
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 428681, 12 pages
http://dx.doi.org/10.1155/2013/428681

Research Article
Optimized Weighted Essentially Nonoscillatory Third-Order
Schemes for Hyperbolic Conservation Laws

A. R. Appadu1 and A. A. I. Peer2

1 Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa
2Department of Applied Mathematical Sciences, University of Technology, Mauritius, La Tour Koenig, Pointe-aux-Sables, Mauritius

Correspondence should be addressed to A. R. Appadu; rao.appadu@up.ac.za

Received 12 April 2013; Revised 25 June 2013; Accepted 25 June 2013

Academic Editor: Mohamed Fathy El-Amin

Copyright © 2013 A. R. Appadu and A. A. I. Peer. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We describe briefly how a third-orderWeighted Essentially Nonoscillatory (WENO) scheme is derived by coupling aWENO spatial
discretization scheme with a temporal integration scheme. The scheme is termed WENO3. We perform a spectral analysis of its
dispersive and dissipative propertieswhenused to approximate the 1D linear advection equation anduse a technique of optimisation
to find the optimal cfl number of the scheme. We carry out some numerical experiments dealing with wave propagation based on
the 1D linear advection and 1D Burger’s equation at some different cfl numbers and show that the optimal cfl does indeed cause less
dispersion, less dissipation, and lower 𝐿

1
errors. Lastly, we test numerically the order of convergence of the WENO3 scheme.

1. Introduction

Spatial discretization methods in order to solve partial differ-
ential equations can be broadly classified as finite difference,
finite volume, finite element, and spectral methods. All these
methods combined with explicit or implicit time integration
schemes can be effectively applied to solve partial differential
equations.

Computational dispersion arises from space differencing
andmust not be confusedwith instability [1]. A noisy solution
is not necessarily unstable. Both dispersion and instability can
lead to noise. In the case of dispersion, the waves do not grow
in amplitude but become separated from one another, each at
its own speed [1]. Computational dispersion causes waves of
different wavelengths to travel at different speeds.

One of the most common ways of measuring the relative
merit of a numerical scheme for advection is to consider the
scheme’s dispersion and dissipation [2]. All linear numerical
schemes are either dispersive or dissipative [3]. We now
briefly survey some techniques implemented to minimise
dispersion and/or dissipation, in regions of shocks.

Antidiffusion has been proposed in order to improve
the resolving power of dissipative schemes [4]. Antidiffusion
does well with shock-type discontinuities, but at the same
time, distortions are produced in smooth regions. Artificial
viscosity doeswork to suppress oscillations and capture shock
waves [5]. However, it ruins the resolution of numerical
schemes in recognising shock waves. Filters are also used
to control computational noise. The Galerkin finite element
methods are useful to solve the advection equation [6].
However, they generate a great deal of computational noise in
highly steep gradients. An iteration smoothing process was
proposed by Forester [7] in order to smooth the computa-
tional values from the results of the Galerkin finite element
method.

The concept of limiters was introduced by Boris and
Book [8] and van Leer [9]. The approach of flux-corrected
transport is an early version of the concept of limiters [10].
Boris and Book [8] introduced a flux-corrected method
which improves the accuracy of a variety of finite difference
algorithms. The second version of limiters is geometric
limiters [10]. One example is van Leer’s scheme which blends
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Fromm’s method with a geometric limiter [9]. The scheme
naturally detects a discontinuity and changes its behaviour
accordingly.

Essentially Nonoscillatory (ENO) and WENO schemes
have been developed to capture shocks efficiently [11]. These
are high-order accurate finite difference schemes designed
for problemswith piecewise smooth solutions containing dis-
continuities. The fundamental notion resides at the approxi-
mation level, where a nonlinear adaptive procedure is used to
choose the locally smoothest stencil, thus avoiding crossing
discontinuities in the interpolation procedure as much as
possible. WENO methods suffer from a tendency for the
weights of the various stencils to revert quite slowly to the
underlying high-ordermethod as the numerical resolution of
a smooth function improves.

The effects of dispersion terms on numerical solutions
have been done since a long time [5]. However, it is only since
the last two decades that extensive studies on the dispersion-
controlled dissipative scheme were reported. Work on
scheme dispersion reduction was first reported by Fromm
[12]. Fromm’s scheme in 1D is made up of a linear combina-
tion of Lax-Wendroff and the Beam-Warming second-order
upwind schemes as these two dispersive schemes have phase
errors in opposite directions.We can also combine dispersive
and dissipative schemes to obtain composite schemes. This
idea was implemented in meteorological codes which com-
pose the oscillatory second-order Leap-Frog scheme with the
dissipative backward Euler scheme [4].

Kasahara and Washington [13] use a three-level Leap-
Frog scheme for 50 time steps which is inherently unstable
followed by one cycle of the Lax-Wendroff scheme.The Leap-
Frog scheme when applied for 50 time steps is unstable. The
Lax-Wendroff scheme is essentially dispersive but does pos-
sess some damping property.The damping properties of Lax-
Wendroff render the combined procedure of the application
of 50 time steps of the three-level Leap-Frog scheme and
one cycle of Lax-Wendroff scheme stable. Shchepetkin and
McWilliams [14] have combined the Leap-Frog scheme with
the Trapezoidal Rule. Liska and Wendroff [4] have obtained
a composite scheme which comprises Lax-Wendroff as the
dispersive scheme and the two-step Lax-Friedrichs scheme
as the dissipative scheme to obtain the Lax-Wendroff/Lax-
Friedrichs scheme.

The paper is organised as follows. In Sections 2 and
3, we construct the WENO reconstruction and the time
integration schemes. The originality in this work resides in
the fact that expressions for the amplification factor and
the relative phase error have been obtained for the WENO3
scheme discretizing the 1D linear advection equation. Very
few papers have examined these properties for WENO
schemes as it is cumbersome to obtain the expression for the
amplification factor of WENO schemes in general. Spectral
analysis of the WENO3 scheme is discussed in Section 4.
In Section 5, we compute the optimal cfl number of the
WENO3 scheme by using a technique of optimisation that
minimizes both the dispersion and dissipation errors. Such
an optimal cfl number is important as the cfl number is
chosen quite arbitrarily for WENO schemes, and, hence,
the efficient shock-capturing properties of WENO methods

are not exploited. Section 7 gives a description of how to
quantify errors from numerical results into dispersion and
dissipation. Some numerical experiments are performed in
Section 8 and errors are compared at different cfl numbers.
Section 9 highlights the salient features of the paper.

2. WENO Spatial Reconstructions

WENO schemes are commonly used for the solution of
hyperbolic conservation laws of the form

𝑢
𝑡
+ 𝑓
𝑥
(𝑢) = 0, (1)

where 𝑢 is the conserved variable and 𝑓 is the flux function.
Integrating (1) over the cell 𝐼

𝑥
= {𝜉 : |𝜉 − 𝑥| ≤ ℎ/2} and

denoting its cell average by 𝑢(𝑥, 𝑡), we get the equation

𝑢
𝑡
(𝑥, 𝑡) = −

1

ℎ
[𝑓(𝑢(𝑥 +

ℎ

2
, 𝑡)) − 𝑓(𝑢(𝑥 −

ℎ

2
, 𝑡))] .

(2)

Upwind schemes sample the solution at the cell centres
𝑥 = 𝑥

𝑗
, and in this case we can write (2) in the semidiscrete

form as follows:

𝑑𝑢
𝑗
(𝑡)

𝑑𝑡
= −

1

ℎ
[𝑓
𝑗+1/2

− 𝑓
𝑗−1/2

] , (3)

where the exact flux is𝑓
𝑗+1/2

≡ 𝑓(𝑢(𝑥
𝑗+1/2

, 𝑡)). Since the flux is
required on cell boundaries, the discontinuities whichmay be
present prevent the use of a quadrature formula to integrate in
time. A Riemann solver is needed to identify the direction of
propagation of the waves, and then an ODE solver is applied
to advance (3) in time.

The relation (3) requires a reconstruction to recover the
approximation of point values 𝑢(𝑥

𝑗+1/2
, 𝑡). Assuming that

the cell averages 𝑢
𝑛

𝑗
are known, the following piecewise

polynomial reconstruction is done:

𝑢
𝑛
(𝑥) = ∑

𝑗

𝑝
𝑗
(𝑥) 𝜒
𝑗
(𝑥) , (4)

where 𝜒
𝑗
is the characteristic function of the cell 𝐼

𝑗
. Denoting

the order of accuracy by 𝑘, 𝑝
𝑗
(𝑥) is a polynomial of degree at

most 𝑘 − 1 on the cell 𝐼
𝑗
, such that

𝑝
𝑗
(𝑥) = 𝑢 (𝑥, 𝑡

𝑛
) + 𝑂 (ℎ

𝑘
) , 𝑥 ∈ 𝐼

𝑗
, (5)

and maintains conservation; that is,

1

ℎ
∫
𝐼𝑗

𝑝
𝑗
(𝑥) 𝑑𝑥 = 𝑢

𝑛

𝑗
. (6)

The approximations at the cell boundaries for the semi-
discrete upwind scheme (3) are given by 𝑢

−

𝑗+1/2
= 𝑝
𝑗
(𝑥
𝑗+1/2

)

and 𝑢
+

𝑗+1/2
= 𝑝
𝑗+1

(𝑥
𝑗+1/2

). The evolution step consists
of approximating the point values 𝑢(𝑥

𝑗+1/2
, 𝑡) from 𝑢

−

𝑗+1/2

and 𝑢
+

𝑗+1/2
, by identifying the waves according to their

direction of propagation, and to find the numerical flux,
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𝑓
𝑗+1/2

= ℎ(𝑢
−

𝑗+1/2
, 𝑢
+

𝑗+1/2
). Here we consider the monotone

Lax-Friedrichs flux which is given by

ℎ (𝑎, 𝑏)=
1

2
[𝑓 (𝑎) + 𝑓 (𝑏) − 𝛼 (𝑏 − 𝑎)] , 𝛼=max

𝑢


𝑓

(𝑢)


.

(7)

A WENO reconstruction consists of associating a weight
to all of the candidate stencils of an Essentially Nonoscillatory
(ENO) reconstruction. All the possible approximations at cell
boundaries 𝑢

−(𝑟)

𝑗+1/2
for 𝑟 = 0, . . . , 𝑘 − 1 are evaluated using

𝑝
𝑗
(𝑥), and then

𝑢
−

𝑗+1/2
=

𝑘−1

∑

𝑟=0

𝜔
𝑟
𝑢
−(𝑟)

𝑗+1/2
, (8)

where the weights satisfy

𝜔
𝑟
≥ 0,

𝑘−1

∑

𝑟=0

𝜔
𝑟
= 1. (9)

If 𝑢(𝑥, 𝑡) is smooth over all the candidate stencils, then some
linear weights 𝑑

𝑟
are used, such that

𝑢
−

𝑗+1/2
=

𝑘−1

∑

𝑟=0

𝑑
𝑟
𝑢
−(𝑟)

𝑗+1/2
= 𝑢 (𝑥

𝑗+1/2
) + 𝑂 (ℎ

2𝑘−1
) . (10)

The linear weights 𝑑
𝑟
for 𝑟 = 0, . . . , 𝑘−1 are found by carrying

out a Taylor series expansion of (10).
In case there is a discontinuity present in one of the

candidate stencils, its correspondingweight turns to be nearly
0, such that only a smooth approximation is considered. The
weights are given by

𝜔
𝑟
=

𝛼
𝑟

∑
𝑘−1

𝑠=0
𝛼
𝑠

, (11)

where

𝛼
𝑟
=

𝑑
𝑟

(𝜖 + 𝛽
𝑟
)
2
, 𝑟 = 0, . . . , 𝑘 − 1. (12)

The parameter 𝜖 in (12) is used to avoid divisions by zeros
during computations, and as per the majority of literature in
the field we will take 𝜖 as 10−6.

The parameters 𝛽
𝑟
are called the smoothness indicators

of the candidate stencils. They make the weights of smooth
stencils dominant over those of discontinuous stencils. The
smoothness indicators are measures of the 𝐿

2-norms of the
derivatives of 𝑝

𝑗
(𝑥); that is,

𝛽
𝑟
=

𝑘−1

∑

𝑙=1

∫
𝐼𝑗

ℎ
2𝑙−1

(
𝜕
𝑙
𝑝
𝑟
(𝑥)

𝜕𝑥𝑙
)

2

𝑑𝑥. (13)

If a stencil is smooth then its corresponding smoothness indi-
cator 𝛽

𝑟
= 𝑂(ℎ

2
), but if the stencil contains a discontinuity

then 𝛽
𝑟

= 𝑂(1). This strategy reduces the contribution of
nonsmooth stencils.

Similarly, the WENO principle is used for 𝑢+
𝑗−1/2

, where

𝑢
+

𝑗−1/2
=

𝑘−1

∑

𝑟=0

�̃�
𝑟
𝑢
+(𝑟)

𝑗−1/2
, �̃�

𝑟
=

�̃�
𝑟

∑
𝑘−1

𝑠=0
�̃�
𝑠

,

�̃�
𝑟
=

𝑑
𝑟

(𝜖 + 𝛽
𝑟
)
2
,

(14)

for 𝑟 = 0, . . . , 𝑘 − 1, and the terms 𝑑
𝑟
satisfy 𝑑

𝑟
= 𝑑
𝑘−1−𝑟

.

3. Time Integration Schemes

In this section, we describe some time integration schemes to
advance the solution of (2) in time. The time step is taken as

Δ𝑡 =
𝑐

max
𝑗


𝑓 (𝑢
𝑗
)


ℎ, (15)

where the CFL number 𝑐 is necessary for stability.
Let 𝐿(𝑢) be an approximation to the spatial derivative

−𝑓(𝑢)
𝑥
and consider the semidiscrete formulation (3) as a

system of initial value problem of ODE

𝑢
𝑡
= 𝐿 (𝑢) . (16)

We mention a result that motivates the use of high-order
Strong Stability-Preserving (SSP) Runge-Kutta (RK)methods
in time. If the first-order forward Euler time steppingmethod

𝑢
𝑛+1

= 𝑢
𝑛
+ Δ𝑡𝐿 (𝑢

𝑛
) (17)

is SSP, that is,

𝑢
𝑛+1

≤
𝑢
𝑛 , (18)

for Δ𝑡 ≤ Δ𝑡FE, then the same strong stability is preserved for
higher order SSPRK methods under the restriction

Δ𝑡 ≤ 𝑐Δ𝑡FE, (19)

where 𝑐 is the CFL coefficient for the high-order time
integration.

The explicit ] stage Runge-Kutta method has the general
form

𝑢
(𝑖)

=

𝑖−1

∑

𝑘=0

(𝛼
𝑖,𝑘
𝑢
(𝑘)

+ Δ𝑡𝛽
𝑖,𝑘
𝐿 (𝑢
(𝑘)
)) , 𝑖 = 1, . . . , ],

𝑢
(0)

= 𝑢
𝑛
, 𝑢

(])
= 𝑢
𝑛+1

.

(20)

For nonnegative coefficients 𝛼
𝑖,𝑘

≥ 0 and 𝛽
𝑖,𝑘

≥ 0, the Runge-
Kutta method (20) is a convex combination of Euler forward
schemes. The scheme should satisfy∑𝑖−1

𝑘=0
𝛼
𝑖,𝑘

= 1.

Lemma 1. If the forward Euler method (17) is strongly stable
under the CFL restriction Δ𝑡 ≤ Δ𝑡

𝐹𝐸
, ‖𝑢𝑛 + Δ𝑡𝐿(𝑢

𝑛
)‖ ≤

‖𝑢
𝑛
‖, then the Runge-Kutta method (20) with 𝛽

𝑖,𝑘
≥ 0 is SSP

provided the following CFL restriction (19) is fulfilled:

Δ𝑡 ≤ 𝑐Δ𝑡
𝐹𝐸
, 𝑐 = min

𝑖,𝑘

𝛼
𝑖𝑘

𝛽
𝑖𝑘

. (21)
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For the special class of optimal ] stage ]th-order SSPRK
schemes, the CFL coefficient is maximized according to Lemma
1. Optimal second-order and third-order SSPRK schemes are,
respectively, given by

𝑢
(1)

= 𝑢
𝑛
+ Δ𝑡𝐿 (𝑢

𝑛
) ,

𝑢
𝑛+1

=
1

2
𝑢
𝑛
+
1

2
𝑢
(1)

+
1

2
Δ𝑡𝐿 (𝑢

(1)
) ,

𝑢
(1)

= 𝑢
𝑛
+ Δ𝑡𝐿 (𝑢

𝑛
) ,

𝑢
(2)

=
3

4
𝑢
𝑛
+
1

4
𝑢
(1)

+
1

4
Δ𝑡𝐿 (𝑢

(1)
) ,

𝑢
𝑛+1

=
1

3
𝑢
𝑛
+
2

3
𝑢
(2)

+
2

3
Δ𝑡𝐿 (𝑢

(2)
) .

(22)

4. Spectral Analysis of WENO3

In this paper, we focus on third-order WENO3 reconstruc-
tion. Setting 𝑘 = 2 in (8), we get

𝑢
−

𝑗+1/2
= 𝜔
0
𝑢
−(0)

𝑗+1/2
+ 𝜔
1
𝑢
−(1)

𝑗+1/2
, (23)

where

𝑢
−(0)

𝑗+1/2
=

1

2
𝑢
𝑗
+
1

2
𝑢
𝑗+1

,

𝑢
−(1)

𝑗+1/2
= −

1

2
𝑢
𝑗−1

+
3

2
𝑢
𝑗
.

(24)

The smoothness indicators (13) of the nonlinear weights
(11) and (12) turn out to be

𝛽
0
= (𝑢
𝑗+1

− 𝑢
𝑗
)
2

,

𝛽
1
= (𝑢
𝑗
− 𝑢
𝑗−1

)
2

,

(25)

with linear coefficients 𝑑
0
= 2/3 and 𝑑

1
= 1/3.

For the sake of finding amplification factors of numerical
schemes, we consider the linear advection case 𝑓(𝑢) = 𝑎𝑢

into (1), where 𝑎 is a constant. This results in the numerical
flux (7) simplifying to

𝑓
𝑗+1/2

=
𝑎

6
(−𝑢
𝑗−1

+ 5𝑢
𝑗
+ 2𝑢
𝑗+1

) , (26)

and, therefore, (16) is approximated by

𝐿 (V
𝑗
) = −

𝑎

6ℎ
(V
𝑗−2

− 6V
𝑗−1

+ 3V
𝑗
+ 2V
𝑗+1

) . (27)

The fully discretized method is given by

𝑢
𝑛+1

𝑖
= −

1

1296
𝑐
3
𝑢
𝑛

𝑖−6
+

1

72
𝑐
3
𝑢
𝑛

𝑖−5

+
1

144
(2 − 13𝑐) 𝑐

2
𝑢
𝑛

𝑖−4

+
1

216
𝑐
2
(−36 + 53𝑐) 𝑢

𝑛

𝑖−3

−
1

144
𝑐 (24 − 84𝑐 + 31𝑐

2
) 𝑢
𝑛

𝑖−2

−
1

72
𝑐 (−72 + 32𝑐 + 5𝑐

2
) 𝑢
𝑛

𝑖−1

+
1

432
(432 − 216𝑐 − 90𝑐

2
+ 59𝑐
3
) 𝑢
𝑛

𝑖

+
1

72
𝑐 (−24 + 12𝑐 + 𝑐

2
) 𝑢
𝑛

𝑗+1

−
1

36
(−2 + 𝑐) 𝑐

2
𝑢
𝑛

𝑖+2
−

1

162
𝑐
3
𝑢
𝑛

𝑖+3
,

(28)

where 𝑐 = 𝑎Δ𝑡/ℎ.
On substituting 𝑢𝑛

𝑖
by 𝜉𝑛 exp(𝐼𝜃𝑖ℎ) where 𝜉 is the amplifi-

cation factor, 𝐼 = √−1, and 𝜃ℎ is the phase angle, we obtain
the amplification factor as

𝜉 = −
1

1296
𝑐
3 exp (−6𝐼𝑤) +

1

72
𝑐
3 exp (−5𝐼𝑤)

+
1

144
(2 − 13𝑐) 𝑟

2 exp (−4𝐼𝑤)

+
1

216
𝑐
2
(−36 + 53𝑐) exp (−3𝐼𝑤)

−
1

144
𝑐 (24 − 84𝑐 + 31𝑐

2
) exp (−2𝐼𝑤)

−
1

72
𝑐 (−72 + 32𝑐 + 5𝑐

2
) exp (−𝐼𝑤)

+
1

432
(432 − 216𝑐 − 90𝑐

2
+ 59𝑐
3
)

+
1

72
𝑐 (−24 + 12𝑐 + 𝑐

2
) exp (𝐼𝑤)

−
1

36
(−2 + 𝑐) 𝑐

2 exp (2𝐼𝑤)

−
1

162
𝑐
3 exp (3𝐼𝑤) ,

(29)

where 𝑤 = 𝜃ℎ.
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The real and imaginary parts of 𝜉 are given by

R (𝜉) = (1 −
1

2
𝑐 −

5

24
𝑐
2
+

59

432
𝑐
3
)

+ (
2

3
𝑐 −

5

18
𝑐
2
−

1

18
𝑐
3
) cos (𝑤)

× (−
1

6
𝑐 +

23

36
𝑐
2
−

35

144
𝑐
3
) cos (2𝑤)

+ (−
1

6
𝑐
2
+
155

648
𝑐
3
) cos (3𝑤)

+
1

144
𝑐
2
(2 − 13𝑐) cos (4𝑤)

+
1

72
𝑐
3 cos (5𝑤) −

1

1296
𝑐
3 cos (6𝑤) ,

I (𝜉) = (−
4

3
𝑐 +

11

18
𝑐
2
+

1

12
𝑐
3
) sin (𝑤)

+ (
1

6
𝑐 −

19

6
𝑐
2
+

3

16
𝑐
3
) sin (2𝑤)

+ (−
1

6
𝑐
2
+
163

648
𝑐
3
) sin (3𝑤)

−
1

144
𝑐
2
(2 − 13𝑐) sin (4𝑤)

−
1

72
𝑐
3 sin (5𝑤) +

1

1296
𝑐
3 sin (6𝑤) ,

(30)

respectively.
The modulus of the amplification factor, AFM, is com-

puted as

AFM = √(R (𝜉))
2
+ (I (𝜉))

2
, (31)

and the region of stability is obtained as 0 ≤ 𝑐 ≤ 1.48 as
depicted in Figure 1.

The relative phase error, RPE, is obtained as

RPE = −
1

𝑐𝑤
tan−1 (I (𝜉)

R (𝜉)
) . (32)

Plots of the AFM versus the phase angle at six different cfl
numbers, namely, 0.25, 0.5, 0.75, 1.0, 1.25, and 1.47, are shown
in Figure 2.The scheme is least dissipative at cfl = 0.25. At low
cfl numbers, the scheme is less dissipative especially for phase
angles, 𝑤 ∈ [0, 1]. Plots of the RPE versus phase angle at the
six different cfl numbers are shown in Figure 3.There is no big
change in the dispersive character at cfl 0.25, 0.5, 0.75, and 1.0,
and at these cfl numbers, phase lag behaviour is exhibited at
all phase angles, 𝑤 ∈ [0, 𝜋]. At phase angles greater than 0.5,
phase lead behaviour is exhibited at cfl = 1.47.

The modified equation of WENO3 when discretized by
the 1D linear advection equation is given by

𝑢
𝑡
+ 𝑎𝑢
𝑥
+ (

1

12
𝑎Δ𝑡ℎ
3
+

1

24
(𝑎Δ𝑡)
4
) 𝑢
𝑥𝑥𝑥𝑥

+ ⋅ ⋅ ⋅ = 0, (33)

indicating that the scheme is third-order accurate in space
and essentially dissipative in nature.
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Figure 1: Plot of modulus of amplification factor versus phase angle
versus cfl number for the WENO3 scheme.

5. Optimisation of WENO3
Scheme Discretizing the 1D
Linear Advection Equation

The technique ofMinimized Integrated Exponential Error for
LowDispersion and LowDissipation (MIEELDLD) has been
introduced in Appadu andDauhoo (2011). It basically enables
us to choose the optimal parameters from two conditions;
namely,

(i) small amounts of dissipation when added can help to
curb numerical dispersion [4];

(ii) the dissipation and dispersion errors must both be
small in a numerical scheme to yield efficient shock-
capturing properties.

We now describe the technique of minimized integrated
exponential error for low dispersion and low dissipation
(MIEELDLD). Suppose that the amplification factor of the
numerical scheme when applied to the 1D linear advection
equation, given by

𝑢
𝑡
+ 𝑎𝑢
𝑥
= 0, (34)

is

𝜉 = R (𝜉) + 𝐼I (𝜉) . (35)

Thequantities |1−RPE| and (1−AFM)measure the dispersion
and dissipation errors, respectively. For a numerical scheme
to have low dispersion and low dissipation, we require

|1 − RPE| + (1 − AFM) → 0. (36)
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Figure 2: Plots of AFM versus phase angle at some cfl numbers for the WENO3 scheme.
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Figure 3: Plots of RPE versus phase angle at some cfl numbers for the WENO3 scheme.

Also when dissipation neutralises dispersion optimally, we
have

||1 − RPE| − (1 − AFM)| → 0. (37)

Thus on combining these two conditions, we get the following
condition necessary for dissipation to neutralise dispersion

and for low dispersion and low dissipation character to be
satisfied:

eldld = ||1 − RPE| − (1 − AFM)|

+ (|1 − RPE| + (1 − AFM)) → 0,

(38)

where eldld denotes error for low dispersion and low
dissipation.
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If we plot the quantity, eldld versus RPE versus AFM,
as done in [15], we can see that eldld = 0 when RPE = 1

(no dispersion) and AFM = 1 (no dissipation), and this
makes sense. However, the eldld takes a constant value of 2
when RPE = 2 independent of the value of the AFM, and
this presents a drawback of the measure. Therefore, we have
presented a modification to the quantity, eldld, which is

eeldld = exp (||1 − RPE| − (1 − AFM)|)

+ exp (|1 − RPE| + (1 − AFM)) − 2 → 0,

(39)

and this quantity goes to zero when |1 − RPE| → 0 and (1 −

AFM) → 0.
The eeldld denotes exponential error for low dispersion

and low dissipation [15, 16].

5.1. Only One Parameter Involved. If the cfl number is the
only parameter, we compute the integrated error for low
dispersion and low dissipation, IELDLD,

∫

𝑤1

0

eeldld 𝑑𝑤, (40)

for a range of 𝑤 ∈ [0, 𝑤
1
], and this integral will be a function

of 𝑐. The optimal cfl is the one at which the integral quantity
is closest to zero.

5.2. Two Parameters Are Involved. Suppose that we now have
two parameters, say 𝜆 and 𝑐. In that case, we can compute

∫

𝑐1

0

∫

𝑤1

0

eeldld 𝑑𝑤𝑑𝑐, (41)

and this integral will be a function of 𝜆 and we can obtain the
optimal value of 𝜆.

We can also compute

∫

𝑤1

0

eeldld 𝑑𝑤, (42)

and this integral will consist of 𝜆 and 𝑐. From there, we can
obtain the optimal values of both 𝜆 and 𝑐.

Considerable and extensive work on the technique of
minimised integrated exponential error for low dispersion
and low dissipation has been carried out in [15–17]. In [15],
we have obtained the optimal cfl of some explicit methods
like Lax-Wendroff, Beam-Warming, and Upwind Leap-Frog
when applied to the 1D advection equation. In [17], we use the
technique to understand why not all composite methods can
be effective to control dispersion and dissipation in regions of
shocks. In [16], we consider the family of third-ordermethods
proposed by Takacs [2] where we optimize two parameters,
namely, the cfl number and another variable which also
controls dispersion and dissipation.

In this work, we use the technique, MIEELDLD, to
compute the optimal cfl number of theWENO3 scheme.The
plots of the integrated error versus cfl number are shown in
Figure 4, which indicates that the optimal cfl is close to zero.
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Figure 4: Plot of IEELDLD versus cfl number for the WENO3
scheme.

6. Optimisation of WENO3 Scheme
Discretizing the 1D Burgers’ Equation

Ascher and McLachlan [18] have obtained the dispersion
relation for the equation

𝑢
𝑡
= 2𝛼𝑢𝑢

𝑥
+ 𝜌𝑢
𝑥
+ 𝜇𝑢
𝑥𝑥𝑥

. (43)

They considered the linearized version of (43) which is

𝑢
𝑡
= 𝜌𝑢
𝑥
+ 𝜇𝑢
𝑥𝑥𝑥

. (44)

By considering a plane wave solution of the form 𝑢(𝑥, 𝑡) =

exp(𝐼 ((𝜃/ℎ)𝑥+(𝜔
1
/Δ𝑡)𝑡)), where 𝜃 and𝜔

1
are the wavenum-

ber and dispersion relation, respectively, the exact dispersion
relation is

𝜔
1
= 𝜌

Δ𝑡

ℎ
𝜃 −

]Δ𝑡

ℎ3
𝜃
3
. (45)

The exact phase velocity can then be deduced. A numeri-
cal scheme can then be used to discretize (44), and, thus, the
numerical phase velocity can be obtained. The relative phase
error is then computed as the ratio of the numerical phase
velocity to the exact phase velocity.

Since a linearised version of the 1D Burgers’ equation,

𝑢
𝑡
+ (

1

2
𝑢
2
)
𝑥

= 0, (46)

is not possible, we cannot obtain the relative phase error, and
thus it is not possible to obtain the variation of the quantity,
IEELDLD, versus 𝑐 to deduce the optimal cfl number. To
estimate the optimal cfl number, we can run our numerical
experiment at some cfl numbers, compute the 𝐿

1
error,

dispersion, dissipation errors, and eeldld, and then guess
the optimal cfl number. This approach has been done in
Section 8.3.
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7. Quantification of Errors from
Numerical Results [2, 15, 16]

In this section, we describe how Takacs [2] quantifies errors
fromnumerical results into dispersion and dissipation errors.

The Total Mean Square Error is calculated as

1

𝑁

𝑁

∑

𝑖=1

(𝑢
𝑖
− V
𝑖
)
2

, (47)

where 𝑢
𝑖
represents the analytical solution and V

𝑖
is the

numerical (discrete) solution at a given grid point, 𝑖.
The Total Mean Square Error can be expressed as

1

𝑁

𝑁

∑

𝑖=1

(𝑢
𝑖
− V
𝑖
)
2

=
1

𝑁

𝑁

∑

𝑖=1

(𝑢
𝑖
)
2

+
1

𝑁

𝑁

∑

𝑖=1

(V
𝑖
)
2

−
2

𝑁

𝑁

∑

𝑖=1

𝑢
𝑖
Vi. (48)

Next,

1

𝑁

𝑁

∑

𝑖=1

(𝑢
𝑖
− 𝑢
𝑖
)
2

=
1

𝑁

𝑁

∑

𝑖=1

((𝑢
𝑖
)
2

− 2𝑢
𝑖
𝑢
𝑖
+ (𝑢
𝑖
)
2

) ,

1

𝑁

𝑁

∑

𝑖=1

(V
𝑖
− V
𝑖
)
2

=
1

𝑁

𝑁

∑

𝑖=1

((V
𝑖
)
2

− 2V
𝑖
V
𝑖
+ (V
𝑖
)
2

) .

(49)

The Total Mean Square Error can be further expressed as

1

𝑁

𝑁

∑

𝑖=1

(𝑢
𝑖
− 𝑢
𝑖
)
2

+
1

𝑁

𝑁

∑

𝑖=1

(V
𝑖
− V
𝑖
)
2

+
2

𝑁

𝑁

∑

𝑖=1

𝑢
𝑖
𝑢
𝑖

+
2

𝑁

𝑁

∑

𝑖=1

V
𝑖
V
𝑖
−

1

𝑁

𝑁

∑

𝑖=1

(𝑢
𝑖
)
2

−
1

𝑁

𝑁

∑

𝑖=1

(V
𝑖
)
2

−
2

𝑁

𝑁

∑

𝑖=1

𝑢
𝑖
V
𝑖
.

(50)

The expression in (50) can be rewritten as

𝜎
2
(𝑢) + 𝜎

2
(V) + 2(𝑢)

2
+ 2(V)2 − (𝑢)

2
− (V)2 −

2

𝑁

𝑁

∑

𝑖=1

𝑢
𝑖
V
𝑖
,

(51)

where 𝜎
2
(𝑢) and 𝜎

2
(V) denote the variance of 𝑢 and V,

respectively, and 𝑢 and V, denote the mean values of 𝑢 and
V respectively.

Thus, the Total Mean Square Error is given by

𝜎
2
(𝑢) + 𝜎

2
(V) + ((𝑢)

2
− 2𝑢V + (V)2) + (2𝑢V −

2

𝑁

𝑁

∑

𝑖=1

𝑢
𝑖
V
𝑖
) ,

(52)

which on further simplification yields

𝜎
2
(𝑢) + 𝜎

2
(V) + (𝑢 − V)2 − 2(

1

𝑁

𝑁

∑

𝑖=1

𝑢
𝑖
V
𝑖
− 𝑢
𝑖
V
𝑖
) . (53)

Thus, we have

1

𝑁

𝑁

∑

𝑖=1

(𝑢
𝑖
− V
𝑖
)
2

= 𝜎
2
(𝑢) + 𝜎

2
(V) + (𝑢 − V)2 − 2Cov (𝑢, V) .

(54)
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Figure 5: Results of Problem II at cfl number 0.05 with number of
spatial steps,𝑁 = 800.

But the correlation coefficient, 𝜌, is given by Cov(𝑢, V)/
𝜎(𝑢)𝜎(V). Hence, the Total Mean Square Error can be written
as

1

𝑁

𝑁

∑

𝑖=1

(𝑢
𝑖
− V
𝑖
)
2

= 𝜎
2
(𝑢) + 𝜎

2
(V) + (𝑢 − V)2 − 2𝜌𝜎 (𝑢) 𝜎 (V) ,

(55)

which simplifies to

1

𝑁

𝑁

∑

𝑖=1

(𝑢
𝑖
− V
𝑖
)
2

= (𝜎 (𝑢) − 𝜎 (V))2 + (𝑢 − V)2 + 2 (1 − 𝜌) 𝜎 (𝑢) 𝜎 (V) .

(56)

On putting 𝜌 = 1, we get 2(1 − 𝜌)𝜎(𝑢)𝜎(V) = 0. Thus, we
define (2(1−𝜌)𝜎(𝑢)𝜎(V)) as the dispersion error as correlation
coefficient in statistics is analogous with phase lag or phase
lead in Computational Fluid Dynamics.

Consequently, (𝜎(𝑢) − 𝜎(𝑢))
2
+ (𝑢 − V)2 measures the

dissipation error. The total error is defined as the sum of the
dissipation and dispersion errors.

Since our domain 𝑥 ∈ [0, 1], the 𝐿
1
error is calculated as

ℎ

𝑁

∑

𝑖=1

𝑢𝑖 − V
𝑖

 ,
(57)

where 𝑢
𝑖
and V

𝑖
are the computed and exact values, respec-

tively, and ℎ and 𝑁 are the step length and number of cells,
respectively.

8. Numerical Experiments

8.1. Problem I. We solve 𝑢
𝑡
+𝑢
𝑥
= 0with the initial conditions

𝑢(𝑥, 0) = sin(𝜋𝑥) for 𝑥 ∈ [0, 1]. We display the errors
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Figure 6: Results of Problem II at cfl number 1.1 with number of
spatial steps,𝑁 = 800.
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Figure 7: Solutions for Problem III with 200 cells at 𝑇 = 0.32 using
WENO3 scheme at cfl number 0.50.

and convergence rates at time 𝑇 = 1.0 at some different cfl
numbers, namely, 0.05, 0.1, 0.25, 0.5, 1.0, 1.25, and 25/17 in
Tables 1, 2, 3, 4, 5, 6, and 7.The order of convergence obtained
numerically at the seven values of cfl is approximately equal to
3. At low cfl numbers, the order is in general closer to 3. This
shows that the choice of the cfl number affects to a certain
extent the order of convergence.

8.2. Problem II. We solve 𝑢
𝑡
+𝑢
𝑥
= 0with the initial condition

being 𝑢(𝑥, 0) = 1 for |𝑥| < 1/3 and 𝑢(𝑥, 0) = 0 elsewhere [19].
We use some different values of cfl and cells,𝑁. We use𝑁 =

800.The various types of errors, namely, dissipation error and
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Figure 8: Solutions for Problem III with 200 cells at 𝑇 = 0.32 using
WENO3 scheme at cfl number 1.3.

Table 1: Errors for Problem I at time 𝑇 = 10 and cfl = 0.05.

𝑁 𝐿
1
error 𝐿

1
order

40 1.269805 × 10
−2 —

80 1.658269 × 10
−3

3.40

160 1.576016 × 10
−4

2.94

Table 2: Errors for Problem I at time 𝑇 = 10 and cfl = 0.1.

𝑁 𝐿
1
error 𝐿

1
order

40 1.272504 × 10
−2 —

80 1.695274 × 10
−3

2.91

160 2.510625 × 10
−4

2.76

Table 3: Errors for Problem I at time 𝑇 = 10 and cfl = 0.25.

𝑁 𝐿
1
error 𝐿

1
order

40 1.283696 × 10
−2 —

80 1.729243 × 10
−3

2.89

160 2.96433 × 10
−4

2.54

Table 4: Errors for Problem I at time 𝑇 = 10 and cfl = 0.5.

𝑁 𝐿
1
error 𝐿

1
order

40 1.354268 × 10
−2 —

80 1.821605 × 10
−3

2.89

160 3.15924 × 10
−4

2.53

dispersion error, are tabulated for some values of cfl numbers
in Table 8. It can be seen clearly that the cfl number influences
the shock-capturing property of the scheme to a great extent.
Results are depicted in Figures 5 and 6.

Table 8 shows the dissipation, dispersion, total errors, and
eeldld at some values of cfl. We observe that the total error
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Figure 9: Plots of errors versus cfl number using WENO3 scheme for Problem III.

Table 5: Errors for Problem I at time 𝑇 = 10 and cfl = 1.0.

𝑁 𝐿
1
error 𝐿

1
order

40 1.903424 × 10
−2 —

80 2.509531 × 10
−3

2.92

160 4.216578 × 10
−4

2.57

Table 6: Errors for Problem I at time 𝑇 = 10 and cfl = 1.25.

𝑁 𝐿
1
error 𝐿

1
order

40 2.500545 × 10
−2 —

80 3.255547 × 10
−3

2.94

160 5.197687 × 10
−4

2.65

and eeldld are least at low cfl numbers. These two quantities
increase monotonically as the cfl number increases.

Table 7: Errors for Problem I at time 𝑇 = 10 and cfl = 25/17.

𝑁 𝐿
1
error 𝐿

1
order

40 3.2771865 × 10
−2 —

80 4.213891 × 10
−3 2.96

160 6.46257 × 10
−4 2.70

8.3. Problem III. We solve Burger’ equation

𝑢
𝑡
+ (

1

2
𝑢
2
)
𝑥

= 0, (58)

with initial conditions being

𝑢 (𝑥, 0) = 1 for |𝑥| < 1

3
, 𝑢 (𝑥, 0) = −1 elsewhere. (59)

The time 𝑇 = 0.32. We perform the experiment using
WENO3 over 200 cells at some cfl numbers. The 𝐿

1
errors,
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Table 8: Errors for Problem II at time 𝑇 = 4.0.

cfl Dissipation error Dispersion error Total error eeldld
0.05 1.226025 × 10

−4
3.662431 × 10

−3
3.785033 × 10

−3
7.338306 × 10

−3

0.1 1.225995 × 10
−4

3.662445 × 10
−3

3.785045 × 10
−3

7.338335 × 10
−3

0.2 1.225756 × 10
−4

3.662562 × 10
−3

3.785137 × 10
−3

7.338569 × 10
−3

0.3 1.225113 × 10
−4

3.662889 × 10
−3

3.785400 × 10
−3

7.339226 × 10
−3

0.4 1.223875 × 10
−4

3.663557 × 10
−3

3.785945 × 10
−3

7.340568 × 10
−3

0.5 1.221869 × 10
−4

3.664757 × 10
−3

3.786944 × 10
−3

7.342976 × 10
−3

0.6 1.218963 × 10
−4

3.666677 × 10
−3

3.788573 × 10
−3

7.346830 × 10
−3

0.7 1.215076 × 10
−4

3.669750 × 10
−3

3.791257 × 10
−3

7.352998 × 10
−3

0.8 1.210324 × 10
−4

3.674625 × 10
−3

3.795657 × 10
−3

7.362783 × 10
−3

0.9 1.218720 × 10
−4

3.702746 × 10
−3

3.824618 × 10
−3

7.419234 × 10
−3

1.0 1.325062 × 10
−4

3.886192 × 10
−3

4.018698 × 10
−3

7.787523 × 10
−3

1.1 2.664458 × 10
−4

5.697562 × 10
−3

5.9640074 × 10
−3

1.1427719 × 10
−2

1.2 4.998687 × 10
−3

2.152228 × 10
−3

2.6520962 × 10
−3

4.353663 × 10
−2

Table 9: Errors for Problem III at time 𝑇 = 0.32.

cfl 𝐿
1
error Dissipation error Dispersion error Total error eeldld

0.1 1.899421 × 10
−2

9.6601082 × 10
−5

1.53065207 × 10
−3

1.6272532 × 10
−3

3.063658 × 10
−3

0.2 1.899205 × 10
−2

9.656411 × 10
−5

1.530635 × 10
−3

1.627199 × 10
−3

3.063623 × 10
−3

0.3 1.898594 × 10
−2

9.646438 × 10
−5

1.530581 × 10
−3

1.627045 × 10
−3

3.063515 × 10
−3

0.4 1.897550 × 10
−2

9.630490 × 10
−5

1.530486 × 10
−3

1.626791 × 10
−3

3.063324 × 10
−3

0.5 1.896950 × 10
−2

9.625772 × 10
−5

1.530438 × 10
−3

1.626696 × 10
−3

3.06229 × 10
−3

0.6 1.897802 × 10
−2

9.652521 × 10
−5

1.530544 × 10
−3

1.627069 × 10
−3

3.063441 × 10
−3

0.7 1.905973 × 10
−2

9.798369 × 10
−5

1.531593 × 10
−3

1.629577 × 10
−3

3.065543 × 10
−3

0.8 1.933042 × 10
−2

1.019279 × 10
−4

1.535211 × 10
−3

1.637139 × 10
−3

3.072791 × 10
−3

0.9 1.992670 × 10
−2

1.076351 × 10
−4

1.545164 × 10
−3

1.652799 × 10
−3

3.092728 × 10
−3

1.0 2.052249 × 10
−2

1.133164 × 10
−4

1.551133 × 10
−3

1.664449 × 10
−3

3.104686 × 10
−3

1.1 2.424540 × 10
−2

1.417231 × 10
−4

2.936234 × 10
−3

3.077957 × 10
−3

5.881118 × 10
−3

1.2 2.626771 × 10
−2

1.655616 × 10
−4

3.046531 × 10
−3

3.212092 × 10
−3

6.102380 × 10
−3

dispersion errors, and dissipation errors are shown in Table 9.
Results are shown in Figures 7 and 8.

We observe that the errors are least at cfl 0.50 and greatest
at cfl 1.2. Figure 9 shows the plots of 𝐿

1
error, and total error

and eeldld, all versus the cfl number. These three errors are
least at low cfl numbers.

9. Conclusion

In this work, we study the spectral analysis of the dissipa-
tion and dispersion errors of the WENO3 scheme at some
different cfl numbers and verify numerically the order of
convergence of the WENO3 scheme. It is observed that
low cfl numbers are preferred to minimise the 𝐿

1
error,

dispersion and dissipation errors, and eeldld. An extension of
this work is to obtain the optimal cfl of someWENO schemes
discretizing some 1D nonlinear equations such as Korteweg-
de-Vries and also 2D equations such as scalar advection,
convection-diffusion, and Korteweg-de-Vries equations.

Nomenclature

𝐼 = √(−1)

Δ𝑡: Time step
ℎ: Spatial step
𝑛: Time level
𝑎: Advection velocity
𝑐: cfl/Courant number
𝑐 = 𝑎Δ𝑡/ℎ

𝑤: Phase angle in 1D
𝑤 = 𝜃ℎ

RPE: Relative phase error per unit time step
AF: Amplification factor
AFM = |AF|.
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