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This paper concerns a discrete competitive system subject to feedback controls. By using Lyapunov function and some preliminary
lemmas, the existence and uniformly asymptotic stability of unique positive almost periodic solution of the system are investigated.
Numerical simulations suggest the feasibility of our theoretical results.

1. Introduction

Many real world phenomena are studied through discrete
mathematical models involving difference equations which
are more suitable than the continuous ones when the popula-
tions have nonoverlapping generations. On the other hand,
discrete models can also provide efficient computational
models of continuous models for numerical stimulations;
therefore, the studies of dynamic systems governed by differ-
ence equations have attracted more attention from scholars.
Many good results concerned with discrete systems are
deliberated (see [1–7] in detail).

Recently, in [1] we consider the following discrete two-
species competitive almost system
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𝑖
(𝑛) represent the natural growth rates of species

𝑥
𝑖
at the 𝑛th generation, 𝑎

𝑖
(𝑛) are the intraspecific effects

of the 𝑛th generation of species 𝑥
𝑖
on own population, and

𝑐
𝑖
(𝑛) measure the interspecific effects of the 𝑛th generation

of species 𝑥
𝑖
on species 𝑥

𝑗
(𝑖, 𝑗 = 1, 2; 𝑖 ̸= 𝑗). The coefficients

{𝑟
𝑖
(𝑛)}, {𝑎

𝑖
(𝑛)}, and {𝑐

𝑖
(𝑛)} are bounded positive almost peri-

odic sequences. We established a criterion for the existence
and uniformly asymptotic stability of unique positive almost
periodic solution of system (1) (see [1]).

Note that ecosystems in the real world are often disturbed
by outside continuous forces. In the language of control,
we call the disturbance functions control variables and they
can be regarded as feedback controls. For more discussions
on this direction, we can refer to [8–14] and the references
cited therein. Motivated by the above ideas we can establish
the discrete two-species competitive almost system with
feedback controls
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bounded positive almost periodic sequences, where 0 <
𝑏
𝑖
(𝑛) < 1, 𝑖 = 1, 2. To belong to the direction of [1],

in this contribution, we continue to discuss the effect of
feedback controls and establish a criterion for the existence
and uniformly asymptotic stability of unique positive almost
periodic solution of system (2).

The rest of this paper is organized as follows. In the
next section, we introduce some notations, definitions, and
lemmas which are available for our main results. Sufficient
conditions for the existence and uniformly asymptotic sta-
bility of unique positive almost periodic solution of system
(2) are established in Section 3. In Section 4, we carry out
numerical simulations to substantiate our analytical results.

2. Preliminaries

In this section, we give some notations, definitions, and
lemmas which will be useful for the later sections.

R,R+,Z, and Z+ denote the sets of real numbers, non-
negative real numbers, integers, and nonnegative integers,
respectively. R4 and R𝑘 denote the cone of 4-dimensional
and 𝑘-dimensional real Euclidean space, respectively. For an
almost periodic sequence {𝑔(𝑛)} defined onZ+, the notations
below will be used
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Definition 1 (see [4]). A sequence 𝑥 : Z → R𝑘 is called an
almost periodic sequence if the 𝜀-translation set of 𝑥,

𝐸 {𝜀, 𝑥} := {𝜏 ∈ Z : |𝑥 (𝑛 + 𝜏) − 𝑥 (𝑛)| < 𝜀, ∀𝑛 ∈ Z} , (4)

is a relatively dense set inZ for all 𝜀 > 0; that is, for any given
𝜀 > 0, there exists an integer 𝑙(𝜀) > 0 such that each discrete
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|𝑥 (𝑛 + 𝜏) − 𝑥 (𝑛)| < 𝜀, ∀𝑛 ∈ Z. (5)

𝜏 is called the 𝜀-translation number of 𝑥(𝑛).

Definition 2 (see [4]). Let 𝑓 : Z × D → R𝑘, where D is
an open set in R𝑘. 𝑓(𝑛, 𝑥) is said to be almost periodic in 𝑛
uniformly for 𝑥 ∈ D, or uniformly almost periodic for short,
if for any 𝜀 > 0 and any compact set S in D, there exists a
positive integer 𝑙(𝜀,S) such that any interval of length 𝑙(𝜀,S)
contains a integer 𝜏 for which
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for all 𝑛 ∈ Z and all𝑥 ∈ S. 𝜏 is called the 𝜀-translation number
of 𝑓(𝑛, 𝑥).
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as 𝑘 → ∞. Furthermore, the limit sequence is also an almost
periodic sequence.

Consider the following almost periodic difference system
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and Zhang [5] established the following result.

Lemma 4 (see [5]). Suppose that there exists a Lyapunov
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Moreover, if there exists a solution 𝜑(𝑛) of system (7) such that
‖𝜑(𝑛)‖ ≤ 𝐵

∗
< 𝐵 for 𝑛 ∈ Z+, then there exists a unique

uniformly asymptotically stable almost periodic solution 𝑝(𝑛)
of system (7) which satisfies ‖𝑝(𝑛)‖ ≤ 𝐵∗. In particular, if
𝑓(𝑛, 𝑥) is periodic of period 𝜔, then there exists a unique
uniformly asymptotically stable periodic solution of system (7)
of periodic 𝜔.

3. Main Results

We first give the following two propositions which are useful
for our main results.
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(𝑛), 𝑢
2
(𝑛)) of

system (2) satisfies

lim inf
𝑛→+∞

𝑥
1
(𝑛) ≥ 𝑥

1∗
, lim inf

𝑛→+∞
𝑥
2
(𝑛) ≥ 𝑥

2∗
,

lim inf
𝑛→+∞

𝑢
1
(𝑛) ≥ 𝑢

1∗
, lim inf

𝑛→+∞
𝑢
2
(𝑛) ≥ 𝑢

2∗
,

(20)

where

𝑥
1∗
=

𝑟
𝐿

1
− 𝑐
𝑈

2
− 𝑒
𝑈

1
𝑢
∗

1

𝑎
𝑈

1

exp [𝑟𝐿
1
− 𝑎
𝑈

1
𝑥
∗

1
− 𝑐
𝑈

2
− 𝑒
𝑈

1
𝑢
∗

1
] ,

𝑥
2∗
=

𝑟
𝐿

2
− 𝑐
𝑈

1
− 𝑒
𝑈

2
𝑢
∗

2

𝑎
𝑈

2

exp [𝑟𝐿
2
− 𝑎
𝑈

2
𝑥
∗

2
− 𝑐
𝑈

1
− 𝑒
𝑈

2
𝑢
∗

2
] ,

𝑢
1∗
=

𝑥
1∗
𝑑
𝐿

1

𝑏
𝑈

1

, 𝑢
2∗
=

𝑥
2∗
𝑑
𝐿

2

𝑏
𝑈

2

.

(21)
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Proof. For any small enough 𝜀 > 0, which satisfies 𝑟𝐿
1
− 𝑐
𝑈

2
−

𝑒
𝑈

1
(𝑢
∗

1
+ 𝜀) > 0, according to Proposition 5, there exists 𝑛∗ ∈

Z+ such that

𝑥
1
(𝑛) ≤ 𝑥

∗

1
+ 𝜀, 𝑥

2
(𝑛) ≤ 𝑥

∗

2
+ 𝜀,

𝑢
1
(𝑛) ≤ 𝑢

∗

1
+ 𝜀, 𝑢

2
(𝑛) ≤ 𝑢

∗

2
+ 𝜀,

for 𝑛 ≥ 𝑛∗.

(22)

We first present Cases (1) and (2) to prove that
lim inf

𝑛→+∞
𝑥
1
(𝑛) ≥ 𝑥

1∗
.

Case (1). Assuming that there exists a positive integer 𝑛
0
≥ 𝑛
∗

such that 𝑥
1
(𝑛
0
+1) ≤ 𝑥

1
(𝑛
0
), we have from the first equation

of system (2) that

𝑥
1
(𝑛
0
+ 1) = 𝑥

1
(𝑛
0
) exp[𝑟

1
(𝑛
0
) − 𝑎
1
(𝑛
0
) 𝑥
1
(𝑛
0
)

−

𝑐
2
(𝑛
0
) 𝑥
2
(𝑛
0
)

1 + 𝑥
2
(𝑛
0
)

− 𝑒
1
(𝑛
0
) 𝑢
1
(𝑛
0
)]

≥ 𝑥
1
(𝑛
0
) exp [𝑟𝐿

1
−𝑎
𝑈

1
𝑥
1
(𝑛
0
)−𝑐
𝑈

2
−𝑒
𝑈

1
(𝑢
∗

1
+ 𝜀)] .

(23)

Therefore,

𝑟
𝐿

1
− 𝑎
𝑈

1
𝑥
1
(𝑛
0
) − 𝑐
𝑈

2
− 𝑒
𝑈

1
(𝑢
∗

1
+ 𝜀) ≤ 0, (24)

which implies that

𝑥
1
(𝑛
0
) ≥

𝑟
𝐿

1
− 𝑐
𝑈

2
− 𝑒
𝑈

1
(𝑢
∗

1
+ 𝜀)

𝑎
𝑈

1

> 0. (25)

Then

𝑥
1
(𝑛
0
+ 1) = 𝑥

1
(𝑛
0
) exp[𝑟

1
(𝑛
0
) − 𝑎
1
(𝑛
0
) 𝑥
1
(𝑛
0
)

−

𝑐
2
(𝑛
0
) 𝑥
2
(𝑛
0
)

1 + 𝑥
2
(𝑛
0
)

− 𝑒
1
(𝑛
0
) 𝑢
1
(𝑛
0
)]

≥

𝑟
𝐿

1
− 𝑐
𝑈

2
− 𝑒
𝑈

1
(𝑢
∗

1
+ 𝜀)

𝑎
𝑈

1

× exp [𝑟𝐿
1
− 𝑎
𝑈

1
(𝑥
∗

1
+ 𝜀) − 𝑐

𝑈

2
− 𝑒
𝑈

1
(𝑢
∗

1
+ 𝜀)] .

(26)

Hence 𝑥
1
(𝑛
0
+ 1) ≥ 𝑥

1𝜀
, where

𝑥
1𝜀
=

𝑟
𝐿

1
− 𝑐
𝑈

2
− 𝑒
𝑈

1
(𝑢
∗

1
+ 𝜀)

𝑎
𝑈

1

exp [𝑟𝐿
1
− 𝑎
𝑈

1
(𝑥
∗

1
+ 𝜀)

−𝑐
𝑈

2
− 𝑒
𝑈

1
(𝑢
∗

1
+ 𝜀)] .

(27)

We claim that 𝑥
1
(𝑛) ≥ 𝑥

1𝜀
for 𝑛 ≥ 𝑛

0
. By way of

contradiction, assume that there exists a 𝑞
0
≥ 𝑛
0
such that

𝑥
1
(𝑞
0
) < 𝑥

1𝜀
, then 𝑞

0
≥ 𝑛
0
+ 2. Let 𝑞

0
= min{𝑞

0
: 𝑞
0
≥

𝑛
0
+2, 𝑥
1
(𝑞
0
) < 𝑥
1𝜀
}, that is, 𝑥

1
(𝑞
0
) < 𝑥
1𝜀
and 𝑞
0
≥ 𝑛
0
+2, then

𝑥
1
(𝑞
0
) < 𝑥
1𝜀
≤ 𝑥
1
(𝑞
0
− 1), and the above argument produces

that 𝑥
1
(𝑞
0
) ≥ 𝑥
1𝜀
, which is a contradiction. Thus, 𝑥

1
(𝑛) ≥ 𝑥

1𝜀

for all 𝑛 ≥ 𝑛
0
; since 𝜀 can be sufficiently small, it obtains that

lim inf
𝑛→+∞

𝑥
1
(𝑛) ≥ 𝑥

1∗
. This proves the claim.

Case (2). We assume that 𝑥
1
(𝑛 + 1) > 𝑥

1
(𝑛) for all 𝑛 ∈ Z+.

Then lim
𝑛→+∞

𝑥
1
(𝑛) exists, denoted by 𝑥

1
. We claim that

𝑥
1
≥

𝑟
𝐿

1
− 𝑐
𝑈

2
− 𝑒
𝑈

1
(𝑢
∗

1
+ 𝜀)

𝑎
𝑈

1

. (28)

By way of contradiction, assume that 𝑥
1
< (𝑟
𝐿

1
− 𝑐
𝑈

2
− 𝑒
𝑈

1
(𝑢
∗

1
+

𝜀))/𝑎
𝑈

1
. Taking limit in the first equation in system (2) yields

lim
𝑛→+∞

[𝑟
1
(𝑛) − 𝑎

1
(𝑛) 𝑥
1
(𝑛) −

𝑐
2
(𝑛) 𝑥
2
(𝑛)

1 + 𝑥
2
(𝑛)

− 𝑒
1
(𝑛) 𝑢
1
(𝑛)]

= 0.

(29)

However,

lim
𝑛→+∞

[𝑟
1
(𝑛) − 𝑎

1
(𝑛) 𝑥
1
(𝑛) −

𝑐
2
(𝑛) 𝑥
2
(𝑛)

1 + 𝑥
2
(𝑛)

− 𝑒
1
(𝑛) 𝑢
1
(𝑛)]

≥ lim
𝑛→+∞

[𝑟
1
(𝑛) − 𝑎

1
(𝑛) 𝑥
1
(𝑛) − 𝑐

2
(𝑛) − 𝑒

1
(𝑛) 𝑢
1
(𝑛)]

≥ 𝑟
𝐿

1
− 𝑎
𝑈

1
𝑥
1
− 𝑐
𝑈

2
− 𝑒
𝑈

1
(𝑢
∗

1
+ 𝜀) > 0,

(30)

which is a contradiction. It implies that 𝑥
1
≥ (𝑟
𝐿

1
−𝑐
𝑈

2
−𝑒
𝑈

1
(𝑢
∗

1
+

𝜀))/𝑎
𝑈

1
. By the fact that min

𝑥∈R+{[exp(𝑥 − 1)]/𝑥} = 1, we
obtain that 𝑥∗

1
= exp(𝑟𝑈

1
− 1)/𝑎

𝐿

1
≥ 𝑟
𝑈

1
/𝑎
𝐿

1
≥ 𝑟
𝐿

1
/𝑎
𝑈

1
, which

means 𝑥∗
1
+ 𝜀 > 𝑟

𝐿

1
/𝑎
𝑈

1
. From (27), we know that 𝑥

1
≥ (𝑟
𝐿

1
−

𝑐
𝑈

2
−𝑒
𝑈

1
(𝑢
∗

1
+𝜀))/𝑎

𝑈

1
≥ 𝑥
1𝜀
.Therefore, lim inf

𝑛→+∞
𝑥
1
(𝑛) ≥ 𝑥

1𝜀
.

Since 𝜀 can be sufficiently small, we have

lim inf
𝑛→+∞

𝑥
1
(𝑛) ≥ 𝑥

1∗

=

𝑟
𝐿

1
− 𝑐
𝑈

2
− 𝑒
𝑈

1
𝑢
∗

1

𝑎
𝑈

1

exp [𝑟𝐿
1
−𝑎
𝑈

1
𝑥
∗

1
−𝑐
𝑈

2
−𝑒
𝑈

1
𝑢
∗

1
] .

(31)

By a similar argument, we can prove that

lim inf
𝑛→+∞

𝑥
2
(𝑛) ≥ 𝑥

2∗

=

𝑟
𝐿

2
− 𝑐
𝑈

1
− 𝑒
𝑈

2
𝑢
∗

2

𝑎
𝑈

2

exp [𝑟𝐿
2
−𝑎
𝑈

2
𝑥
∗

2
−𝑐
𝑈

1
−𝑒
𝑈

2
𝑢
∗

2
] .

(32)

Now we prove that lim inf
𝑛→+∞

𝑢
1
(𝑛) ≥ 𝑢

1∗
. For any

small enough 𝜀 > 0, there exists a positive integer 𝑙
0
such that

𝑥
𝑖
(𝑛) ≥ 𝑥

𝑖∗
− 𝜀 > 0 for 𝑛 ≥ 𝑙

0
.
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By the third equation of system (2), we obtain that

𝑢
1
(𝑛) =

𝑛−1

∏

𝑖=0

(1 − 𝑏
1
(𝑖))
[

[

𝑢
1
(0) +

𝑛−1

∑

𝑖=0

𝑑
1
(𝑖) 𝑥
1
(𝑖)

∏
𝑖

𝑗=0
(1 − 𝑏

1
(𝑗))

]

]

≥ (1 − 𝑏
𝑈

1
)

𝑛

(𝑢
1
(0) + 󰜚

1
) + 𝑑
𝐿

1
(𝑥
1∗
− 𝜀)

×

𝑛−1

∑

𝑖=𝑙
0

𝑛−1

∏

𝑗=𝑖+1

(1 − 𝑏
1
(𝑗))

≥ (1 − 𝑏
𝑈

1
)

𝑛

(𝑢
1
(0) + 󰜚

1
)

+ 𝑑
𝐿

1
(𝑥
1∗
− 𝜀)

𝑛−1

∑

𝑖=𝑙
0

(1 − 𝑏
𝑈

1
)

𝑛−𝑖−1

,

(33)

where 󰜚
1
= ∑
𝑙
0
−1

𝑖=0
(𝑑
1
(𝑖)𝑥
1
(𝑖)/∏

𝑖

𝑗=0
(1 − 𝑏

1
(𝑗))). Since 0 < 𝑏𝑈

1
<

1, we can find a positive number 𝑡 such that 1−𝑏𝑈
1
= 𝑒
−𝑡, then

by Stolz’s theorem, we have

lim
𝑛→+∞

𝑛−1

∑

𝑖=𝑙
0

(1 − 𝑏
𝑈

1
)

𝑛−𝑖−1

= lim
𝑛→+∞

∑
𝑛−1

𝑖=𝑙
0

𝑒
𝑡(𝑖+1)

𝑒
𝑡𝑛

=

1

1 − 𝑒
−𝑡
=

1

𝑏
𝑈

1

.

(34)

Thus lim inf
𝑛→+∞

𝑢
1
(𝑛) ≥ (𝑥

1∗
− 𝜀)𝑑
𝐿

1
/𝑏

U
1
, by the arbitrary

of 𝜀, lim inf
𝑛→+∞

𝑢
1
(𝑛) ≥ 𝑢

1∗
is valid. The conclusion about

𝑢
2
(𝑛) can be obtained in a similar way. Thus the proof of

Proposition 6 is complete.

Denote

Ω = {(𝑥
1
, 𝑥
2
, 𝑢
1
, 𝑢
2
) | 𝑥
𝑖∗
≤ 𝑥
𝑖
(𝑛) ≤ 𝑥

∗

𝑖
,

𝑢
𝑖∗
≤ 𝑢
𝑖
(𝑛) ≤ 𝑢

∗

𝑖
(𝑖 = 1, 2)} .

(35)

From the proofs of Propositions 5 and 6, we know that the set
Ω is an invariant set of system (2) under the assumptions in
(19).

Theorem7. If the assumptions in (19) are satisfied, thenΩ ̸= 𝜙.

Proof. We have from system (2) that

𝑥
𝑖
(𝑛) = 𝑥

𝑖
(0) exp

𝑛−1

∑

𝑚=0

[𝑟
𝑖
(𝑚) − 𝑎

𝑖
(𝑚) 𝑥
𝑖
(𝑚)

−

𝑐
𝑗
(𝑚) 𝑥
𝑗
(𝑚)

1 + 𝑥
𝑗
(𝑚)

− 𝑒
𝑖
(𝑚) 𝑢
𝑖
(𝑚)] ,

𝑢
𝑖
(𝑛) = 𝑢

𝑖
(0) −

𝑛−1

∑

𝑚=0

[𝑏
𝑖
(𝑚) 𝑢
𝑖
(𝑚) − 𝑑

𝑖
(𝑚) 𝑥
𝑖
(𝑚)] ,

(36)

for 𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗. Based on Propositions 5 and 6, any
solution (𝑥

1
(𝑛), 𝑥
2
(𝑛), 𝑢
1
(𝑛), 𝑢
2
(𝑛)) of system (2) satisfies (10)

and (20). Thus, for any 𝜀 > 0, there exists 𝑝
0
large enough

such that

𝑥
𝑖∗
− 𝜀 ≤ 𝑥

𝑖
(𝑛) ≤ 𝑥

∗

𝑖
+ 𝜀,

𝑢
𝑖∗
− 𝜀 ≤ 𝑢

𝑖
(𝑛) ≤ 𝑢

∗

𝑖
+ 𝜀,

∀𝑛 ≥ 𝑝
0
, 𝑖 = 1, 2.

(37)

Setting to {𝑡
𝑘
} be any positive integer valued sequence such

that 𝑡
𝑘
→ +∞ as 𝑘 → +∞, it is easy to show that there exists

a subsequence of {𝑡
𝑘
} still denoted by {𝑡

𝑘
}, such that 𝑥

𝑖
(𝑛 +

𝑡
𝑘
) → 𝑥

∗

𝑖
(𝑛), 𝑢
𝑖
(𝑛+𝑡
𝑘
) → 𝑢

∗

𝑖
(𝑛) uniformly in 𝑛 on any finite

subset 𝐷 of Z+ as 𝑘 → +∞, where𝐷 = {𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑙
}, 𝛼
ℎ
∈

Z+ (ℎ = 1, 2, . . . , 𝑙) and 𝑙 is a finite number.
In reality, for any finite subset 𝐷 ⊂ Z+, 𝑡

𝑘
+ 𝛼
ℎ
> 𝑝
0
, ℎ =

1, 2, . . . , 𝑙, when 𝑘 is large enough. Thus, 𝑥
𝑖∗
− 𝜀 ≤ 𝑥

𝑖
(𝑛 +

𝑡
𝑘
) ≤ 𝑥
∗

𝑖
+ 𝜀, 𝑢
𝑖∗
− 𝜀 ≤ 𝑢

𝑖
(𝑛 + 𝑡

𝑘
) ≤ 𝑢
∗

𝑖
+ 𝜀, which mean that

{𝑥
𝑖
(𝑛 + 𝑡

𝑘
)}, {𝑢
𝑖
(𝑛 + 𝑡

𝑘
)} are uniformly bounded for 𝑘 large

enough.
Now, for 𝛼

1
∈ 𝐷, we can select a subsequence {𝑡(1)

𝑘
} of {𝑡
𝑘
}

such that {𝑥
𝑖
(𝛼
1
+ 𝑡
(1)

𝑘
)}, {𝑢
𝑖
(𝛼
1
+ 𝑡
(1)

𝑘
)} uniformly converge on

Z+ for 𝑘 large enough.
Similarly, for 𝛼

2
∈ 𝐷, we can also select a subsequence

{𝑡
(2)

𝑘
} of {𝑡(1)
𝑘
} such that {𝑥

𝑖
(𝛼
2
+ 𝑡
(2)

𝑘
)}, {𝑢
𝑖
(𝛼
2
+ 𝑡
(2)

𝑘
)} uniformly

converge on Z+ for 𝑘 large enough.
Repeating the above process, for 𝛼

𝑙
∈ 𝐷, we choose a

subsequence {𝑡(𝑙)
𝑘
} of {𝑡(𝑙−1)

𝑘
} such that {𝑥

𝑖
(𝛼
𝑙
+ 𝑡
(𝑙)

𝑘
)}, {𝑢
𝑖
(𝛼
𝑙
+

𝑡
(𝑙)

𝑘
)} uniformly converge on Z+ for 𝑘 large enough.
Thenwe choose the sequence {𝑡(𝑙)

𝑘
}which is a subsequence

of {𝑡
𝑘
} still denoted by {𝑡

𝑘
}; for all 𝑛 ∈ 𝐷, we have 𝑥

𝑖
(𝑛+𝑡
𝑘
) →

𝑥
∗

𝑖
(𝑛), 𝑢
𝑖
(𝑛 + 𝑡

𝑘
) → 𝑢

∗

𝑖
(𝑛) uniformly in 𝑛 ∈ 𝐷 as 𝑘 → +∞.

Therefore, the conclusion is true by the arbitrary of𝐷.
Consider the almost periodicity of {𝑟

𝑖
(𝑛)}, {𝑎

𝑖
(𝑛)}, {𝑏

𝑖
(𝑛)},

{𝑐
𝑖
(𝑛)}, {𝑑

𝑖
(𝑛)}, and {𝑒

𝑖
(𝑛)}, 𝑖 = 1, 2, for the above sequence

{𝑡
𝑘
}, 𝑡
𝑘
→ +∞ as 𝑘 → +∞, there exists a subsequence still

denoted by {𝑡
𝑘
} such that

𝑟
𝑖
(𝑛 + 𝑡

𝑘
) 󳨀→ 𝑟

𝑖
(𝑛) , 𝑎

𝑖
(𝑛 + 𝑡

𝑘
) 󳨀→ 𝑎

𝑖
(𝑛) ,

𝑏
𝑖
(𝑛 + 𝑡

𝑘
) 󳨀→ 𝑏

𝑖
(𝑛) , 𝑐

𝑖
(𝑛 + 𝑡

𝑘
) 󳨀→ 𝑐

𝑖
(𝑛) ,

𝑑
𝑖
(𝑛 + 𝑡

𝑘
) 󳨀→ 𝑑

𝑖
(𝑛) , 𝑒

𝑖
(𝑛 + 𝑡

𝑘
) 󳨀→ 𝑒

𝑖
(𝑛) ,

(38)

as 𝑘 → +∞ uniformly on Z+.
For any 𝛽 ∈ Z+, we can presume that 𝑡

𝑘
+ 𝛽 ≥ 𝑝

0
for 𝑘

large enough. Let 𝑛 ∈ Z+, by an inductive argument of system
(2) from 𝑡

𝑘
+ 𝛽 to 𝑛 + 𝑡

𝑘
+ 𝛽 which results in

𝑥
𝑖
(𝑛 + 𝑡

𝑘
+ 𝛽) = 𝑥

𝑖
(𝑡
𝑘
+ 𝛽)

× exp
𝑛+𝑡
𝑘
+𝛽−1

∑

𝑚=𝑡
𝑘
+𝛽

[𝑟
𝑖
(𝑚) − 𝑎

𝑖
(𝑚) 𝑥
𝑖
(𝑚)

−

𝑐
𝑗
(𝑚) 𝑥
𝑗
(𝑚)

1 + 𝑥
𝑗
(𝑚)

−𝑒
𝑖
(𝑚) 𝑢
𝑖
(𝑚) ] ,
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𝑢
𝑖
(𝑛 + 𝑡

𝑘
+ 𝛽) = 𝑢

𝑖
(𝑡
𝑘
+ 𝛽)

−

𝑛+𝑡
𝑘
+𝛽−1

∑

𝑚=𝑡
𝑘
+𝛽

[𝑏
𝑖
(𝑚) 𝑢
𝑖
(𝑚) − 𝑑

𝑖
(𝑚) 𝑥
𝑖
(𝑚)] ,

(39)

for 𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗, so it derives that

𝑥
𝑖
(𝑛 + 𝑡

𝑘
+ 𝛽)

= 𝑥
𝑖
(𝑡
𝑘
+𝛽) exp

𝑛+𝛽−1

∑

𝑚=𝛽

[𝑟
𝑖
(𝑚+𝑡
𝑘
)−𝑎
𝑖
(𝑚+𝑡
𝑘
)

× 𝑥
𝑖
(𝑚 + 𝑡

𝑘
)

−

𝑐
𝑗
(𝑚 + 𝑡

𝑘
) 𝑥
𝑗
(𝑚 + 𝑡

𝑘
)

1 + 𝑥
𝑗
(𝑚 + 𝑡

𝑘
)

−𝑒
𝑖
(𝑚 + 𝑡

𝑘
) 𝑢
𝑖
(𝑚 + 𝑡

𝑘
) ] ,

𝑢
𝑖
(𝑛 + 𝑡

𝑘
+ 𝛽)

= 𝑢
𝑖
(𝑡
𝑘
+ 𝛽) −

𝑛+𝛽−1

∑

𝑚=𝛽

[𝑏
𝑖
(𝑚 + 𝑡

𝑘
) 𝑢
𝑖
(𝑚 + 𝑡

𝑘
)

−𝑑
𝑖
(𝑚 + 𝑡

𝑘
) 𝑥
𝑖
(𝑚 + 𝑡

𝑘
)] .

(40)

Letting 𝑘 → +∞, one has

𝑥
∗

𝑖
(𝑛 + 𝛽) = 𝑥

∗

𝑖
(𝛽) exp

𝑛+𝛽−1

∑

𝑚=𝛽

[𝑟
𝑖
(𝑚) − 𝑎

𝑖
(𝑚) 𝑥
∗

𝑖
(𝑚)

−

𝑐
𝑗
(𝑚) 𝑥
∗

𝑗
(𝑚)

1 + 𝑥
∗

𝑗
(𝑚)

−𝑒
𝑖
(𝑚) 𝑢
∗

𝑖
(𝑚) ] ,

𝑢
∗

𝑖
(𝑛 + 𝛽) = 𝑢

∗

𝑖
(𝛽) −

𝑛+𝛽−1

∑

𝑚=𝛽

[𝑏
𝑖
(𝑚) 𝑢
∗

𝑖
(𝑚)

−𝑑
𝑖
(𝑚) 𝑥
∗

𝑖
(𝑚)] .

(41)

By the arbitrary of 𝛽, we can easily see that (𝑥∗
1
(𝑛), 𝑥
∗

2
(𝑛),

𝑢
∗

1
(𝑛), 𝑢
∗

2
(𝑛)) is a solution of system (2) on Z+, and

0 < 𝑥
𝑖∗
− 𝜀 ≤ 𝑥

∗

𝑖
(𝑛) ≤ 𝑥

∗

𝑖
+ 𝜀,

0 < 𝑢
𝑖∗
− 𝜀 ≤ 𝑢

∗

𝑖
(𝑛) ≤ 𝑢

∗

𝑖
+ 𝜀,

∀𝑛 ∈ Z
+
, 𝑖 = 1, 2.

(42)

Since 𝜀 is an arbitrarily small positive number, we obtain that

0 < 𝑥
𝑖∗
≤ 𝑥
∗

𝑖
(𝑛) ≤ 𝑥

∗

𝑖
,

0 < 𝑢
𝑖∗
≤ 𝑢
∗

𝑖
(𝑛) ≤ 𝑢

∗

𝑖
,

∀𝑛 ∈ Z
+
, 𝑖 = 1, 2.

(43)

So Ω ̸= 𝜙. This completes the proof.

The following theorem concerns the existence and uni-
formly asymptotical stability of unique positive almost peri-
odic solution of system (2).

Theorem 8. Suppose the inequalities in (19) are satisfied;
furthermore, 0 < 𝛾 < 1, where 𝛾 = min{𝑠

𝑖𝑗
, 𝑠
∗

𝑖𝑗
} and

𝑠
𝑖𝑗
= 2𝑎
𝐿

𝑖
𝑥
𝑖∗
− (𝑎
𝑈

𝑖
)

2

(𝑥
∗

𝑖
)

2

− (𝑑
𝑈

𝑖
)

2

(𝑥
∗

𝑖
)
2

−

𝑎
𝑈

𝑖
𝑐
𝑈

𝑗
𝑥
∗

𝑖
𝑥
∗

𝑗

(1 + 𝑥
𝑗∗
)

2
−

𝑐
𝑈

𝑗
𝑥
∗

𝑗

(1 + 𝑥
𝑗∗
)

2

− 𝑎
𝑈

𝑖
𝑒
𝑈

𝑖
𝑥
∗

𝑖
− 𝑒
𝑈

𝑖
− 𝑑
𝑈

𝑖
(1 − 𝑏

𝐿

𝑖
) 𝑥
∗

𝑖
−

𝑎
𝑈

𝑗
𝑐
𝑈

𝑖
𝑥
∗

𝑖
𝑥
∗

𝑗

(1 + 𝑥
𝑖∗
)
2

−

𝑐
𝑈

𝑖
𝑥
∗

𝑖

(1 + 𝑥
𝑖∗
)
2
−

𝑒
𝑈

𝑗
𝑐
𝑈

𝑖
𝑥
∗

𝑖

(1 + 𝑥
𝑖∗
)
2
−

(𝑐
𝑈

𝑖
)

2

(𝑥
∗

𝑖
)
2

(1 + 𝑥
𝑖∗
)
4
,

𝑠
∗

𝑖𝑗
= 2𝑏
𝐿

𝑖
− 𝑎
𝑈

𝑖
𝑒
𝑈

𝑖
x∗
𝑖
− 𝑑
𝑈

𝑖
(1 − 𝑏

𝐿

𝑖
) 𝑥
∗

𝑖

−𝑒
𝑈

𝑖
−

𝑒
𝑈

𝑖
𝑐
𝑈

𝑗
𝑥
∗

𝑗

(1 + 𝑥
𝑗∗
)

2
− (𝑒
𝑈

𝑖
)

2

− (𝑏
𝑈

𝑖
)

2

,

(44)

𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗, then there exists a unique uniformly asymptoti-
cally stable positive almost periodic solution of system (2)which
is bounded by Ω for all 𝑛 ∈ Z+.

Proof. We first make the change of variables

𝑦
1
(𝑛) = ln𝑥

1
(𝑛) , 𝑦

2
(𝑛) = ln𝑥

2
(𝑛) , (45)

then system (2) can be reformulated as

𝑦
𝑖
(𝑛 + 1) = 𝑦

𝑖
(𝑛) + 𝑟

𝑖
(𝑛) − 𝑎

𝑖
(𝑛) 𝑒
𝑦
𝑖
(𝑛)

−

𝑐
𝑗
(𝑛) 𝑒
𝑦
𝑗
(𝑛)

1 + 𝑒
𝑦
𝑗
(𝑛)
− 𝑒
𝑖
(𝑛) 𝑢
𝑖
(𝑛) ,

Δ𝑢
𝑖
(𝑛) = −𝑏

𝑖
(𝑛) 𝑢
𝑖
(𝑛) + 𝑑

𝑖
(𝑛) 𝑒
𝑦
𝑖
(𝑛)
,

𝑖 = 1, 2, 𝑖 ̸= 𝑗.

(46)

By Theorem 7, it is easy to see that there exists a bounded
solution (𝑦

1
(𝑛), 𝑦
2
(𝑛), 𝑢
1
(𝑛), 𝑢
2
(𝑛)) of system (46) satisfying

ln𝑥
𝑖∗
≤ 𝑦
𝑖
(𝑛) ≤ ln𝑥∗

𝑖
, 𝑢

𝑖∗
≤ 𝑢
𝑖
(𝑛) ≤ 𝑢

∗

𝑖
,

𝑖 = 1, 2, 𝑛 ∈ Z
+
.

(47)
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Then |𝑦
𝑖
(𝑛)| ≤ 𝐴

𝑖
, |𝑢
𝑖
(𝑛)| ≤ 𝐵

𝑖
, where 𝐴

𝑖
= max{| ln𝑥

𝑖∗
|,

| ln𝑥∗
𝑖
|}, 𝐵
𝑖
= max{|𝑢

𝑖∗
|, |𝑢
∗

𝑖
|}, and 𝑖 = 1, 2. Let ‖(𝑦

1
(𝑛),

𝑦
2
(𝑛), 𝑢
1
(𝑛), 𝑢
2
(𝑛))‖ = ∑

2

𝑖=1
{|𝑦
𝑖
(𝑛)| + |𝑢

𝑖
(𝑛)|}, where (𝑦

1
(𝑛),

𝑦
2
(𝑛), 𝑢
1
(𝑛), 𝑢
2
(𝑛)) ∈ R4.

The following associate product systemof system (46) can
be expressed as

𝑦
𝑖
(𝑛 + 1) = 𝑦

𝑖
(𝑛) + 𝑟

𝑖
(𝑛) − 𝑎

𝑖
(𝑛) 𝑒
𝑦
𝑖
(𝑛)

−

𝑐
𝑗
(𝑛) 𝑒
𝑦
𝑗
(𝑛)

1 + 𝑒
𝑦
𝑗
(𝑛)
− 𝑒
𝑖
(𝑛) 𝑢
𝑖
(𝑛) ,

Δ𝑢
𝑖
(𝑛) = −𝑏

𝑖
(𝑛) 𝑢
𝑖
(𝑛) + 𝑑

𝑖
(𝑛) 𝑒
𝑦
𝑖
(𝑛)
,

𝑧
𝑖
(𝑛 + 1) = 𝑧

𝑖
(𝑛) + 𝑟

𝑖
(𝑛) − 𝑎

𝑖
(𝑛) 𝑒
𝑧
𝑖
(𝑛)

−

𝑐
𝑗
(𝑛) 𝑒
𝑧
𝑗
(𝑛)

1 + 𝑒
𝑧
𝑗
(𝑛)
− 𝑒
𝑖
(𝑛) V
𝑖
(𝑛) ,

ΔV
𝑖
(𝑛) = −𝑏

𝑖
(𝑛) V
𝑖
(𝑛) + 𝑑

𝑖
(𝑛) 𝑒
𝑧
𝑖
(𝑛)
,

𝑖 = 1, 2, 𝑖 ̸= 𝑗.

(48)

Suppose that

𝑌 = (𝑦
1
(𝑛) , 𝑦

2
(𝑛) , 𝑢

1
(𝑛) , 𝑢

2
(𝑛)) ,

𝑍 = (𝑧
1
(𝑛) , 𝑧
2
(𝑛) , V
1
(𝑛) , V
2
(𝑛))

(49)

are any two solutions of system (46) defined on S, then

‖𝑌‖ ≤ 𝐵, ‖𝑍‖ ≤ 𝐵, (50)

where 𝐵 = ∑2
𝑖=1
{𝐴
𝑖
+ 𝐵
𝑖
}, and

S ={(𝑦
1
(𝑛) , 𝑦

2
(𝑛) , 𝑢

1
(𝑛) , 𝑢

2
(𝑛)) | ln𝑥

𝑖∗
≤𝑦
𝑖
(𝑛)≤ ln𝑥∗

𝑖
,

𝑢
𝑖∗
≤𝑢
𝑖
(𝑛)≤𝑢

∗

𝑖
, 𝑖 = 1, 2, 𝑛 ∈ Z

+
} .

(51)

Let us construct the following Lyapunov function defined
on Z+ × S × S:

𝑉 (𝑛, 𝑌, 𝑍) =

2

∑

𝑖=1

{(𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
2

+ (𝑢
𝑖
(𝑛) − V

𝑖
(𝑛))
2

} .

(52)

Obviously, ‖𝑌 − 𝑍‖ = ∑2
𝑖=1
{|𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛)| + |𝑢

𝑖
(𝑛) − V

𝑖
(𝑛)|}

is equivalent to ‖𝑌 − 𝑍‖
∗
= {∑
2

𝑖=1
[(𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
2
+ (𝑢
𝑖
(𝑛) −

V
𝑖
(𝑛))
2
]}
1/2; that is, there exist two constants𝐷

1
> 0, 𝐷

2
> 0,

such that

𝐷
1 ‖
𝑌 − 𝑍‖ ≤ ‖𝑌 − 𝑍‖∗

≤ 𝐷
2 ‖
𝑌 − 𝑍‖ . (53)

Consequently,

(𝐷
1 ‖
𝑌 − 𝑍‖)

2

≤ 𝑉 (𝑛, 𝑌, 𝑍) ≤ (𝐷
2 ‖
𝑌 − 𝑍‖)

2

. (54)

Denote 𝑎, 𝑏 ∈ 𝐶(R+,R+), 𝑎(𝑥) = 𝐷2
1
𝑥
2
, 𝑏(𝑥) = 𝐷

2

2
𝑥
2, thus

the condition (i) of Lemma 4 is satisfied.

In addition, for any (𝑛, 𝑌, 𝑍), (𝑛, 𝑌, 𝑍) ∈ Z+ × S × S, we
find that

󵄨
󵄨
󵄨
󵄨
󵄨
𝑉 (𝑛, 𝑌, 𝑍) − 𝑉 (𝑛, 𝑌, 𝑍)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

2

∑

𝑖=1

{(𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
2

+ (𝑢
𝑖
(𝑛) − V

𝑖
(𝑛))
2

}

−

2

∑

𝑖=1

{(𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
2

+ (𝑢
𝑖
(𝑛) − V

𝑖
(𝑛))
2

}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

2

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
2

− (𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
2󵄨󵄨
󵄨
󵄨
󵄨

+

2

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑢
𝑖
(𝑛) − V

𝑖
(𝑛))
2

− (𝑢
𝑖
(𝑛) − V

𝑖
(𝑛))
2󵄨󵄨
󵄨
󵄨
󵄨

=

2

∑

𝑖=1

{
󵄨
󵄨
󵄨
󵄨
(𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛)) + (𝑦

𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
󵄨
󵄨
󵄨
󵄨

⋅
󵄨
󵄨
󵄨
󵄨
(𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛)) − (𝑦

𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
󵄨
󵄨
󵄨
󵄨
}

+

2

∑

𝑖=1

{
󵄨
󵄨
󵄨
󵄨
(𝑢
𝑖
(𝑛) − V

𝑖
(𝑛)) + (𝑢

𝑖
(𝑛) − V

𝑖
(𝑛))
󵄨
󵄨
󵄨
󵄨

⋅
󵄨
󵄨
󵄨
󵄨
(𝑢
𝑖
(𝑛) − V

𝑖
(𝑛)) − (𝑢

𝑖
(𝑛) − V

𝑖
(𝑛))
󵄨
󵄨
󵄨
󵄨
}

≤

2

∑

𝑖=1

{(
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
(𝑛)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑛)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
(𝑛)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑛)
󵄨
󵄨
󵄨
󵄨
)

⋅ (
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
(𝑛) − 𝑦

𝑖
(𝑛)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑛) − 𝑧

𝑖
(𝑛)
󵄨
󵄨
󵄨
󵄨
)}

+

2

∑

𝑖=1

{(
󵄨
󵄨
󵄨
󵄨
𝑢
𝑖
(𝑛)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
V
𝑖
(𝑛)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑢
𝑖
(𝑛)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
V
𝑖
(𝑛)
󵄨
󵄨
󵄨
󵄨
)

⋅ (
󵄨
󵄨
󵄨
󵄨
𝑢
𝑖
(𝑛) − 𝑢

𝑖
(𝑛)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
V
𝑖
(𝑛) − V

𝑖
(𝑛)
󵄨
󵄨
󵄨
󵄨
)}

≤ 𝜆{

2

∑

𝑖=1

{
󵄨
󵄨
󵄨
󵄨
𝑦
𝑖
(𝑛) − 𝑦

𝑖
(𝑛)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑢
𝑖
(𝑛) − 𝑢

𝑖
(𝑛)
󵄨
󵄨
󵄨
󵄨
}

+

2

∑

𝑖=1

{
󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑛) − 𝑧

𝑖
(𝑛)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
V
𝑖
(𝑛) − V

𝑖
(𝑛)
󵄨
󵄨
󵄨
󵄨
} }

= 𝜆 {

󵄩
󵄩
󵄩
󵄩
󵄩
𝑌 − 𝑌

󵄩
󵄩
󵄩
󵄩
󵄩
+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑍 − 𝑍

󵄩
󵄩
󵄩
󵄩
󵄩
} ,

(55)

where 𝑌 = (𝑦
1
(𝑛), 𝑦

2
(𝑛), 𝑢

1
(𝑛), 𝑢

2
(𝑛)),𝑍 = (𝑧

1
(𝑛), 𝑧

2
(𝑛),

V
1
(𝑛), V
2
(𝑛)), and 𝜆 = 4max{𝐴

𝑖
, 𝐵
𝑖
} (𝑖 = 1, 2). Hence, the

condition (ii) of Lemma 4 is satisfied.
At last, we calculate theΔ𝑉(𝑛, 𝑌, 𝑍) of𝑉(𝑛, 𝑌, 𝑍) along the

solutions of system (48) and obtain that

Δ𝑉
(48)
(𝑛, 𝑌, 𝑍)

= 𝑉 (𝑛 + 1, 𝑌, 𝑍) − 𝑉 (𝑛, 𝑌, 𝑍)
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=

2

∑

𝑖=1

{(𝑦
𝑖
(𝑛 + 1) − 𝑧

𝑖
(𝑛 + 1))

2

+ (𝑢
𝑖
(𝑛 + 1) − V

𝑖
(𝑛 + 1))

2

}

−

2

∑

𝑖=1

{(𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
2

+ (𝑢
𝑖
(𝑛) − V

𝑖
(𝑛))
2

}

=

2

∑

𝑖=1

{(𝑦
𝑖
(𝑛 + 1) − 𝑧

𝑖
(𝑛 + 1))

2

− (𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
2

+(𝑢
𝑖
(𝑛 + 1) − V

𝑖
(𝑛 + 1))

2

− (𝑢
𝑖
(𝑛) − V

𝑖
(𝑛))
2

}

=

2

∑

𝑖=1

{[ (𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛)) − 𝑎

𝑖
(𝑛) (𝑒
𝑦
𝑖
(𝑛)
− 𝑒
𝑧
𝑖
(𝑛)
)

− 𝑒
𝑖
(𝑛) (𝑢

𝑖
(𝑛) − V

𝑖
(𝑛))

−𝑐
𝑗
(𝑛) (

𝑒
𝑦
𝑗
(𝑛)

1 + 𝑒
𝑦
𝑗
(𝑛)
−

𝑒
𝑧
𝑗
(𝑛)

1 + 𝑒
𝑧
𝑗
(𝑛)
)]

2

− (𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
2

+ [ (1 − 𝑏
𝑖
(𝑛)) (𝑢

𝑖
(𝑛) − V

𝑖
(𝑛))

+𝑑
𝑖
(𝑛) (𝑒
𝑦
𝑖
(𝑛)
− 𝑒
𝑧
𝑖
(𝑛)
)]

2

−(𝑢
𝑖
(𝑛) − V

𝑖
(𝑛))
2

}

=

2

∑

𝑖=1

{ − 2𝑎
𝑖
(𝑛) (𝑦

𝑖
(𝑛) − 𝑧

𝑖
(𝑛)) (𝑒

𝑦
𝑖
(𝑛)
− 𝑒
𝑧
𝑖
(𝑛)
)

− 2𝑒
𝑖
(𝑛) (𝑦

𝑖
(𝑛) − 𝑧

𝑖
(𝑛)) (𝑢

𝑖
(𝑛) − V

𝑖
(𝑛))

− 2𝑐
𝑗
(𝑛) (𝑦

𝑖
(𝑛) − 𝑧

𝑖
(𝑛)) (

𝑒
𝑦
𝑗
(𝑛)

1 + 𝑒
𝑦
𝑗
(𝑛)
−

𝑒
𝑧
𝑗
(𝑛)

1 + 𝑒
𝑧
𝑗
(𝑛)
)

+ 𝑎
2

𝑖
(𝑛) (𝑒
𝑦
𝑖
(𝑛)
− 𝑒
𝑧
𝑖
(𝑛)
)

2

+ 2𝑎
𝑖
(𝑛) 𝑒
𝑖
(𝑛)

× (𝑢
𝑖
(𝑛) − V

𝑖
(𝑛)) (𝑒

𝑦
𝑖
(𝑛)
− 𝑒
𝑧
𝑖
(𝑛)
) + 2𝑎

𝑖
(𝑛) c
𝑗
(𝑛)

× (

𝑒
𝑦
𝑗
(𝑛)

1 + 𝑒
𝑦
𝑗
(𝑛)
−

𝑒
𝑧
𝑗
(𝑛)

1 + 𝑒
𝑧
𝑗
(𝑛)
)(𝑒
𝑦
𝑖
(𝑛)
− 𝑒
𝑧
𝑖
(𝑛)
)

+ 𝑒
2

𝑖
(𝑛) (𝑢

𝑖
(𝑛) − V

𝑖
(𝑛))
2

+ 2𝑒
𝑖
(𝑛) 𝑐
𝑗
(𝑛)

× (

𝑒
𝑦
𝑗
(𝑛)

1 + 𝑒
𝑦
𝑗
(𝑛)
−

𝑒
𝑧
𝑗
(𝑛)

1 + 𝑒
𝑧
𝑗
(𝑛)
) (𝑢
𝑖
(𝑛) − V

𝑖
(𝑛))

+ 𝑐
2

𝑗
(𝑛) (

𝑒
𝑦
𝑗
(𝑛)

1 + 𝑒
𝑦
𝑗
(𝑛)
−

𝑒
𝑧
𝑗
(𝑛)

1 + 𝑒
𝑧
𝑗
(𝑛)
)

2

+ 𝑏
𝑖
(𝑛) (𝑏
𝑖
(𝑛) − 2) (𝑢

𝑖
(𝑛) − V

𝑖
(𝑛))
2

+ 2𝑑
𝑖
(𝑛)

× (1 − 𝑏
𝑖
(𝑛)) (𝑒

𝑦
𝑖
(𝑛)
− 𝑒
𝑧
𝑖
(𝑛)
) (𝑢
𝑖
(𝑛) − V

𝑖
(𝑛))

+𝑑
2

𝑖
(𝑛) (𝑒
𝑦
𝑖
(𝑛)
− 𝑒
𝑧
𝑖
(𝑛)
)

2

} .

(56)

By the mean-value theorem, one has

𝑒
𝑦
𝑖
(𝑛)
− 𝑒
𝑧
𝑖
(𝑛)
= 𝜃
𝑖
(𝑛) (𝑦

𝑖
(𝑛) − 𝑧

𝑖
(𝑛)) ,

𝑒
𝑦
𝑗
(𝑛)

1 + 𝑒
𝑦
𝑗
(𝑛)
−

𝑒
𝑧
𝑗
(𝑛)

1 + 𝑒
𝑧
𝑗
(𝑛)
=

𝜎
𝑗
(𝑛)

(1 + 𝜎
𝑗
(𝑛))

2
(𝑦
𝑗
(𝑛) − 𝑧

𝑗
(𝑛)) ,

𝑖, 𝑗 = 1, 2, 𝑖 ̸=𝑗,

(57)

where 𝜃
𝑖
(𝑛) and 𝜎

𝑗
(𝑛) lie between 𝑒𝑦𝑖(𝑛) and 𝑒𝑧𝑖(𝑛) and 𝑒𝑦𝑗(𝑛)

and 𝑒𝑧𝑗(𝑛), respectively. Then 𝑥
𝑖∗
≤ 𝜃
𝑖
(𝑛) ≤ 𝑥

∗

𝑖
, 𝑥
𝑗∗
≤ 𝜎
𝑗
(𝑛) ≤

𝑥
∗

𝑗
, 𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗, 𝑛 ∈ Z+. Substituting (57) into (56), one

has

Δ𝑉
(48)
(𝑛, 𝑌, 𝑍)

=

2

∑

𝑖=1

{

{

{

− 2𝑎
𝑖
(𝑛) 𝜃
𝑖
(𝑛) (𝑦

𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
2

− 2𝑒
𝑖
(𝑛) (𝑦

𝑖
(𝑛) − 𝑧

𝑖
(𝑛)) (𝑢

𝑖
(𝑛) − V

𝑖
(𝑛))

−

2𝑐
𝑗
(𝑛) 𝜎
𝑗
(𝑛)

(1 + 𝜎
𝑗
(𝑛))

2
(𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛)) (𝑦

𝑗
(𝑛) − 𝑧

𝑗
(𝑛))

+ 𝑎
2

𝑖
(𝑛) 𝜃
2

𝑖
(𝑛) (𝑦

𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
2

+ 2𝑎
𝑖
(𝑛) 𝑒
𝑖
(𝑛) 𝜃
𝑖
(𝑛) (𝑦

𝑖
(𝑛)−𝑧

𝑖
(𝑛)) (𝑢

𝑖
(𝑛)−V

𝑖
(𝑛))

+

2𝑎
𝑖
(𝑛) 𝑐
𝑗
(𝑛) 𝜃
𝑖
(𝑛) 𝜎
𝑗
(𝑛)

(1 + 𝜎
𝑗
(𝑛))

2
(𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛))

× (𝑦
𝑗
(𝑛) − 𝑧

𝑗
(𝑛)) + 𝑒

2

𝑖
(𝑛) (𝑢

𝑖
(𝑛) − V

𝑖
(𝑛))
2

+

2𝑒
𝑖
(𝑛) 𝑐
𝑗
(𝑛) 𝜎
𝑗
(𝑛)

(1 + 𝜎
𝑗
(𝑛))

2
(𝑦
𝑗
(𝑛) − 𝑧

𝑗
(𝑛))

×(𝑢
𝑖
(𝑛)−V

𝑖
(𝑛))+

𝑐
2

𝑗
(𝑛) 𝜎
2

𝑗
(𝑛)

(1 + 𝜎
𝑗
(𝑛))

4
(𝑦
𝑗
(𝑛)−𝑧

𝑗
(𝑛))

2

+ 𝑏
𝑖
(𝑛) (𝑏
𝑖
(𝑛) − 2) (𝑢

𝑖
(𝑛) − V

𝑖
(𝑛))
2

+ 2𝑑
𝑖
(𝑛) (1 − 𝑏

𝑖
(𝑛)) 𝜃
𝑖
(𝑛) (𝑦

𝑖
(𝑛) − 𝑧

𝑖
(𝑛))

× (𝑢
𝑖
(𝑛)−V

𝑖
(𝑛))+𝑑

2

𝑖
(𝑛) 𝜃
2

𝑖
(𝑛) (𝑦

𝑖
(𝑛)−𝑧

𝑖
(𝑛))
2
}

}

}

=

2

∑

𝑖=1

{

{

{

(−2𝑎
𝑖
(𝑛) 𝜃
𝑖
(𝑛) + 𝑎

2

𝑖
(𝑛) 𝜃
2

𝑖
(𝑛) + 𝑑

2

𝑖
(𝑛) 𝜃
2

𝑖
(𝑛))

× (𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
2

+ 2(

𝑎
𝑖
(𝑛) 𝑐
𝑗
(𝑛) 𝜃
𝑖
(𝑛) 𝜎
𝑗
(𝑛)

(1 + 𝜎
𝑗
(𝑛))

2

−

𝑐
𝑗
(𝑛) 𝜎
𝑗
(𝑛)

(1 + 𝜎
𝑗
(𝑛))

2
)
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Figure 1: Positive almost periodic solution of system (62). (a)–(d) Time-series of 𝑥∗
1
(𝑛), 𝑥

∗

2
(𝑛), 𝑢

∗

1
(𝑛), and 𝑢∗

2
(𝑛) with initial values 𝑥∗

1
(0) =

1.18, 𝑥
∗

2
(0) = 0.96, 𝑢

∗

1
(0) = 0.024, and 𝑢∗

2
(0) = 0.023 for 𝑛 ∈ [0, 100], respectively.

× (𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛)) (𝑦

𝑗
(𝑛) − 𝑧

𝑗
(𝑛))

+ 2 (𝑎
𝑖
(𝑛) 𝑒
𝑖
(𝑛) 𝜃
𝑖
(𝑛) + 𝑑

𝑖
(𝑛) (1 − 𝑏

𝑖
(𝑛))

×𝜃
𝑖
(𝑛)−𝑒

𝑖
(𝑛)) (𝑦

𝑖
(𝑛)−𝑧

𝑖
(𝑛)) (𝑢

𝑖
(𝑛)−V

𝑖
(𝑛))

+

2𝑒
𝑖
(𝑛) 𝑐
𝑗
(𝑛) 𝜎
𝑗
(𝑛)

(1 + 𝜎
𝑗
(𝑛))

2
(𝑦
𝑗
(𝑛) − 𝑧

𝑗
(𝑛))

× (𝑢
𝑖
(𝑛) − V

𝑖
(𝑛)) +

𝑐
2

𝑗
(𝑛) 𝜎
2

𝑗
(𝑛)

(1 + 𝜎
𝑗
(𝑛))

4
(𝑦
𝑗
(𝑛) − 𝑧

𝑗
(𝑛))

2

+ (𝑒
2

𝑖
(𝑛) + 𝑏

𝑖
(𝑛) (𝑏
𝑖
(𝑛) − 2)) (𝑢

𝑖
(𝑛) − V

𝑖
(𝑛))
2
}

}

}

≤

2

∑

𝑖=1

{

{

{

(−2𝑎
𝑖
(𝑛) 𝜃
𝑖
(𝑛) + 𝑎

2

𝑖
(𝑛) 𝜃
2

𝑖
(𝑛) + 𝑑

2

𝑖
(𝑛) 𝜃
2

𝑖
(𝑛))

× (𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
2

+ 2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(

𝑎
𝑖
(𝑛) 𝑐
𝑗
(𝑛) 𝜃
𝑖
(𝑛) 𝜎
𝑗
(𝑛)

(1 + 𝜎
𝑗
(𝑛))

2
−

𝑐
𝑗
(𝑛) 𝜎
𝑗
(𝑛)

(1 + 𝜎
𝑗
(𝑛))

2
)
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Figure 2: 2-dimensional phase portrait. (a) Phase portrait of 𝑥∗
1
(𝑛) and 𝑥∗

2
(𝑛) with initial values 𝑥∗

1
(0) = 1.18, 𝑥

∗

2
(0) = 0.96 for 𝑛 ∈ [0, 100],

respectively. (b) Phase portrait of 𝑢∗
1
(𝑛) and 𝑢∗

2
(𝑛) with initial values 𝑢∗

1
(0) = 0.024, 𝑢

∗

2
(0) = 0.023 for 𝑛 ∈ [0, 100], respectively.

× (𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛)) (𝑦

𝑗
(𝑛) − 𝑧

𝑗
(𝑛))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ 2
󵄨
󵄨
󵄨
󵄨
(𝑎
𝑖
(𝑛) 𝑒
𝑖
(𝑛) 𝜃
𝑖
(𝑛) + 𝑑

𝑖
(𝑛) (1 − 𝑏

𝑖
(𝑛)) 𝜃

𝑖
(𝑛)

−𝑒
𝑖
(𝑛)) (𝑦

𝑖
(𝑛) − 𝑧

𝑖
(𝑛)) (𝑢

𝑖
(𝑛) − V

𝑖
(𝑛))
󵄨
󵄨
󵄨
󵄨

+ 2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
𝑖
(𝑛) 𝑐
𝑗
(𝑛) 𝜎
𝑗
(𝑛)

(1 + 𝜎
𝑗
(𝑛))

2
(𝑢
𝑖
(𝑛) − V

𝑖
(𝑛))

× (𝑦
𝑗
(𝑛) − 𝑧

𝑗
(𝑛))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑐
2

𝑗
(𝑛) 𝜎
2

𝑗
(𝑛)

(1 + 𝜎
𝑗
(𝑛))

4

× (𝑦
𝑗
(𝑛) − 𝑧

𝑗
(𝑛))

2

+ (𝑒
2

𝑖
(𝑛) + 𝑏

2

𝑖
(𝑛) − 2𝑏

𝑖
(𝑛))

× (𝑢
𝑖
(𝑛) − V

𝑖
(𝑛))
2
}

}

}

.

(58)

Now, we set that

Δ𝑉
(48)
(𝑛, 𝑌, 𝑍) =

2

∑

𝑖=1

{𝑉
1𝑖
+ 𝑉
2𝑖𝑗
+ 𝑉
3𝑖
+ 𝑉
4𝑖𝑗
+ 𝑉
5𝑗
+ 𝑉
6𝑖
} ,

𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗,

(59)

where

𝑉
1𝑖
= (−2𝑎

𝑖
(𝑛) 𝜃
𝑖
(𝑛) + 𝑎

2

𝑖
(𝑛) 𝜃
2

𝑖
(𝑛) + 𝑑

2

𝑖
(𝑛) 𝜃
2

𝑖
(𝑛))

× (𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
2

≤ (−2𝑎
𝐿

𝑖
𝑥
𝑖∗
+ (𝑎
𝑈

𝑖
)

2

(𝑥
∗

𝑖
)
2

+ (𝑑
𝑈

𝑖
)

2

(𝑥
∗

𝑖
)
2

)

×(𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
2

,

𝑉
2𝑖𝑗
= 2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(

𝑎
𝑖
(𝑛) 𝑐
𝑗
(𝑛) 𝜃
𝑖
(𝑛) 𝜎
𝑗
(𝑛)

(1 + 𝜎
𝑗
(𝑛))

2
−

𝑐
𝑗
(𝑛) 𝜎
𝑗
(𝑛)

(1 + 𝜎
𝑗
(𝑛))

2
)

× (𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛)) (𝑦

𝑗
(𝑛) − 𝑧

𝑗
(𝑛))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ (

𝑎
𝑈

𝑖
𝑐
𝑈

𝑗
𝑥
∗

𝑖
𝑥
∗

𝑗

(1 + 𝑥
𝑗∗
)

2
+

𝑐
𝑈

𝑗
𝑥
∗

𝑗

(1 + 𝑥
𝑗∗
)

2
)

× {(𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
2

+ (𝑦
𝑗
(𝑛) − 𝑧

𝑗
(𝑛))

2

} ,

𝑉
3𝑖
= 2
󵄨
󵄨
󵄨
󵄨
(𝑎
𝑖
(𝑛) 𝑒
𝑖
(𝑛) 𝜃
𝑖
(𝑛) + 𝑑

𝑖
(𝑛) (1 − 𝑏

𝑖
(𝑛)) 𝜃
𝑖
(𝑛) − 𝑒

𝑖
(𝑛))

× (𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛)) (𝑢

𝑖
(𝑛) − V

𝑖
(𝑛))
󵄨
󵄨
󵄨
󵄨

≤ (𝑎
𝑈

𝑖
𝑒
𝑈

𝑖
𝑥
∗

𝑖
+ 𝑑
𝑈

𝑖
(1 − 𝑏

𝐿

𝑖
) 𝑥
∗

𝑖
+ 𝑒
𝑈

𝑖
)

× {(𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
2

+ (𝑢
𝑖
(𝑛) − V

𝑖
(𝑛))
2

} ,

𝑉
4𝑖𝑗
= 2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑒
𝑖
(𝑛) 𝑐
𝑗
(𝑛) 𝜎
𝑗
(𝑛)

(1 + 𝜎
𝑗
(𝑛))

2
(𝑢
𝑖
(𝑛) − V

𝑖
(𝑛)) (𝑦

𝑗
(𝑛) − 𝑧

𝑗
(𝑛))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝑒
𝑈

𝑖
𝑐
𝑈

𝑗
𝑥
∗

𝑗

(1 + 𝑥
𝑗∗
)

2
{(𝑢
𝑖
(𝑛) − V

𝑖
(𝑛))
2

+ (𝑦
𝑗
(𝑛) − 𝑧

𝑗
(𝑛))

2

} ,

𝑉
5𝑗
=

𝑐
2

𝑗
(𝑛) 𝜎
2

𝑗
(𝑛)

(1 + 𝜎
𝑗
(𝑛))

4
(𝑦
𝑗
(𝑛) − 𝑧

𝑗
(𝑛))

2
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Figure 3: Uniformly asymptotic stability. (a)–(d) Time-series of 𝑥∗
1
(𝑛), 𝑥

∗

2
(𝑛), 𝑢

∗

1
(𝑛) and 𝑢∗

2
(𝑛) with initial values 𝑥∗

1
(0) = 1.18, 𝑥

∗

2
(0) =

0.96, 𝑢
∗

1
(0) = 0.024, and 𝑢∗

2
(0) = 0.023 and 𝑥

1
(𝑛), 𝑥

2
(𝑛), 𝑢
1
(𝑛), and 𝑢

2
(𝑛) with initial values 𝑥

1
(0) = 1.06, 𝑥

2
(0) = 1.18, 𝑢

1
(0) =

0.034, and 𝑢
2
(0) = 0.012 for 𝑛 ∈ [0, 100], respectively.

≤

(𝑐
𝑈

𝑗
)

2

(𝑥
∗

𝑗
)

2

(1 + 𝑥
𝑗∗
)

4
(𝑦
𝑗
(𝑛) − 𝑧

𝑗
(𝑛))

2

,

𝑉
6𝑖
= (𝑒
2

𝑖
(𝑛) + 𝑏

2

𝑖
(𝑛) − 2𝑏

𝑖
(𝑛)) (𝑢

𝑖
(𝑛) − V

𝑖
(𝑛))
2

≤ ((𝑒
𝑈

𝑖
)

2

+ (𝑏
𝑈

𝑖
)

2

− 2𝑏
𝐿

𝑖
) (𝑢
𝑖
(𝑛) − V

𝑖
(𝑛))
2

,

(60)

which, together with (58), yields that

Δ𝑉
(48)
(𝑛, 𝑌, 𝑍)

≤

2

∑

𝑖=1

{

{

{

(− 2𝑎
𝐿

𝑖
𝑥
𝑖∗
+ (𝑎
𝑈

𝑖
)

2

(𝑥
∗

𝑖
)
2

+ (𝑑
𝑈

𝑖
)

2

(𝑥
∗

𝑖
)
2

+

𝑎
𝑈

𝑖
𝑐
𝑈

𝑗
𝑥
∗

𝑖
𝑥
∗

𝑗

(1 + 𝑥
𝑗∗
)

2
+

𝑐
𝑈

𝑗
𝑥
∗

𝑗

(1 + 𝑥
𝑗∗
)

2
+ 𝑎
𝑈

𝑖
𝑒
𝑈

𝑖
𝑥
∗

𝑖
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Figure 4: 2-dimensional phase portrait. (a) Phase portrait of 𝑥∗
1
(𝑛) and 𝑥∗

2
(𝑛) with initial values 𝑥∗

1
(0) = 1.18, 𝑥

∗

2
(0) = 0.96 and 𝑥

1
(𝑛) and

𝑥
2
(𝑛) with initial values 𝑥

1
(0) = 1.06, 𝑥

2
(0) = 1.18 for 𝑛 ∈ [0, 100], respectively. (b) Phase portrait of 𝑢∗

1
(𝑛) and 𝑢∗

2
(𝑛) with initial values

𝑢
∗

1
(0) = 0.024, 𝑢

∗

2
(0) = 0.023 and 𝑢

1
(𝑛) and 𝑢

2
(𝑛) with initial values 𝑢

1
(0) = 0.034, 𝑢

2
(0) = 0.012 for 𝑛 ∈ [0, 100], respectively.

+𝑑
𝑈

𝑖
(1 − 𝑏

𝐿

𝑖
) 𝑥
∗

𝑖
+ 𝑒
𝑈

𝑖
)(𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
2

+ (

𝑎
𝑈

𝑖
𝑐
𝑈

𝑗
𝑥
∗

𝑖
𝑥
∗

𝑗

(1 + 𝑥
𝑗∗
)

2
+

𝑐
𝑈

𝑗
𝑥
∗

𝑗

(1 + 𝑥
𝑗∗
)

2
+

𝑒
𝑈

𝑖
𝑐
𝑈

𝑗
𝑥
∗

𝑗

(1 + 𝑥
𝑗∗
)

2

+

(𝑐
𝑈

𝑗
)

2

(𝑥
∗

𝑗
)

2

(1 + 𝑥
𝑗∗
)

4
)(𝑦
𝑗
(𝑛) − 𝑧

𝑗
(𝑛))

2

+ (𝑎
𝑈

𝑖
𝑒
𝑈

𝑖
𝑥
∗

𝑖
+ 𝑑
𝑈

𝑖
(1 − 𝑏

𝐿

𝑖
) 𝑥
∗

𝑖
+ 𝑒
𝑈

𝑖
+

𝑒
𝑈

𝑖
𝑐
𝑈

𝑗
𝑥
∗

𝑗

(1 + 𝑥
𝑗∗
)

2

+(𝑒
𝑈

𝑖
)

2

+ (𝑏
𝑈

𝑖
)

2

− 2𝑏
𝐿

𝑖
)(𝑢
𝑖
(𝑛) − V

𝑖
(𝑛))
2
}

}

}

=

2

∑

𝑖=1

{

{

{

( − 2𝑎
𝐿

𝑖
𝑥
𝑖∗
+ (𝑎
𝑈

𝑖
)

2

(𝑥
∗

𝑖
)
2

+ (𝑑
𝑈

𝑖
)

2

(𝑥
∗

𝑖
)
2

+

𝑎
𝑈

𝑖
𝑐
𝑈

𝑗
𝑥
∗

𝑖
𝑥
∗

𝑗

(1 + 𝑥
𝑗∗
)

2
+

𝑐
𝑈

𝑗
𝑥
∗

𝑗

(1 + 𝑥
𝑗∗
)

2
+ 𝑎
𝑈

𝑖
𝑒
𝑈

𝑖
𝑥
∗

𝑖

+𝑑
𝑈

𝑖
(1 − 𝑏

𝐿

𝑖
) 𝑥
∗

𝑖
+ 𝑒
𝑈

𝑖
)(𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
2

+ (

𝑎
𝑈

j 𝑐
𝑈

𝑖
𝑥
∗

𝑖
𝑥
∗

𝑗

(1 + 𝑥
𝑖∗
)
2
+

𝑐
𝑈

𝑖
𝑥
∗

𝑖

(1 + 𝑥
𝑖∗
)
2
+

𝑒
𝑈

𝑗
𝑐
𝑈

𝑖
𝑥
∗

𝑖

(1 + 𝑥
𝑖∗
)
2

+

(𝑐
𝑈

𝑖
)

2

(𝑥
∗

𝑖
)
2

(1 + 𝑥
𝑖∗
)
4
)(𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
2

+ (𝑎
𝑈

𝑖
𝑒
𝑈

𝑖
𝑥
∗

𝑖
+ 𝑑
𝑈

𝑖
(1 − 𝑏

𝐿

𝑖
) 𝑥
∗

𝑖
+ 𝑒
𝑈

𝑖
+

𝑒
𝑈

𝑖
𝑐
𝑈

𝑗
𝑥
∗

𝑗

(1 + 𝑥
𝑗∗
)

2

+(𝑒
𝑈

𝑖
)

2

+ (𝑏
𝑈

𝑖
)

2

− 2𝑏
𝐿

𝑖
)(𝑢
𝑖
(𝑛) − V

𝑖
(𝑛))
2
}

}

}

= −

2

∑

𝑖=1

{

{

{

(2𝑎
𝐿

𝑖
𝑥
𝑖∗
− (𝑎
𝑈

𝑖
)

2

(𝑥
∗

𝑖
)
2

− (𝑑
𝑈

𝑖
)

2

(𝑥
∗

𝑖
)
2

−

𝑎
𝑈

𝑖
𝑐
𝑈

𝑗
𝑥
∗

𝑖
𝑥
∗

𝑗

(1 + 𝑥
𝑗∗
)

2
−

𝑐
𝑈

𝑗
𝑥
∗

𝑗

(1 + 𝑥
𝑗∗
)

2
− 𝑎
𝑈

𝑖
𝑒
𝑈

𝑖
𝑥
∗

𝑖

− 𝑑
𝑈

𝑖
(1 − 𝑏

𝐿

𝑖
) 𝑥
∗

𝑖
− 𝑒
𝑈

𝑖
−

𝑎
𝑈

𝑗
𝑐
𝑈

𝑖
𝑥
∗

𝑖
𝑥
∗

𝑗

(1 + 𝑥
𝑖∗
)
2

−

𝑐
𝑈

𝑖
𝑥
∗

𝑖

(1 + 𝑥
𝑖∗
)
2
−

𝑒
𝑈

𝑗
𝑐
𝑈

𝑖
𝑥
∗

𝑖

(1 + 𝑥
𝑖∗
)
2
−

(𝑐
𝑈

𝑖
)

2

(𝑥
∗

𝑖
)
2

(1 + 𝑥
𝑖∗
)
4
)

× (𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
2

+ (2𝑏
𝐿

𝑖
− 𝑎
𝑈

𝑖
𝑒
𝑈

𝑖
𝑥
∗

𝑖
− 𝑑
𝑈

𝑖
(1 − 𝑏

𝐿

𝑖
) 𝑥
∗

𝑖
− 𝑒
𝑈

𝑖

−

𝑒
𝑈

𝑖
𝑐
𝑈

𝑗
𝑥
∗

𝑗

(1 + 𝑥
𝑗∗
)

2
− (𝑒
𝑈

𝑖
)

2

− (𝑏
𝑈

𝑖
)

2

)

× (𝑢
𝑖
(𝑛) − V

𝑖
(𝑛))
2
}

}

}
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= −

2

∑

𝑖=1

{𝑠
𝑖𝑗
(𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
2

+ 𝑠
∗

𝑖𝑗
(𝑢
𝑖
(𝑛) − V

𝑖
(𝑛))
2

}

≤ −𝛾

2

∑

𝑖=1

{(𝑦
𝑖
(𝑛) − 𝑧

𝑖
(𝑛))
2

+ (𝑢
𝑖
(𝑛) − V

𝑖
(𝑛))
2

}

= −𝛾𝑉 (𝑛) ,

(61)

where 𝛾 = min{𝑠
𝑖𝑗
, 𝑠
∗

𝑖𝑗
}, 𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗. It follows from

the conditions of Theorem 8 that we have 0 < 𝛾 <

1, then the condition (iii) of Lemma 4 is satisfied. There-
fore, we have from Lemma 4 that there exists a unique
uniformly asymptotically stable almost periodic solution
(𝑦
∗

1
(𝑛), 𝑦

∗

2
(𝑛), 𝑢

∗

1
(𝑛), 𝑢

∗

2
(𝑛)) of system (46)which is bounded

by S for all 𝑛 ∈ Z+, which implies that there exists
a unique uniformly asymptotically stable positive almost
periodic solution (𝑥∗

1
(𝑛), 𝑥

∗

2
(𝑛), 𝑢

∗

1
(𝑛), 𝑢

∗

2
(𝑛)) of system (2)

which is bounded by Ω for all 𝑛 ∈ Z+. This completed the
proof.

Remark 9. If we neglect the role of feedback controls, that
is, 𝑏
𝑖
(𝑛) = 0, 𝑑

𝑖
(𝑛) = 0 and 𝑒

𝑖
(𝑛) = 0, 𝑖 = 1, 2, then

system (2) can be reduced to system (1). Propositions 5 and 6
and Theorem 8 can come down to our corresponding main
results (see [1]). The fact shows that the feedback controls
have influence on the existence and uniformly asymptotic
stability of unique positive almost solution of system (2).

4. Numerical Simulations

In this section we give a numerical example in support to our
analytical findings.

Example 10. Consider the following discrete system with
feedback controls:

𝑥
1
(𝑛+1)=𝑥

1
(𝑛) exp[1.20−0.02 sin (√2𝑛𝜋)

−(1.05+0.01 sin (√2𝑛𝜋)) 𝑥
1
(𝑛)

−

(0.025+0.002 cos (√2𝑛𝜋)) 𝑥
2
(𝑛)

1+𝑥
2
(𝑛)

−(0.015+0.001 sin (√3𝑛𝜋)) 𝑢
1
(𝑛) ] ,

𝑥
2
(𝑛+1)=𝑥

2
(𝑛) exp[1.15−0.02 cos (√2𝑛𝜋)

−(1.02+0.02 cos (√2𝑛𝜋)) 𝑥
2
(𝑛)

−

(0.035+0.005 sin (√3𝑛𝜋)) 𝑥
1
(𝑛)

1+𝑥
1
(𝑛)

−(0.025+0.003 cos (√3𝑛𝜋)) 𝑢
2
(𝑛) ] ,

Δ𝑢
1
(𝑛) = − (0.93 − 0.03 cos (√2𝑛𝜋)) 𝑢

1
(𝑛)

+ (0.024 − 0.002 cos (√2𝑛𝜋)) 𝑥
1
(𝑛) ,

Δ𝑢
2
(𝑛) = − (0.95 − 0.03 sin (√3𝑛𝜋)) 𝑢

2
(𝑛)

+ (0.015 + 0.003 sin (√2𝑛𝜋)) 𝑥
2
(𝑛) .

(62)

A simple computation shows that

𝑥
∗

1
≈ 1.1982, 𝑥

∗

2
≈ 1.1853,

𝑢
∗

1
≈ 0.0346, 𝑢

∗

2
≈ 0.0232,

𝑥
1∗
≈ 0.9665, 𝑥

2∗
≈ 0.9076,

𝑢
1∗
≈ 0.0221, 𝑢

2∗
≈ 0.0111,

𝑟
𝐿

1
− 𝑒
𝑈

1
𝑢
∗

1
− 𝑐
𝑈

2
≈ 1.1524 > 0,

𝑟
𝐿

2
− 𝑒
𝑈

2
𝑢
∗

2
− 𝑐
𝑈

1
≈ 1.0894 > 0.

(63)

Obviously, the assumptions in (19) are satisfied, and more-
over, one has

𝑠
12
≈ 0.3086, 𝑠

21
≈ 0.1831,

𝑠
∗

12
≈ 0.8386, 𝑠

∗

21
≈ 0.8142,

(64)

that is, 0 < 𝛾 = min{𝑠
12
, 𝑠
21
, 𝑠
∗

12
, 𝑠
∗

21
} ≈ 0.1831 < 1, so

the assumptions ofTheorem 8 are satisfied.Thus, there exists
a unique uniformly asymptotically stable positive almost
periodic solution of system (62). From Figure 1, we can
easily see that system (62) exists a positive almost periodic
solution (𝑥∗

1
(𝑡), 𝑥
∗

2
(𝑡), 𝑢
∗

1
(𝑛), 𝑢

∗

2
(𝑛)), and the 2-dimensional

phase portraits of almost periodic system (62) are displayed in
Figure 2, respectively. Figure 3 shows that any positive solu-
tion (𝑥

1
(𝑛), 𝑥

2
(𝑛), 𝑢

1
(𝑛), 𝑢

2
(𝑛)) tends to the pervious almost

periodic solution (𝑥∗
1
(𝑛), 𝑥

∗

2
(𝑛), 𝑢

∗

1
(𝑛), 𝑢

∗

2
(𝑛)); furthermore,

the 2-dimensional phase portraits reflect the fact in Figure 4.
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