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The purpose of this paper is to introduce an iterative algorithm for finding a common element of the set of fixed points of quasi-
nonexpansive mappings and the solution of split feasibility problems (SFP) and systems of equilibrium problems (SEP) in Hilbert
spaces.We prove that the sequences generated by the proposed algorithm converge weakly to a common element of the fixed points
set of quasi-nonexpansive mappings and the solution of split feasibility problems and systems of equilibrium problems under mild
conditions. Our main result improves and extends the recent ones announced by Ceng et al. (2012) and many others.

1. Introduction

Let 𝐶 be a nonempty closed convex subset of a real Hilbert
space 𝐻. A mapping 𝑇 : 𝐶 → 𝐶 is said to be nonexpansive
if ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ 𝐶. Denote the set
of fixed points of 𝑇 by 𝐹(𝑇). On the other hand, a mapping
𝑇 : 𝐶 → 𝐶 is said to be quasi-nonexpansive if 𝐹(𝑇) ̸= 0
and ‖𝑇𝑥 − 𝑞‖ ≤ ‖𝑥 − 𝑞‖ for all 𝑥 ∈ 𝐶 and 𝑞 ∈ 𝐹(𝑇). If
𝑇 : 𝐶 → 𝐶 is nonexpansive and the set 𝐹(𝑇) of fixed points
of 𝑇 is nonempty, then 𝑇 is quasi-nonexpansive. Fixed point
iterations process for nonexpansive mappings and quasi-
nonexpansive mappings in Banach spaces including Mann
and Ishikawa iterations process have been studied extensively
by many authors to solve the nonlinear operator equations
(see [1–4]).

Let 𝐹 be a bifunction of𝐶×𝐶 intoR, whereR is the set of
real numbers. The equilibrium problem for 𝐹 : 𝐶 × 𝐶 → R

is to find 𝑥 ∈ 𝐶 such that

𝐹 (𝑥, 𝑦) ≥ 0 ∀𝑦 ∈ 𝐶. (1)

The set of solutions of (1) is denoted by EP(𝐹). Numerous
problems in physics, optimization, and economics reduce to
find a solution of (1) in Hilbert spaces; see, for instance,

Blum and Oettli [5], Flam and Antipin [6], and Moudafi
[7]. Moreover, Flam and Antipin [6] introduced an iterative
scheme of finding the best approximation to the solution of
equilibrium problem, when EP(𝐹) is nonempty, and proved a
strong convergence theorem (see also in [8–11]). Let 𝐹

1
, 𝐹
2
:

𝐶 × 𝐶 → R be two-monotone bifunction and 𝜆 > 0 is a
constant. Recently, Moudafi [12] considered the following of
a system of equilibrium problem, denoting the set of solution
of SEP by Ω, for finding (𝑥∗, 𝑦∗) ∈ 𝐶 × 𝐶 such that

𝜆𝐹
1
(𝑥
∗
, 𝑧) + ⟨𝑦

∗
− 𝑥
∗
, 𝑥
∗
− 𝑧⟩ ≥ 0, ∀𝑧 ∈ 𝐶,

𝜆𝐹
2
(𝑦
∗
, 𝑧) + ⟨𝑥

∗
− 𝑦
∗
, 𝑦
∗
− 𝑧⟩ ≥ 0, ∀𝑧 ∈ 𝐶.

(2)

He also proved the weak convergence theorem of this prob-
lem (some related work can be found in [13, 14]).

The split feasibility problem (SFP) in Hilbert spaces for
modeling inverse problems which arise from phase retrievals
and in medical image reconstruction was first introduced
by Censor and Elfving [15] (see, e.g., [16, 17]). It has been
found that the SFP can also be used to model the intensity-
modulated radiation therapy (see [18, 19]). In this work, the
SFP is formulated as finding a point 𝑥∗ with the property

𝑥
∗
∈ 𝐶, 𝐴𝑥

∗
∈ 𝑄, (3)
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where 𝐶 and 𝑄 are the nonempty closed convex subsets
of the infinite-dimensional real Hilbert spaces 𝐻

1
and 𝐻

2
,

respectively, and 𝐴 ∈ 𝐵(𝐻
1
, 𝐻
2
) (i.e., 𝐴 is a bounded linear

operator from 𝐻
1
to 𝐻
2
). Very recently, there are related

works which we can find in [16, 18, 20–26] and the references
therein.

A special case of the SFP is called the convex constrained
linear inverse problem (see [27]), that is, the problem to
finding an element 𝑥 such that

𝑥 ∈ 𝐶, 𝐴𝑥 = 𝑏 ∈ 𝑄. (4)

In fact, it has been extensively investigated in the literature
using the projected Landweber iterative method [27, 28].
Throughout this paper, we assume that the solution set Γ of
the SFP is nonempty.

Motivated and inspired by the regularizationmethod and
extragradient method due to Ceng et al. [29], we introduce
and analyze an extragradient method with regularization for
finding a common element of the fixed points set of quasi-
nonexpansive mappings and the solution of split feasibility
problems (SFP) and systems of equilibrium problems (SEP)
in Hilbert spaces. Our results represent the improvement,
extension, and development of the corresponding results in
[14, 29].

2. Preliminaries

Let 𝐻 be a real Hilbert space with inner product ⟨⋅, ⋅⟩ and
norm ‖ ⋅ ‖, and let 𝐶 be a closed convex subset of𝐻. We write
𝑥
𝑛
⇀ 𝑥 to indicate that the sequence {𝑥

𝑛
} convergesweakly to

𝑥 and 𝑥
𝑛
→ 𝑥 to indicate that the sequence {𝑥

𝑛
} converges

strongly to 𝑥. For every point 𝑥 ∈ 𝐻, there exists a unique
nearest point in 𝐶, denoted by 𝑃

𝐶
𝑥, such that

󵄩󵄩󵄩󵄩𝑥 − 𝑃𝐶𝑥
󵄩󵄩󵄩󵄩 = inf
𝑦∈𝐶

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 ∀𝑦 ∈ 𝐶. (5)

𝑃
𝐶
is called the metric projection of𝐻 onto 𝐶.
Some important properties of projections are gathered in

the following proposition.

Proposition 1 (see [29]). For given 𝑥 ∈ 𝐻 and 𝑧 ∈ 𝐶:

(i) 𝑧 = 𝑃
𝐶
𝑥 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 ⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩ ≤

0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ∈ 𝐶;
(ii) 𝑧 = 𝑃

𝐶
𝑥 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 ‖𝑥 − 𝑧‖

2
≤ ‖𝑥 − 𝑦‖

2
− ‖𝑦 −

𝑧‖
2
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦 ∈ 𝐶.

Definition 2 (see [30, 31]). Let 𝑇 be a nonlinear operator with
domain 𝐷(𝑇) ⊆ 𝐻 and range 𝑅(𝑇) ⊆ 𝐻, and let 𝛽 > 0 and
𝑣 > 0 be given constants. The operator 𝑇 is called

(a) monotone if

⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐷 (𝑇) ; (6)

(b) 𝛽-strongly monotone if

⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩ ≥ 𝛽
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐷 (𝑇) ; (7)

(c) 𝑣-inverse strongly monotone (𝑣-ism) if

⟨𝑥 − 𝑦, 𝑇𝑥 − 𝑇𝑦⟩ ≥ 𝑣
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐷 (𝑇) . (8)

We can easily see that if 𝑆 is nonexpansive, then 𝐼 − 𝑆 is
monotone. It is also easy to see that a projection 𝑃

𝐶
is a 1-ism.

Definition 3 (see [29]). A mapping 𝑇 : 𝐻 → 𝐻 is said to be
an averagedmapping if it can be written as the average of the
identity 𝐼 and a nonexpansive mapping, that is,

𝑇 ≡ (1 − 𝛼) 𝐼 + 𝛼𝑆, (9)

where 𝛼 ∈ (0, 1) and 𝑆 : 𝐻 → 𝐻 is nonexpansive. More
precisely, when (9) holds, we say that 𝑇 is 𝛼-𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑. It
is easly to see that if 𝑇 is an averaged mapping, then 𝑇 is
nonexpansive.

Proposition 4 (see [20]). Let 𝑇 : 𝐻 → 𝐻 be a given
mapping. Then consider the following.

(i) 𝑇 is nonexpansive if and only if the complement 𝐼 − 𝑇
is (1/2)-ism.

(ii) 𝑇 is averaged if and only if the complement 𝐼−𝑇 is 𝑣-ism
for some 𝑣 > 1/2. Indeed, for𝛼 ∈ (0, 1), 𝑇 is𝛼-averaged
if and only if 𝐼 − 𝑇 is (1/2𝛼)-ism.

(iii) The composite of finitely many averaged mappings is
averaged. That is, if each of the mappings {𝑇

𝑖
}
𝑖=1

𝑁
is

averaged, then so is the composite 𝑇
1
∘ 𝑇
2
∘ ⋅ ⋅ ⋅ ∘ 𝑇

𝑁
. In

particular, if 𝑇
1
is 𝛼
1
-averaged and 𝑇

2
𝑖𝑠 𝛼
2
-𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑,

where 𝛼
1
, 𝛼
2
∈ (0, 1), then the composite 𝑇

1
∘ 𝑇
2
is 𝛼-

averaged, where 𝛼 = 𝛼
1
+ 𝛼
2
− 𝛼
1
𝛼
2
.

In this paper, we use an equilibrium bifunction 𝐹 : 𝐶 ×
𝐶 → R for solving the equilibrium problems, let us assume
that 𝐹 satisfies the following conditions:

(A1) 𝐹(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶;
(A2) 𝐹 is monotone, that is, 𝐹(𝑥, 𝑦) + 𝐹(𝑦, 𝑥) ≤ 0

for all 𝑥, 𝑦 ∈ 𝐶;
(A3) for each 𝑦 ∈ 𝐶, 𝑥 󳨃→ 𝐹(𝑥, 𝑦) is weakly upper

semicontinuous;
(A4) for each 𝑥 ∈ 𝐶, 𝑦 󳨃→ 𝐹(𝑥, 𝑦) is convex; semicontinu-

ous.

Lemma5 (see [6]). Assume that𝐹 : 𝐶×𝐶 → R satisfies (A1)–
(A4). For 𝑟 > 0 and 𝑥 ∈ 𝐻, define a mapping 𝑇

𝑟
: 𝐻 → 𝐶 as

follows:

𝑇
𝑟
(𝑥) = {𝑧 ∈ 𝐶 : 𝐹 (𝑧, 𝑦) +

1

𝑟
⟨𝑦 − 𝑧, 𝑧 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐶} ,

(10)

for all 𝑧 ∈ 𝐻. Then, the following hold:

(i) 𝑇
𝑟
is single-valued;

(ii) 𝑇
𝑟
is firmly nonexpansive, that is, for any 𝑥, 𝑦 ∈

𝐻, ‖𝑇
𝑟
𝑥 − 𝑇
𝑟
𝑦‖
2
≤ ⟨𝑇
𝑟
𝑥 − 𝑇
𝑟
𝑦, 𝑥 − 𝑦⟩;
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(iii) 𝐹(𝑇
𝑟
) = 𝐸𝑃(𝐹);

(iv) 𝐸𝑃(𝐹) is closed and convex.

Lemma 6 (see [32]). Let 𝐶 be a closed convex subset of a
real Hilbert space 𝐻. Let 𝐹

1
and 𝐹

2
be two mappings from

𝐶 × 𝐶 → R satisfying (A1)–(A4) and let 𝑇
1,𝜆

and 𝑇
2,𝜇

are
defined as in Lemma 5 associated to 𝐹

1
and 𝐹

2
, respectively.

For given 𝑥∗, 𝑦∗ ∈ 𝐶, (𝑥∗, 𝑦∗) is a solution of problem (2) if
and only if 𝑥∗ is a fixed point of the mapping 𝐺 : 𝐶 → 𝐶

defined by

𝐺 (𝑥) = 𝑇
1,𝜆
(𝑇
2,𝜇
𝑥) , ∀𝑥 ∈ 𝐶, (11)

where 𝑦∗ = 𝑇
2,𝜇
𝑥
∗.

Lemma 7 (see [33]). Let {𝑎
𝑛
}
∞

𝑛=1
, {𝑏
𝑛
}
∞

𝑛=1
and {𝛿

𝑛
}
∞

𝑛=1
be

sequences of nonnegative real numbers satisfying the inequality

𝑎
𝑛+1
≤ (1 + 𝛿

𝑛
) 𝑎
𝑛
+ 𝑏
𝑛
, ∀𝑛 ≥ 1. (12)

If ∑∞
𝑛=1
𝛿
𝑛
< ∞ and ∑∞

𝑛=1
𝑏
𝑛
< ∞, then lim

𝑛→∞
𝑎
𝑛
exists. If,

in addition, {𝑎
𝑛
}
∞

𝑛=1
has a subsequence which converges to zero,

then lim
𝑛→∞

𝑎
𝑛
= 0.

3. Weak Convergence Theorem

In this section, we prove a weak convergence theorem by
an extragradient methods for finding a common element
of the fixed points set of quasi-nonexpansive mappings and
the solution of split feasibility problems and systems of
equilibrium problems in Hilbert spaces. The function 𝑓 :
𝐻 → R is a continuous differentiable function with the
minimization problem given by

min
𝑥∈𝐶

𝑓 (𝑥) :=
1

2

󵄩󵄩󵄩󵄩𝐴𝑥 − 𝑃𝑄𝐴𝑥
󵄩󵄩󵄩󵄩

2

. (13)

In 2010, Xu [17] considered the following Tikhonov regular-
ized problem:

min
𝑥∈𝐶

𝑓
𝛼
(𝑥) :=

1

2

󵄩󵄩󵄩󵄩𝐴𝑥 − 𝑃𝑄𝐴𝑥
󵄩󵄩󵄩󵄩

2

+
1

2
𝛼‖𝑥‖
2
, (14)

where 𝛼 > 0 is the regularization parameter. The gradient
given by

∇𝑓
𝛼
(𝑥) = ∇𝑓 (𝑥) + 𝛼𝐼 = 𝐴

∗
(𝐼 − 𝑃

𝑄
) 𝐴 + 𝛼𝐼 (15)

is (𝛼 + ‖𝐴‖2)-Lipschitz continuous and 𝛼-strongly monotone
(see [29] for the details).

Lemma 8 (see [17, 29]). The following hold:

(i) Γ = 𝐹(𝑃
𝐶
(𝐼 − 𝜆∇𝑓)) = 𝑉𝐼(𝐶, ∇𝑓) for any 𝜆 > 0, where

𝐹(𝑃
𝐶
(𝐼 − 𝜆∇𝑓)) and 𝑉𝐼(𝐶, ∇𝑓) denote the set of fixed

points of 𝑃
𝐶
(𝐼 − 𝜆∇𝑓) and the solution set of VIP;

(ii) 𝑃
𝐶
(𝐼 − 𝜆∇𝑓

𝛼
) is 𝜉-averaged for each 𝜆 ∈ (0, 2/(𝛼 +

‖𝐴‖
2
)), where 𝜉 = (2 + 𝜆(𝛼 + ‖𝐴‖2))/4.

Theorem 9. Let 𝐶 be a nonempty closed convex subset in a
real Hilbert space 𝐻. Let 𝜇 > 0, 𝐹

1
and 𝐹

2
be two bifunctions

from 𝐶 × 𝐶 → R satisfying (A1)–(A4). Let 𝑆 be a quasi-
nonexpansive mapping of 𝐶 into itself such that 𝐼 − 𝑆 be
demiclosed at zero, that is, if {𝑤

𝑛
} ⊂ 𝐶, 𝑤

𝑛
⇀ 𝑤 and (𝐼 −

𝑆)𝑤
𝑛
→ 0, then𝑤 ∈ 𝐹(𝑆), with𝐹(𝑆)∩Γ∩Ω ̸= 0. Let {𝑥

𝑛
}, {𝑦
𝑛
},

{𝑧
𝑛
}, and {𝑤

𝑛
} be the sequence in 𝐶 generated by the following

extragradient algorithm:

𝑥
0
= 𝑥 ∈ 𝐶,

𝑤
𝑛
∈ 𝐶; 𝐹

2
(𝑤
𝑛
, 𝑧) + 𝜑 (𝑧) − 𝜑 (𝑤

𝑛
)

+
1

𝜇
⟨𝑧 − 𝑤

𝑛
, 𝑤
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑧 ∈ 𝐶,

𝑧
𝑛
∈ 𝐶; 𝐹

1
(𝑧
𝑛
, 𝑧) + 𝜑 (𝑧) − 𝜑 (𝑧

𝑛
)

+
1

𝜇
⟨𝑧 − 𝑧

𝑛
, 𝑧
𝑛
− 𝑤
𝑛
⟩ ≥ 0, ∀𝑧 ∈ 𝐶,

𝑦
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓
𝛼
𝑛

) 𝑧
𝑛
,

𝑥
𝑛+1
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑆𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑦
𝑛
)) ,

(16)

where ∑∞
𝑛=0
𝛼
𝑛
< ∞, {𝜆

𝑛
} ⊂ [𝑎, 𝑏] for some 𝑎, 𝑏 ∈ (0, 1/‖𝐴‖2)

and {𝛽
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1). Then, the sequences

{𝑥
𝑛
} and {𝑦

𝑛
} converge weakly to an element 𝑥 ∈ 𝐹(𝑆) ∩ Γ ∩Ω.

Proof. By Lemma 8, we have that 𝑃
𝐶
(𝐼 − 𝜆∇𝑓

𝛼
) is 𝜉-averaged

for each 𝜆 ∈ (0, 2/(𝛼 + ‖𝐴‖2)), where 𝜉 = (2 + 𝜆(𝛼 + ‖𝐴‖2))/4.
Hence, by Proposition 2.4 , 𝑃

𝐶
(𝐼 − 𝜆∇𝑓

𝛼
) is nonexpansive.

From {𝜆
𝑛
} ⊂ [𝑎, 𝑏] and 𝑎, 𝑏 ∈ (0, 1/‖𝐴‖2), we have 𝑎 ≤

inf
𝑛≥0
𝜆
𝑛
≤ sup

𝑛≥0
𝜆
𝑛
≤ 𝑏 < 1/‖𝐴‖

2
= lim
𝑛→∞

1/(𝛼
𝑛
+ ‖𝐴‖

2
).

Without loss of generality, we assume that 𝑎 ≤ inf
𝑛≥0
𝜆
𝑛
≤

sup
𝑛≥0
𝜆
𝑛
≤ 𝑏 < 1/(𝛼

𝑛
+ ‖𝐴‖

2
), for all 𝑛 ≥ 0. Hence, for each

𝑛 ≥ 0, 𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓
𝛼
𝑛

) is 𝜉
𝑛
-averaged with

𝜉
𝑛
=
1

2
+

𝜆
𝑛
(𝛼
𝑛
+ ‖𝐴‖

2
)

2
−
1

2
⋅

𝜆
𝑛
(𝛼
𝑛
+ ‖𝐴‖

2
)

2

=

2 + 𝜆
𝑛
(𝛼
𝑛
+ ‖𝐴‖

2
)

4
∈ (0, 1) .

(17)

This implies that 𝑃
𝐶
(𝐼−𝜆
𝑛
∇𝑓
𝛼
𝑛

) is nonexpansive for all 𝑛 ≥ 0.
Next, we show that the sequence {𝑥

𝑛
} is bounded. Indeed,

take a fixed 𝑝 ∈ 𝐹(𝑆) ∩ Γ ∩ Ω arbitrarily. Let 𝑇
1,𝜇

and
𝑇
2,𝜇

be defined as in Lemma 5 associated to 𝐹
1
and 𝐹

2
,

respectively. Thus, we get 𝑝 = 𝑆𝑝 = 𝑆𝑃
𝐶
(𝑝), for all 𝑛 ≥

0, 𝑝 = 𝑃
𝐶
(𝐼 − 𝜆∇𝑓)𝑝, for all 𝜆 ∈ (0, 2/‖𝐴‖2) and 𝑝 =

𝑇
1,𝜇
(𝑇
2,𝜇
𝑝), for all 𝜇 > 0. Put 𝑦∗ = 𝑇

2,𝜇
𝑝, 𝑧
𝑛
= 𝑇
1,𝜇
𝑤
𝑛
and

𝑤
𝑛
= 𝑇
2,𝜇
𝑥
𝑛
. From (29), we have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓
𝛼
𝑛

) 𝑧
𝑛
− 𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓) 𝑝

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓
𝛼
𝑛

) 𝑧
𝑛
− 𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓
𝛼
𝑛

) 𝑝
󵄩󵄩󵄩󵄩󵄩
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+
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓
𝛼
𝑛

) 𝑝 − 𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓) 𝑝

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
(𝐼 − 𝜆

𝑛
∇𝑓
𝛼
𝑛

) 𝑝 − (𝐼 − 𝜆
𝑛
∇𝑓) 𝑝

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝜆
𝑛
𝑝 (∇𝑓 − ∇𝑓

𝛼
𝑛

)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝜆𝑛𝛼𝑛𝑝

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜆𝑛𝛼𝑛
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 .

(18)

This implies that ‖𝑧
𝑛
− 𝑝‖ = ‖𝑇

1,𝜇
𝑤
𝑛
− 𝑇
1,𝜇
𝑦
∗
‖ ≤ ‖𝑤

𝑛
− 𝑦
∗
‖ =

‖𝑇
2,𝜇
𝑥
𝑛
− 𝑇
2,𝜇
𝑝‖ ≤ ‖𝑥

𝑛
− 𝑝‖. Thus, we obtain ‖𝑦

𝑛
− 𝑝‖ ≤

‖𝑥
𝑛
− 𝑝‖ + 𝜆

𝑛
𝛼
𝑛
‖𝑝‖. Put 𝑙

𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑦
𝑛
)) for each

𝑛 ≥ 0. Then, by Proposition 1(ii), we have

󵄩󵄩󵄩󵄩𝑙𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑦
𝑛
) − 𝑝

󵄩󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑦
𝑛
) − 𝑙
𝑛

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑙𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛
⟨∇𝑓
𝛼
𝑛

(𝑦
𝑛
) , 𝑝 − 𝑙

𝑛
⟩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑙𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛
[⟨∇𝑓
𝛼
𝑛

(𝑦
𝑛
) , 𝑦
𝑛
− 𝑙
𝑛
⟩ + ⟨∇𝑓

𝛼
𝑛

𝑝, 𝑝 − 𝑦
𝑛
⟩]

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑙𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛
[𝛼
𝑛
⟨𝑝, 𝑝 − 𝑦

𝑛
⟩ + ⟨∇𝑓

𝛼
𝑛

(𝑦
𝑛
) , 𝑦
𝑛
− 𝑙
𝑛
⟩]

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑥
𝑛
− 𝑦
𝑛
, 𝑦
𝑛
− 𝑙
𝑛
⟩ −
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑙𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛
[𝛼
𝑛
⟨𝑝, 𝑝 − 𝑦

𝑛
⟩ + ⟨∇𝑓

𝛼
𝑛

(𝑦
𝑛
) , 𝑦
𝑛
− 𝑙
𝑛
⟩]

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑙𝑛

󵄩󵄩󵄩󵄩

2

+ 2 ⟨𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑦
𝑛
) − 𝑦
𝑛
, 𝑙
𝑛
− 𝑦
𝑛
⟩

+ 2𝜆
𝑛
𝛼
𝑛
⟨𝑝, 𝑝 − 𝑦

𝑛
⟩ .

(19)

Hence, by Proposition 1(i), we have

⟨𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑦
𝑛
) − 𝑦
𝑛
, 𝑙
𝑛
− 𝑦
𝑛
⟩

= ⟨𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑥
𝑛
) − 𝑦
𝑛
, 𝑙
𝑛
− 𝑦
𝑛
⟩

+ ⟨𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑥
𝑛
) − 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑦
𝑛
) , 𝑙
𝑛
− 𝑦
𝑛
⟩

≤ ⟨𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑥
𝑛
) − 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑦
𝑛
) , 𝑙
𝑛
− 𝑦
𝑛
⟩

≤ 𝜆
𝑛

󵄩󵄩󵄩󵄩󵄩
∇𝑓
𝛼
𝑛

(𝑥
𝑛
) − 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑦
𝑛
)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑙𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩

≤ 𝜆
𝑛
(𝛼
𝑛
+ ‖𝐴‖

2
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑙𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩 .

(20)

So, we have

󵄩󵄩󵄩󵄩𝑙𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑙𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛
(𝛼
𝑛
+ ‖𝐴‖

2
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑙𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

+ 2𝜆
𝑛
𝛼
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑝 − 𝑦𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑙𝑛

󵄩󵄩󵄩󵄩

2

+ 𝜆
2

𝑛
(𝛼
𝑛
+ ‖𝐴‖

2
)
2󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑙𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛
𝛼
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑝 − 𝑦𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛
𝛼
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑝 − 𝑦𝑛

󵄩󵄩󵄩󵄩

+ [𝜆
2

𝑛
(𝛼
𝑛
+ ‖𝐴‖

2
)
2

− 1]
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛
𝛼
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑝 − 𝑦𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛
𝛼
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 [
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜆𝑛𝛼𝑛
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩]

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛
𝛼
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜆𝑛𝛼𝑛
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩] .

(21)

Then, from the last inequality we conclude that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛽𝑛𝑥𝑛 + (1 − 𝛽𝑛) 𝑆 (𝑙𝑛) − 𝑝

󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑆 (𝑙𝑛) − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆 (𝑙𝑛)

󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑙𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆 (𝑙𝑛)

󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛽
𝑛
) [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛
𝛼
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑝 − 𝑦𝑛

󵄩󵄩󵄩󵄩

+ [𝜆
2

𝑛
(𝛼
𝑛
+ ‖𝐴‖

2
)
2

− 1]
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

2

]

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆 (𝑙𝑛)

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜆
𝑛
𝛼
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑝 − 𝑦𝑛

󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛
) (𝜆
2

𝑛
(𝛼
𝑛
+ ‖𝐴‖

2
)
2

− 1)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆 (𝑙𝑛)

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
(𝜆
2

𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑝 − 𝑦𝑛

󵄩󵄩󵄩󵄩

2

)

+ (1 − 𝛽
𝑛
) (𝜆
2

𝑛
(𝛼
𝑛
+ ‖𝐴‖

2
)
2

− 1)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆 (𝑙𝑛)

󵄩󵄩󵄩󵄩

2
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≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
[𝜆
2

𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

+ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝜆𝑛𝛼𝑛
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩)
2

]

+ (1 − 𝛽
𝑛
) (𝜆
2

𝑛
(𝛼
𝑛
+ ‖𝐴‖

2
)
2

− 1)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆 (𝑙𝑛)

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
[𝜆
2

𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

+ 2
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝜆
2

𝑛
𝛼
2

𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

]

+ (1 − 𝛽
𝑛
) (𝜆
2

𝑛
(𝛼
𝑛
+ ‖𝐴‖

2
)
2

− 1)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆 (𝑙𝑛)

󵄩󵄩󵄩󵄩

2

= (1 + 2𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
𝜆
2

𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

(1 + 2𝛼
2

𝑛
)

+ (1 − 𝛽
𝑛
) (𝜆
2

𝑛
(𝛼
𝑛
+ ‖𝐴‖

2
)
2

− 1)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆 (𝑙𝑛)

󵄩󵄩󵄩󵄩

2

≤ (1 + 2𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
𝜆
2

𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

(1 + 2𝛼
2

𝑛
)

= (1 + 𝛿
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝑏
𝑛
,

(22)

where 𝛿
𝑛
= 2𝛼
𝑛
and 𝑏
𝑛
= 𝛼
𝑛
𝜆
2

𝑛
‖𝑝‖
2
(1 + 2𝛼

2

𝑛
). Since∑∞

𝑛=0
𝛼
𝑛
<

∞ and {𝜆
𝑛
} ⊂ [𝑎, 𝑏] for some 𝑎, 𝑏 ∈ (0, 1/‖𝐴‖2), we conclude

that ∑∞
𝑛=0
𝛿
𝑛
< ∞ and ∑∞

𝑛=0
𝑏
𝑛
< ∞. Therefore, by Lemma 7,

we note that lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖ exists for each 𝑝 ∈ 𝐹(𝑆) ∩ Γ ∩

Ω and hence the sequences {𝑥
𝑛
}, {𝑙
𝑛
}, {𝑦
𝑛
}, {𝑧
𝑛
}, and {𝑤

𝑛
} are

bounded. From (22), we also obtain

(1 − 𝑑) (1 − 𝑏
2
(𝛼
𝑛
+ ‖𝐴‖

2
)
2

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

2

+ 𝑐 (1 − 𝑑)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆 (𝑙𝑛)

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽
𝑛
) (1 − 𝜆

2

𝑛
(𝛼
𝑛
+ ‖𝐴‖

2
)
2

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆 (𝑙𝑛)

󵄩󵄩󵄩󵄩

2

≤ (1 + 2𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
𝜆
2

𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

(1 + 2𝛼
2

𝑛
) ,

(23)

where {𝜆
𝑛
} ⊂ [𝑎, 𝑏] and {𝛽

𝑛
} ⊂ [𝑐, 𝑑]. Since lim

𝑛→∞
‖𝑥
𝑛
− 𝑝‖

exists and 𝛼
𝑛
→ 0, it follows that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆 (𝑙𝑛)
󵄩󵄩󵄩󵄩

≤ lim
𝑛→∞

[
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑝 − 𝑆 (𝑙𝑛)

󵄩󵄩󵄩󵄩]

≤ lim
𝑛→∞

[
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑝 − 𝑙𝑛

󵄩󵄩󵄩󵄩] = 0.

(24)

Similarly, from inequality (22), we have

(1 − 𝑑) (1 − 𝑏
2
(𝛼
𝑛
+ ‖𝐴‖

2
)
2

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩

2

+ 𝑐 (1 − 𝑑)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆 (𝑙𝑛)

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛽
𝑛
) (1 − 𝜆

2

𝑛
(𝛼
𝑛
+ ‖𝐴‖

2
)
2

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛
(1 − 𝛽

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆 (𝑙𝑛)

󵄩󵄩󵄩󵄩

2

≤ (1 + 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛼
𝑛
𝜆
2

𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

,

(25)

where {𝜆
𝑛
} ⊂ [𝑎, 𝑏] and {𝛽

𝑛
} ⊂ [𝑐, 𝑑]. Since lim

𝑛→∞
‖𝑥
𝑛
− 𝑝‖

exists and 𝛼
𝑛
→ 0, we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆 (𝑙𝑛)
󵄩󵄩󵄩󵄩 = 0. (26)

Moreover, we note that
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑙𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩
𝑃
𝐶
(𝑧
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

𝑧
𝑛
) − 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑦
𝑛
))
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
(𝑧
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑧
𝑛
)) − (𝑥

𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑦
𝑛
))
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛
− 𝑥
𝑛
− (𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑧
𝑛
) − 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑦
𝑛
))
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑧
𝑛
) − 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑦
𝑛
)
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝜆𝑛 [
󵄩󵄩󵄩󵄩󵄩
∇𝑓
𝛼
𝑛

(𝑧
𝑛
) − ∇𝑓

𝛼
𝑛

(𝑥
𝑛
)
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
∇𝑓
𝛼
𝑛

(𝑥
𝑛
) − ∇𝑓

𝛼
𝑛

(𝑦
𝑛
)
󵄩󵄩󵄩󵄩󵄩
]

≤
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝜆𝑛 [(𝛼𝑛 + ‖𝐴‖
2
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
∇𝑓
𝛼
𝑛

(𝑧
𝑛
) − ∇𝑓

𝛼
𝑛

(𝑥
𝑛
)
󵄩󵄩󵄩󵄩󵄩
] .

(27)

From (26) and 𝛼
𝑛
→ 0, it is implied that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑙𝑛
󵄩󵄩󵄩󵄩 = 0. (28)

Note that ‖𝑙
𝑛
− 𝑆(𝑙
𝑛
)‖ ≤ ‖𝑙

𝑛
− 𝑦
𝑛
‖ + ‖𝑦

𝑛
− 𝑥
𝑛
‖ + ‖𝑥

𝑛
− 𝑆(𝑙
𝑛
)‖.

This together with (24) and (28) implies that lim
𝑛→∞

‖𝑙
𝑛
−

𝑆(𝑙
𝑛
)‖ = 0. Also, from ‖𝑥

𝑛
− 𝑙
𝑛
‖ ≤ ‖𝑥

𝑛
− 𝑦
𝑛
‖ + ‖𝑦

𝑛
− 𝑙
𝑛
‖,

it follows that lim
𝑛→∞

‖𝑥
𝑛
− 𝑙
𝑛
‖ = 0. Since ∇𝑓 = 𝐴∗(𝐼 −

𝑃
𝐶
)𝐴 is a Lipschitz condition, where 𝐴∗ is the adjoint of

𝐴, we have lim
𝑛→∞

‖∇𝑓(𝑦
𝑛
) − ∇𝑓(𝑙

𝑛
)‖ = 0. Since {𝑥

𝑛
} is a

bounded sequence, there exists a subsequence {𝑥
𝑛
𝑗

} of {𝑥
𝑛
}

that converges weakly to some 𝑥.
Next, we show that 𝑥 ∈ Γ. Since ‖𝑥

𝑛
− 𝑙
𝑛
‖ → 0 and ‖𝑦

𝑛
−

𝑙
𝑛
‖ → 0, it is known that 𝑙

𝑛
𝑖

⇀ 𝑥 and 𝑦
𝑛
𝑖

⇀ 𝑥. Let 𝑇 : 𝐻 →
2
𝐻 be a set value mappings defined by

𝑇𝑣 = {
∇𝑓 (𝑣) + 𝑁

𝐶
𝑣 if 𝑣 ∈ 𝐶,

0 if 𝑣 ∉ 𝐶,
(29)

where 𝑁
𝐶
𝑣 = {𝑤 ∈ 𝐻

1
: ⟨𝑣 − 𝑢, 𝑤⟩ ≥ 0, for all 𝑢 ∈ 𝐶}.

Hence, by [34], 𝑇 is maximal monotone and 0 ∈ 𝑇𝑣 if and
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only if 𝑣 ∈ VI(𝐶, ∇𝑓). Let (𝑣, 𝑤) ∈ 𝐺(𝑇). Then we have 𝑤 ∈
𝑇𝑣 = ∇𝑓(𝑣)+𝑁

𝐶
𝑣 and hence𝑤−∇𝑓(𝑣) ∈ 𝑁

𝐶
𝑣. So, we obtain

⟨𝑣−𝑢, 𝑤−∇𝑓(𝑣)⟩ ≥ 0, for all 𝑢 ∈ 𝐶. On the other hand, from
𝑙
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑦
𝑛
)) and 𝑣 ∈ 𝐶, we have

⟨𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑦
𝑛
) − 𝑙
𝑛
, 𝑙
𝑛
− 𝑣⟩ ≥ 0, (30)

and hence

⟨𝑣 − 𝑙
𝑛
,
𝑙
𝑛
− 𝑥
𝑛

𝜆
𝑛

+ ∇𝑓
𝛼
𝑛

(𝑦
𝑛
)⟩ ≥ 0. (31)

Therefore, from 𝑤 − ∇𝑓(𝑣) ∈ 𝑁
𝐶
𝑣 and 𝑙

𝑛
𝑖

∈ 𝐶, we get

⟨𝑣 − 𝑙
𝑛
𝑖

, 𝑤⟩

≥ ⟨𝑣 − 𝑙
𝑛
𝑖

, ∇𝑓 (𝑣)⟩

≥ ⟨𝑣 − 𝑙
𝑛
𝑖

, ∇𝑓 (𝑣)⟩

− ⟨𝑣 − 𝑙
𝑛
𝑖

,
𝑙
𝑛
𝑖

− 𝑥
𝑛
𝑖

𝜆
𝑛
𝑖

+ ∇𝑓
𝛼
𝑛
𝑖

(𝑦
𝑛
𝑖

)⟩

= ⟨𝑣 − 𝑙
𝑛
𝑖

, ∇𝑓 (𝑣)⟩

− ⟨𝑣 − 𝑙
𝑛
𝑖

,
𝑙
𝑛
𝑖

− 𝑥
𝑛
𝑖

𝜆
𝑛
𝑖

+ ∇𝑓 (𝑦
𝑛
𝑖

)⟩

− 𝛼
𝑛
𝑖

⟨𝑣 − 𝑙
𝑛
𝑖

, 𝑦
𝑛
𝑖

⟩

= ⟨𝑣 − 𝑙
𝑛
𝑖

, ∇𝑓 (𝑣) − ∇𝑓 (𝑙
𝑛
𝑖

)⟩

+ ⟨𝑣 − 𝑙
𝑛
𝑖

, ∇𝑓 (𝑙
𝑛
𝑖

) − ∇𝑓 (𝑦
𝑛
𝑖

)⟩

− ⟨𝑣 − 𝑙
𝑛
𝑖

,
𝑙
𝑛
𝑖

− 𝑥
𝑛
𝑖

𝜆
𝑛
𝑖

⟩ − 𝛼
𝑛
𝑖

⟨𝑣 − 𝑙
𝑛
𝑖

, 𝑦
𝑛
𝑖

⟩

≥ ⟨𝑣 − 𝑙
𝑛
𝑖

, ∇𝑓 (𝑙
𝑛
𝑖

) − ∇𝑓 (𝑦
𝑛
𝑖

)⟩

− ⟨𝑣 − 𝑙
𝑛
𝑖

,
𝑙
𝑛
𝑖

− 𝑥
𝑛
𝑖

𝜆
𝑛
𝑖

⟩ − 𝛼
𝑛
𝑖

⟨𝑣 − 𝑙
𝑛
𝑖

, 𝑦
𝑛
𝑖

⟩ .

(32)

By taking 𝑖 → ∞, we obtain ⟨𝑣 − 𝑥, 𝑤⟩ ≥ 0. Since 𝑇
is maximal monotone, it follows that 𝑥 ∈ 𝑇−10 and hence
𝑥 ∈ VI(𝐶, ∇𝑓). Therefore, by Lemma 8, 𝑥 ∈ Γ.

Next, we show that 𝑥 ∈ 𝐹(𝑆). Since 𝑙
𝑛
𝑖

⇀ 𝑥 and ‖𝑙
𝑛
𝑖

−

𝑆(𝑙
𝑛
𝑖

)‖ → 0, it follows by the demiclosed principle that 𝑥 ∈
𝐹(𝑆). Hence, we have 𝑥 ∈ 𝐹(𝑆) ∩ Γ.

Next, we show that 𝑥 ∈ Ω. Let 𝐺 be a mapping which is
defined as in Lemma 6, thus we have

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝐺 (𝑧𝑛)
󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩
𝑇
1,𝜇
𝑇
2,𝜇
𝑥
𝑛
− 𝐺 (𝑧

𝑛
)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝐺 (𝑥𝑛) − 𝐺 (𝑧𝑛)

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩 ,

(33)

and hence
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺 (𝑥𝑛)

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝐺 (𝑧𝑛)

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝐺 (𝑧𝑛) − 𝐺 (𝑥𝑛)

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩

= 3
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩 .

(34)

By taking 𝑛 → ∞, we have ‖𝑥
𝑛
− 𝐺(𝑥

𝑛
)‖ → 0. From

lim
𝑛→∞

‖𝑥
𝑛
− 𝑧
𝑛
‖ = 0 and 𝑧

𝑛
𝑗

⇀ 𝑥, we obtain 𝑥
𝑛
𝑗

⇀ 𝑥.
According to demiclosedness and Lemma 6, we have 𝑥 ∈ Ω.
Therefore, we have 𝑥 ∈ 𝐹(𝑆) ∩ Γ ∩ Ω. Let {𝑥

𝑛
𝑗

} be another
subsequence of {𝑥

𝑛
} such that 𝑥

𝑛
𝑗

⇀ 𝑥. We show that 𝑥 = 𝑥,
suppose that 𝑥 = 𝑥. Since lim

𝑛→∞
‖𝑥
𝑛
− 𝑥‖ exists for all

𝑥 ∈ 𝐹(𝑆) ∩ Γ ∩ Ω, it follows by the Opial’s condition that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 = lim inf
𝑖→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑖

− 𝑥
󵄩󵄩󵄩󵄩󵄩

< lim inf
𝑖→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑖

− 𝑥
󵄩󵄩󵄩󵄩󵄩
= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩

= lim inf
𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑗

− 𝑥
󵄩󵄩󵄩󵄩󵄩󵄩

< lim inf
𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
𝑗

− 𝑥
󵄩󵄩󵄩󵄩󵄩󵄩
= lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑥
󵄩󵄩󵄩󵄩󵄩󵄩
.

(35)

It is a contradiction. Thus, we have 𝑥 = 𝑥 and so 𝑥
𝑛
⇀ 𝑥 ∈

𝐹(𝑆) ∩ Γ ∩ Ω. Further, from ‖𝑥
𝑛
− 𝑦
𝑛
‖ → 0, it follows that

𝑦
𝑛
⇀ 𝑥 and hence 𝑧

𝑛
, 𝑤
𝑛
. This completes the proof.

Theorem 9 extends the extragradient method according
to Nadezhkina and Takahashi [35].

Corollary 10. Let 𝐶 be a nonempty closed convex subset in a
real Hilbert space𝐻. Let 𝐹

1
and 𝐹
2
be two bifunctions from𝐶×

𝐶 → R satisfying (A1)–(A4). Let 𝜇 > 0 and let 𝑇
1,𝜇

and 𝑇
2,𝜇

be defined as in Lemma 5 associated to 𝐹
1
and 𝐹

2
, respectively.

Let 𝑆 be a quasi-nonexpansivemapping of𝐶 into itself such that
𝐹(𝑆) ∩ Γ ∩Ω ̸= 0. Let {𝑥

𝑛
}, {𝑦
𝑛
}, {𝑧
𝑛
}, and {𝑤

𝑛
} be the sequence

in 𝐶 generated by the following extragradient algorithm:

𝑥
0
= 𝑥 ∈ 𝐶,

𝑤
𝑛
∈ 𝐶; 𝐹

2
(𝑤
𝑛
, 𝑧) +

1

𝜇
⟨𝑧 − 𝑤

𝑛
, 𝑤
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑧 ∈ 𝐶,

𝑧
𝑛
∈ 𝐶; 𝐹

1
(𝑧
𝑛
, 𝑧) +

1

𝜇
⟨𝑧 − 𝑧

𝑛
, 𝑧
𝑛
− 𝑤
𝑛
⟩ ≥ 0, ∀𝑧 ∈ 𝐶,

𝑦
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓) 𝑧
𝑛
,

𝑥
𝑛+1
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑆𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓 (𝑦
𝑛
)) ,

(36)

where ∑∞
𝑛=0
𝛼
𝑛
< ∞, {𝜆

𝑛
} ⊂ [𝑎, 𝑏] for some 𝑎, 𝑏 ∈ (0, 1/‖𝐴‖2)

and {𝛽
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1). Then, the sequences

{𝑥
𝑛
} and {𝑦

𝑛
} converge weakly to an element 𝑥 ∈ 𝐹(𝑆) ∩ Γ ∩Ω.

Corollary 11. Let 𝐶 be a nonempty closed convex subset in a
real Hilbert space𝐻. Let 𝐹

1
and 𝐹
2
be two bifunctions from𝐶×
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𝐶 → R satisfying (A1)–(A4). Let 𝜇 > 0 and let 𝑇
1,𝜇

and 𝑇
2,𝜇

be defined as in Lemma 5 associated to 𝐹
1
and 𝐹

2
, respectively.

Let 𝑆 be a quasi-nonexpansivemapping of𝐶 into itself such that
𝐹(𝑆) ∩ Γ ∩ Ω ̸= 0. Let {𝑥

𝑛
}, {𝑦
𝑛
}, and {𝑧

𝑛
} be the sequence in 𝐶

generated by the following extragradient algorithm:

𝑥
0
= 𝑥 ∈ 𝐶,

𝑧
𝑛
∈ 𝐶; 𝐹

1
(𝑧
𝑛
, 𝑧) + 𝜑 (𝑧) − 𝜑 (𝑧

𝑛
)

+
1

𝜇
⟨𝑧 − 𝑧

𝑛
, 𝑧
𝑛
− 𝑥
𝑛
⟩ ≥ 0, ∀𝑧 ∈ 𝐶,

𝑦
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓
𝛼
𝑛

) 𝑧
𝑛
,

𝑥
𝑛+1
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑆𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑦
𝑛
)) ,

(37)

where ∑∞
𝑛=0
𝛼
𝑛
< ∞, {𝜆

𝑛
} ⊂ [𝑎, 𝑏] for some 𝑎, 𝑏 ∈ (0, 1/‖𝐴‖2)

and {𝛽
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1). Then, the sequences

{𝑥
𝑛
} and {𝑦

𝑛
} converge weakly to an element 𝑥 ∈ 𝐹(𝑆) ∩ Γ ∩Ω.

Proof. Setting 𝐹
2
= 0 in Theorem 9, we obtain the desired

result.

Corollary 12. Let 𝐶 be a nonempty closed convex subset in a
real Hilbert space 𝐻. Let 𝑆 be a quasi-nonexpansive mapping
of 𝐶 into itself such that 𝐹(𝑆) ∩ Γ ̸= 0. Let {𝑥

𝑛
}, {𝑦
𝑛
}, and {𝑧

𝑛
}

be the sequence in 𝐶 generated by the following extragradient
algorithm:

𝑥
0
= 𝑥 ∈ 𝐶,

𝑦
𝑛
= 𝑃
𝐶
(𝐼 − 𝜆

𝑛
∇𝑓
𝛼
𝑛

) 𝑥
𝑛
,

𝑥
𝑛+1
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑆𝑃
𝐶
(𝑥
𝑛
− 𝜆
𝑛
∇𝑓
𝛼
𝑛

(𝑦
𝑛
)) ,

(38)

where ∑∞
𝑛=0
𝛼
𝑛
< ∞, {𝜆

𝑛
} ⊂ [𝑎, 𝑏] for some 𝑎, 𝑏 ∈ (0, 1/‖𝐴‖2)

and {𝛽
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1). Then, the sequences

{𝑥
𝑛
} and {𝑦

𝑛
} converge weakly to an element 𝑥 ∈ 𝐹(𝑆) ∩ Γ.

Proof. Setting 𝐹
1
= 𝐹
2
= 0 in Theorem 9, we obtain the

desired result.
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