and clearly the maintenance and energetic
consume is considerably smaller. Nevertheless, we consider
that the CUDA implementation is much more costly from
the point of view of the design and the required time for its
programming.

We can also conclude that this implementation can serve
as a design pattern to parallelize numerical schemes where
the computational space cannot be disjointly divided between
the processing cores, therefore minimizing the execution of
the number of kernels calls.

Finally we expect that GPU computing will enable us, in
a near future, to optimize the numerical burden of large scale
geophysical applications such as potential field modeling of
impact craters [19] and multiparameter geophysical global
optimization by heuristic methods [20, 21].

Appendix

Calculation of Gravitational Quantities

The Earth’s gravitational potential 𝐺 is a scalar quantity and
its shape can be constrained by its slope in the 𝑥, 𝑦, and 𝑧

directions, called the gravitational attraction 𝐺
𝑥
, 𝐺
𝑦
, and 𝐺

𝑧

(gravity vector field). In this work, we have investigated how
to parallelize the analytical calculation of the components of
the gravity field vector and the gravity gradients represented
by a nine-component tensor; because of the symmetrical or
irrotational attribute, the gravity gradient tensor is reduced
to only six independent components: 𝐺

𝑥𝑥
, 𝐺
𝑦𝑦
, 𝐺
𝑧𝑧

(the
vertical gravity gradient), 𝐺

𝑥𝑦
, 𝐺
𝑥𝑧
, and 𝐺

𝑦𝑧
. For the right

rectangular prismmodel, the analytical formulae for the three
components vectors and the six gravity gradient components,
corresponding to (2), are given by

𝐺
𝑥

= 𝛾𝜌
2
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∑
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𝑖
ln (𝑦
𝑗

+ 𝑟
𝑖𝑗𝑘

)

+ 𝑥
𝑖
ln (𝑧
𝑘

+ 𝑟
𝑖𝑗𝑘

)

−𝑦
𝑗
arctan

𝑧
𝑘
𝑟
𝑖𝑗𝑘

𝑥
𝑖
𝑦
𝑗

] ,



14 Journal of Applied Mathematics

𝐺
𝑥𝑥
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∑
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𝑘
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𝑟
𝑖𝑗𝑘

,

𝐺
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= 𝛾𝜌
2

∑
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2

∑
𝑗=1

2

∑
𝑘=1

𝜇
𝑖𝑗𝑘

arctan
𝑥
𝑖
𝑧
𝑘

𝑦
𝑗
𝑟
𝑖𝑗𝑘

,

𝐺
𝑧𝑧
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2

∑
𝑗=1

2
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𝑘=1

𝜇
𝑖𝑗𝑘

arctan
𝑥
𝑖
𝑦
𝑗

𝑧
𝑘
𝑟
𝑖𝑗𝑘

,

𝐺
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= 𝛾𝜌
2

∑
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2

∑
𝑗=1

2

∑
𝑘=1

𝜇
𝑖𝑗𝑘

ln (𝑧
𝑘

+ 𝑟
𝑖𝑗𝑘

) ,

𝐺
𝑥𝑧

= 𝛾𝜌
2

∑
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2

∑
𝑗=1

2

∑
𝑘=1

𝜇
𝑖𝑗𝑘

ln (𝑦
𝑗

+ 𝑟
𝑖𝑗𝑘

) ,

𝐺
𝑦𝑧

= 𝛾𝜌
2

∑
𝑖=1

2

∑
𝑗=1

2

∑
𝑘=1

𝜇
𝑖𝑗𝑘

ln (𝑥
𝑖
+ 𝑟
𝑖𝑗𝑘

) ,

(A.1)

where 𝑟
𝑖𝑗𝑘

= √𝑥2
𝑖

+ 𝑦2
𝑗

+ 𝑧2
𝑘
, 𝛾 = 6.673 × 10−11 and 𝑥

1
= (𝑥
𝑙
−

𝑥
𝑝
) × 103, 𝑥

2
= (𝑥
𝑟

− 𝑥
𝑝
) × 103, 𝑦

1
= (𝑦
𝑙
− 𝑦
𝑝
) × 103, 𝑦

2
=

(𝑦
𝑟

− 𝑦
𝑝
) × 103, 𝑧

1
= (𝑧
𝑙
− 𝑧
𝑝
) × 103, 𝑧

2
= (𝑧
𝑟

− 𝑧
𝑝
) × 103.

Glossary

CPU: Central processing unit,
of one or several cores in
shared memory

Device or GPU: Graphics processing
unit. For instance, the
Tesla C2070 card

Device function: Is a function that can
only be executed by a
CUDA thread and is
called by a kernel

Grid: A set of blocks of
threads. A kernel is
executed in a grid of
blocks

CUDA thread: A CUDA thread is a light
process which executes a
distinct sequence of the
contained code in a
kernel and resides in the
GPU

Block identifier: It is analogous to the
thread identifier and
identifies the block
within a grid. It is
accessed with the
variable blocKIdx

Thread identifier: It is a value between 0 and 𝑛 in
C language or between 1 and 𝑛
in FORTRAN language, which
functions as thread identifier
within a block. It is accessed
with the variable threadIdx.
This variable is very useful to
distribute the work among
different threads and can be
handled up to 3 components
(𝑥, 𝑦, 𝑧), coinciding with the
dimensions of blocks of
threads, but not necessarily

Kernel: A function or procedure
executed parallelly in the
device which is executed by the
CUDA threads

Global memory: Uncached off-chip DRAM
memory

Multiprocessor: It is a processing unit
containing 8 CUDA cores

CUDA core: It is a core of processing
contained inside a
multiprocessor and dispatches
the threads contained in a
block

Numerical rugosity: It is defined for this work as
numerical rugosity to the effect
produced by truncate and
round to 7 decimals the
precision of the floating-point
numbers, which produces
values above or below the exact
solution

Block size: It indicates the number of
threads contained inside the
block and it is accessed
through the variable
blocKDim. It can contain the
three dimensions

Multiprocessor occupancy: It is the quotient of the number
of warps executing
concurrently in a
multiprocessor, divided
between the maximum
number of warps which can be
executed concurrently

Warp: It is a group of 32 threads
which execute concurrently in
a GPU multiprocessor.
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Mécanique, vol. 339, no. 2-3, pp. 125–135, 2011.

[16] B. Heck and K. Seitz, “A comparison of the tesseroid, prism
and point-mass approaches for mass reductions in gravity field
modelling,” Journal of Geodesy, vol. 81, no. 2, pp. 121–136, 2007.

[17] Z. Chen, X. Meng, and L. Guo, “Gicuda: a parallel program
for 3d correlation imaging of large scale gravity and gravity
gradiometry data on graphics processing units with cuda,”
Computers and Geosciences, vol. 46, pp. 119–128, 2012.

[18] K. L. Mickus and J. H. Hinojosa, “The complete gravity gradient
tensor derived from the vertical component of gravity: a Fourier
transform technique,” Journal of Applied Geophysics, vol. 46, no.
3, pp. 159–174, 2001.

[19] C. Ortiz-Alemán and J. Urrutia-Fucugauchi, “Aeromagnetic
anomaly modeling of central zone structure and magnetic
sources in the Chicxulub crater,” Physics of the Earth and
Planetary Interiors, vol. 179, no. 3-4, pp. 127–138, 2010.

[20] M. G. Orozco-del Castillo, C. Ortiz-Alemán, J. Urrutia-
Fucugauchi, R. Martin, A. Rodriguez-Castellanos, and P. E.
Villase∼nor-Rojas, “A genetic algorithm for filter design to
enhance features in seismic images,” Geophysical Prospecting,
2013.
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