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We deal with a constrained quasivariational inequality under a general form. We study existence of solutions in two situations
depending on whether the set of constraints is bounded or possibly unbounded.

1. Introduction and Statement of Main Results

Let𝑋 be a real reflexive and separable Banach space assumed
to be compactly embedded in a Banach space 𝑌. We denote
by𝑋

∗ the dual space of𝑋, by𝑌
∗ the dual space of𝑌, by ⟨⋅, ⋅⟩

𝑋

the duality brackets between 𝑋
∗ and 𝑋, by ⟨⋅, ⋅⟩

𝑌
the duality

brackets between 𝑌
∗ and 𝑌, by ‖ ⋅ ‖

𝑋
the norm of 𝑋, and by

‖ ⋅ ‖
𝑌
the norm of 𝑌. Given a function 𝜓 : 𝑋 → R ∪ {+∞},

we denote by 𝐷(𝜓) := {𝑥 ∈ 𝑋 : 𝜓(𝑥) < +∞} the effective
domain of 𝜓.

In this paper we deal with the following problem

Find 𝑢 ∈ 𝐾 such that (𝑢, 𝑢) ∈ 𝐷 (Φ) ,

⟨𝐴𝑢, V − 𝑢⟩
𝑋

+ Φ (𝑢, V) − Φ (𝑢, 𝑢) + 𝐽
0

(𝑢; V − 𝑢)

≥ ⟨𝑓, V − 𝑢⟩
𝑋
, ∀V ∈ 𝐾.

(1)

We describe the data entering problem (1):

(i) 𝐾 ⊂ 𝑋 is a nonempty, convex, closed subset;
(ii) 𝐴 : 𝑋 → 𝑋

∗ is a (possibly nonlinear) operator;
(iii) Φ : 𝑋 × 𝑋 → R ∪ {+∞} is such that, for all 𝜂 ∈

𝐾, the function Φ(𝜂, ⋅) : 𝑋 → R ∪ {+∞} is convex
with 𝐾 ∩ 𝐷(Φ(𝜂, ⋅)) ̸= 0; moreover, we will denote by
𝜕Φ(𝜂, ⋅) the convex subdifferential of Φ(𝜂, ⋅); that is,

𝜕Φ (𝜂, 𝑢) = {𝑤 ∈ 𝑋
∗

: Φ (𝜂, V) − Φ (𝜂, 𝑢)

≥ ⟨𝑤, V − 𝑢⟩
𝑋
, ∀V ∈ 𝑋} ;

(2)

(iv) 𝐽 : 𝑌 → R is a locally Lipschitz function, and
the notation 𝐽

0 stands for its generalized directional
derivative in the sense of Clarke [1]; that is,

𝐽
0

(𝑢; V)

= lim sup
𝑤→𝑢

𝜆→0
+

𝐽 (𝑤 + 𝜆V) − 𝐽 (𝑤)

𝜆
, ∀𝑢, V ∈ 𝑌.

(3)

In addition, we will denote by 𝜕𝐽 the generalized
gradient of 𝐽; that is,

𝜕𝐽 (𝑢)

= {𝑤 ∈ 𝑌
∗

: 𝐽
0

(𝑢; V) ≥ ⟨𝑤, V⟩
𝑌
, ∀V ∈ 𝑌} , ∀𝑢 ∈ 𝑌;

(4)

(v) 𝑓 ∈ 𝑋
∗.

Problem (1) is called a constrained quasivariational prob-
lem. Typically, we can choose 𝑋 to be the Sobolev space
(𝐻

1

0
(Ω), ‖∇ ⋅ ‖

𝐿
2
(Ω)

) defined as the closure of𝐶∞

𝑐
(Ω) in𝐻

1

(Ω)

for a bounded domain Ω ⊂ R𝑁 (𝑁 ≥ 1), 𝑌 to be the
Lebesgue space 𝐿

𝑝

(Ω) for 1 ≤ 𝑝 < 2
∗ (where 2

∗

=

+∞ if 𝑁 ∈ {1, 2} and 2
∗

= 2𝑁/(𝑁 − 2) if 𝑁 ≥ 3),
𝐾 = {𝑢 ∈ 𝐻

1

0
(Ω) : 𝑢 ≥ 0 a.e. in Ω }, 𝐴 = −Δ (the

negative Laplacian operator), Φ(𝑢, V) = ∫
Ω

𝑔(𝑢, V)𝑑𝑥 where
𝑔 : R2

→ R
+
is convex in the second variable (then

𝐷(Φ) = {(𝑢, V) ∈ 𝐻
1

0
(Ω) × 𝐻

1

0
(Ω) : 𝑔(𝑢, V) ∈ 𝐿

1

(Ω)}), and
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𝐽(𝑢) = ∫
Ω

𝑗(𝑥, 𝑢(𝑥))𝑑𝑥 where 𝑗 : Ω × R → R is locally
Lipschitz in the second variable. Constrained quasivaria-
tional problems were extensively studied; we refer, for exam-
ple, to [2–5] and to the references therein. We point out
three aspects which make our approach natural and general.
First, we deal with the general setting of a pair of Banach
spaces (𝑋, 𝑌) instead of focusing on spaces of functions;
in particular, our results can be applied to problems with
different boundary conditions. Second, the set of constraints
𝐾may be unbounded.Third, the form of the studied problem
allows both variational and hemivariational constraints as it
involves both a convex term Φ(𝑢, ⋅) and a generalized direc-
tional derivative 𝐽

0; this type of problems models important
processes in mechanics and engineering (see [6, 7]).

In this paper, we consider the following hypotheses on the
data described above:

(𝐻
1
) for every sequence {𝑢

𝑛
}
𝑛≥1

⊂ 𝐾 with 𝑢
𝑛
⇀ 𝑢 in𝑋, for

some 𝑢 ∈ 𝐾, one has

⟨𝐴𝑢, 𝑢 − V⟩
𝑋

≤ lim sup
𝑛→∞

⟨𝐴𝑢
𝑛
, 𝑢

𝑛
− V⟩

𝑋
, ∀V ∈ 𝐾;

(5)

(𝐻
2
) whenever {(𝜂

𝑛
, 𝑢

𝑛
)}

𝑛≥1
⊂ (𝐾 × 𝐾) ∩ 𝐷(Φ), 𝜂

𝑛
⇀ 𝜂 in

𝑋, 𝑢
𝑛
⇀ 𝑢 in𝑋, one has (𝜂, 𝑢) ∈ (𝐾 ×𝐾) ∩𝐷(Φ) and

lim sup
𝑛→∞

(Φ (𝜂
𝑛
, V) − Φ (𝜂

𝑛
, 𝑢

𝑛
))

≤ Φ (𝜂, V) − Φ (𝜂, 𝑢) , ∀V ∈ 𝐾;

(6)

(𝐻
3
) given 𝜂 ∈ 𝐾, if 𝑢

1
, 𝑢

2
∈ 𝐾 satisfy (𝜂, 𝑢

1
) ∈ 𝐷(Φ),

(𝜂, 𝑢
2
) ∈ 𝐷(Φ) and

𝐽
0

(𝜂; 𝑢
2
− 𝑢

1
) + 𝐽

0

(𝜂; 𝑢
1
− 𝑢

2
)

≥ ⟨𝐴𝑢
2
− 𝐴𝑢

1
, 𝑢

2
− 𝑢

1
⟩
𝑋
,

(7)

then 𝑢
1
= 𝑢

2
.

Remark 1. We emphasize certain situations when hypotheses
(𝐻

1
)–(𝐻

3
) are satisfied.

(a) Hypothesis (𝐻
1
) is satisfied, for instance, if 𝐴 is

weakly strongly continuous, that is, 𝐴 is continuous from 𝑋

endowed with the weak topology to 𝑋
∗ endowed with the

norm topology.
(b) Note that (𝐻

1
) is satisfied, for instance, for 𝑋 =

𝐻
1

0
(Ω), any closed, convex subset 𝐾 ⊂ 𝑋, and 𝐴 : 𝐻

1

0
(Ω) →

𝐻
1

0
(Ω)

∗ defined by 𝐴 = −Δ, where Δ : 𝐻
1

0
(Ω) → 𝐻

1

0
(Ω)

∗

is the Laplacian operator, with Ω ⊂ R𝑁 (𝑁 ≥ 1) a bounded
domain. Indeed, let a sequence {𝑢

𝑛
}
𝑛≥1

⊂ 𝐾 with 𝑢
𝑛
⇀ 𝑢 in

𝐻
1

0
(Ω), for some 𝑢 ∈ 𝐾. Using the weak lower semicontinuity

of the norm, we can write

lim sup
𝑛→∞

⟨−Δ𝑢
𝑛
, 𝑢

𝑛
− V⟩= lim sup

𝑛→∞

(
𝑢𝑛



2

𝐻
1

0
(Ω)

− (𝑢
𝑛
, V)

𝐻
1

0
(Ω)

)

≥ lim inf
𝑛→∞

𝑢𝑛



2

𝐻
1

0
(Ω)

− (𝑢, V)
𝐻
1

0
(Ω)

≥ ‖𝑢‖
2

𝐻
1

0
(Ω)

− (𝑢, V)
𝐻
1

0
(Ω)

= ⟨−Δ𝑢, 𝑢 − V⟩
(8)

for all V ∈ 𝐻
1

0
(Ω). Here, ⟨⋅, ⋅⟩ are the duality brackets for the

pair (𝐻1

0
(Ω)

∗

, 𝐻
1

0
(Ω)) and (𝑢, V)

𝐻
1

0
(Ω)

= ∫
Ω

∇𝑢⋅∇V𝑑𝑥 denotes
the scalar product on𝐻

1

0
(Ω). Whence (𝐻

1
) holds in this case.

(c) Hypothesis (𝐻
2
) is fulfilled in the case where Φ is

sequentially weakly lower semicontinuous, 𝐷(Φ) is weakly
closed, and Φ(⋅, 𝑢) is weakly strongly continuous on its
effective domain for all 𝑢 ∈ 𝑋.

(d) If 𝐴 is strongly monotone, that is, there exists a
constant 𝑚 > 0 such that

⟨𝐴𝑢
2
− 𝐴𝑢

1
, 𝑢

2
− 𝑢

1
⟩
𝑋

≥ 𝑚
𝑢1

− 𝑢
2



2

𝑋
, ∀𝑢

1
, 𝑢

2
∈ 𝐾, (9)

and 𝜕𝐽 is bounded on 𝐾 in the sense that
𝜁

𝑌∗
≤ 𝑐‖𝑢‖

𝑌
, ∀𝜁 ∈ 𝜕𝐽 (𝑢) , ∀𝑢 ∈ 𝐾, (10)

with a positive constant 𝑐 < 𝑚/(2𝑐), where 𝑐 > 0 is the best
constant satisfying ‖𝑢‖

𝑌
≤ 𝑐‖𝑢‖

𝑋
, for all 𝑢 ∈ 𝑋 (which exists

by the continuity of the embedding of𝑋 in𝑌), then condition
(𝐻

3
) is satisfied.
(e) If 𝐴 is strictly monotone and 𝐽 is Gâteaux differen-

tiable and regular (see [1, Definition 2.3.4]), then condition
(𝐻

3
) is satisfied. In particular, if 𝐴 is strictly monotone and 𝐽

is continuously differentiable, then (𝐻
3
) is satisfied.

In this paper, we distinguish two cases depending on
whether the set𝐾 is bounded or not necessarily bounded.The
following result concerns the former situation.

Theorem 2. Assume that conditions (𝐻
1
) – (𝐻

3
) are satisfied

and that the closed, convex set𝐾 is bounded in𝑋.Then problem
(1) has at least one solution.

Remark 3. Note that the existence of a solution of problem (1),
which is the conclusion ofTheorem 2, forces the intersection
diag(𝐾) ∩ 𝐷(Φ) to be nonempty, where the notation diag(𝐾)

stands for the diagonal of the set 𝐾; that is, diag(𝐾) =

{(V, V) : V ∈ 𝐾}. The nonemptiness of this intersection is
not directly implied by the hypotheses (H

1
)–(H

3
), nor by

the assumption made that 𝐾 ∩ 𝐷(Φ(𝜂, ⋅)) ̸= 0 for all 𝜂 ∈

𝐾. However, Theorem 4 below incorporates hypothesis (𝐻
4
)

which assumes in particular that diag(𝐾) ∩ 𝐷(Φ) ̸= 0.
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Now, we deal with the case where 𝐾 is not assumed to be
bounded. In this case, we additionally suppose the following:

(𝐻
4
) there exist an element V

0
∈ 𝐾 with (𝜂, V

0
) ∈ 𝐷(Φ) for

all 𝜂 ∈ 𝐾 and a real 𝑝 ≥ 1 such that

lim sup
‖𝑤‖
𝑋
→∞

⟨𝐴𝑤,𝑤 − V
0
⟩
𝑋

‖𝑤‖
𝑝

𝑋

= +∞; (11)

(𝐻
5
) there exists a constant 𝑐

0
> 0 such that we have

⟨𝑧, V
0
− 𝑢⟩

𝑋

≤ 𝑐
0
(1 + ‖𝑢‖

𝑝

𝑋
) , ∀𝑧 ∈ 𝜕Φ (𝑢, ⋅) (V

0
) ,

‖𝑧‖
𝑌
∗ ≤ 𝑐

0
(1 + ‖𝑢‖

𝑝−1

𝑌
) , ∀𝑧 ∈ 𝜕𝐽 (𝑢) ,

(12)

for all 𝑢 ∈ 𝐾 with (𝑢, 𝑢) ∈ 𝐷(Φ), where V
0
and 𝑝 ≥ 1

are as in (𝐻
4
) .

We state now ourmain result for problem (1) dealing with
the case where the set 𝐾 is possibly unbounded.

Theorem 4. Assume that conditions (𝐻
1
)–(𝐻

5
) are satisfied.

Then problem (1) has at least a solution.

The rest of the paper is organized as follows. In Section 2,
we present the proof of Theorem 2, where we apply a version
of the Schauder fixed point theorem. In Section 3, we give the
proof of Theorem 4, which is actually based onTheorem 2.

2. Proof of Theorem 2

For each 𝜂 ∈ 𝐾, we consider the auxiliary problem

Find 𝑢 ∈ 𝐾 such that (𝜂, 𝑢) ∈ 𝐷 (Φ) ,

⟨𝐴𝑢, V − 𝑢⟩
𝑋

+ Φ (𝜂, V) − Φ (𝜂, 𝑢) + 𝐽
0

(𝜂; V − 𝑢)

≥ ⟨𝑓, V − 𝑢⟩
𝑋
, ∀V ∈ 𝐾.

(13)

Our first purpose, accomplished in Lemma 6 below, is to
show that problem (13) has a unique solution. To do this, we
need Fan’s lemma (see [8, page 208]) which we recall in the
following statement.

Theorem 5. Let𝑊 be a Hausdorff topological vector space, let
𝑍 be a nonempty subset of 𝑊, and let 𝐹 : 𝑍 → 2

𝑊 be such
that

(i) 𝐹(𝑥) is a nonempty, closed subset of 𝑊, for all 𝑥 ∈ 𝑍;
(ii) conv {𝑥

1
, . . . , 𝑥

𝑛
} ⊂ ⋃

𝑛

𝑖=1
𝐹(𝑥

𝑖
) for all {𝑥

1
, . . . , 𝑥

𝑛
} ⊂

𝑍;
(iii) there is 𝑥 ∈ 𝑍 for which 𝐹(𝑥) is compact.

Then ⋂
𝑥∈𝑍

𝐹(𝑥) ̸= 0.

Lemma6. Assume that hypotheses (H
1
)–(H

3
) are fulfilled and

that the closed, convex set 𝐾 is bounded in 𝑋. Then, for every
𝜂 ∈ 𝐾, problem (13) has a unique solution.

Proof. Fix 𝜂 ∈ 𝐾. Consider the set-valued mapping 𝐺 : 𝐾 ∩

𝐷(Φ(𝜂, ⋅)) → 2
𝑋 defined by

𝐺 (V) = {𝑢 ∈ 𝐾 ∩ 𝐷 (Φ (𝜂, ⋅)) : ⟨𝐴𝑢 − 𝑓, 𝑢 − V⟩
𝑋

− 𝐽
0

(𝜂; V − 𝑢)

+Φ (𝜂, 𝑢) − Φ (𝜂, V) ≤ 0}

(14)

for all V ∈ 𝐾 ∩ 𝐷(Φ(𝜂, ⋅)). We show that the assumptions of
Theorem 5 are satisfied for 𝑊 = 𝑋 endowed with the weak
topology, 𝑍 = 𝐾 ∩ 𝐷(Φ(𝜂, ⋅)), and 𝐹 = 𝐺.

For every V ∈ 𝐾 ∩ 𝐷(Φ(𝜂, ⋅)), we clearly have V ∈ 𝐺(V);
hence 𝐺(V) is nonempty.

We check that 𝐺(V) is weakly compact for every V ∈ 𝐾 ∩

𝐷(Φ(𝜂, ⋅)). To this end, we first prove that𝐺(V) is sequentially
weakly closed in 𝑋. Let a sequence {𝑢

𝑛
}
𝑛≥1

⊂ 𝐺(V) with
𝑢
𝑛

⇀ 𝑢 in 𝑋, for some 𝑢 ∈ 𝑋. Taking into account that
𝑋 is compactly embedded in 𝑌 it follows that 𝑢

𝑛
→ 𝑢

in 𝑌. Using the first part of assumption (𝐻
2
), we have that

𝑢 ∈ 𝐾 ∩ 𝐷(Φ(𝜂, ⋅)). As 𝑢
𝑛
∈ 𝐺(V), we know that

⟨𝐴𝑢
𝑛
, 𝑢

𝑛
− V⟩

𝑋

≤ ⟨𝑓, 𝑢
𝑛
− V⟩

𝑋
+ 𝐽

0

(𝜂; V − 𝑢
𝑛
) + Φ (𝜂, V) − Φ (𝜂, 𝑢

𝑛
) .

(15)

Passing to the lim sup as 𝑛 → ∞, we find

lim sup
𝑛→∞

⟨𝐴𝑢
𝑛
, 𝑢

𝑛
− V⟩

𝑋

≤ ⟨𝑓, 𝑢 − V⟩
𝑋

+ 𝐽
0

(𝜂; V − 𝑢) + Φ (𝜂, V) − Φ (𝜂, 𝑢) .

(16)

Here we made use of the weak convergence 𝑢
𝑛

⇀ 𝑢 in 𝑋,
the continuity of 𝐽0(𝜂; ⋅) on 𝑌, and the second part of (𝐻

2
).

Combining with (𝐻
1
), we obtain that 𝑢 ∈ 𝐺(V), thereby 𝐺(V)

is sequentially weakly closed in 𝑋.
Using that𝑋 is reflexive and separable and𝐾 is bounded,

convex, and closed, we deduce that 𝐾 is metrizable and
weakly compact (see, e.g., [9, pages 44–50]). Since 𝐺(V) ⊂ 𝐾

and using that 𝐺(V) is sequentially weakly closed, we derive
that 𝐺(V) is weakly compact whenever V ∈ 𝐾 ∩ 𝐷(Φ(𝜂, ⋅)).
Therefore conditions (i) and (iii) in Theorem 5 are fulfilled.

We focus now on the verification of condition (ii) in
Theorem 5. Arguing by contradiction, we suppose that there
exist V

1
, . . . , V

𝑛
∈ 𝐾 ∩ 𝐷(Φ(𝜂, ⋅)) and 𝑢

0
∈ conv{V

1
, . . . , V

𝑛
}

such that 𝑢
0

∉ ⋃
𝑛

𝑖=1
𝐺(V

𝑖
). The convexity of the set 𝐾 and of

the function Φ(𝜂, ⋅) ensures that 𝑢
0

∈ 𝐾 ∩ 𝐷(Φ(𝜂, ⋅)). Then
the assertion that 𝑢

0
∉ ⋃

𝑛

𝑖=1
𝐺(V

𝑖
) reads as

⟨𝐴𝑢
0
− 𝑓, 𝑢

0
− V

𝑖
⟩
𝑋

− 𝐽
0

(𝜂; V
𝑖
− 𝑢

0
)

+ Φ (𝜂, 𝑢
0
) − Φ (𝜂, V

𝑖
) > 0, ∀𝑖 ∈ {1, . . . , 𝑛} .

(17)
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Let

Λ := {V ∈ 𝐷 (Φ (𝜂, ⋅)) : ⟨𝐴𝑢
0
− 𝑓, 𝑢

0
− V⟩

𝑋

− 𝐽
0

(𝜂; V − 𝑢
0
)

+Φ (𝜂, 𝑢
0
) − Φ (𝜂, V) > 0} .

(18)

It is clear that V
𝑖
∈ Λ for all 𝑖 ∈ {1, . . . , 𝑛}. The convexity of the

functionsΦ(𝜂, ⋅) and 𝐽
0

(𝜂; ⋅) implies that Λ is a convex subset
in 𝑋. We infer that conv{V

1
, . . . , V

𝑛
} ⊂ Λ, so 𝑢

0
∈ Λ, which

is obviously impossible.This contradiction justifies condition
(ii) in Theorem 5. Thus all the assumptions of Theorem 5 are
satisfied.

ApplyingTheorem 5, we obtain

⋂

V∈𝐾∩𝐷(Φ(𝜂,⋅))

𝐺 (V) ̸= 0. (19)

This ensures the existence of an element 𝑢 ∈ 𝐾 ∩ 𝐷(Φ(𝜂, ⋅))

satisfying

⟨𝐴𝑢, V − 𝑢⟩
𝑋

+ Φ (𝜂, V) − Φ (𝜂, 𝑢)

+ 𝐽
0

(𝜂; V − 𝑢) ≥ ⟨𝑓, V − 𝑢⟩
𝑋

(20)

for all V ∈ 𝐾 ∩ 𝐷(Φ(𝜂, ⋅)). The above inequality being also
satisfied if V ∉ 𝐷(Φ(𝜂, ⋅)), we conclude that 𝑢 is a solution of
problem (13).

It remains to show that the solution of problem (13) is
unique. If 𝑢

1
, 𝑢

2
∈ 𝐾 are solutions of (13), then we have that

(𝜂, 𝑢
1
) ∈ 𝐷(Φ), (𝜂, 𝑢

2
) ∈ 𝐷(Φ), and

⟨𝐴𝑢
1
, V − 𝑢

1
⟩
𝑋

+ Φ (𝜂, V) − Φ (𝜂, 𝑢
1
)

+ 𝐽
0

(𝜂; V − 𝑢
1
) ≥ ⟨𝑓, V − 𝑢

1
⟩
𝑋
, ∀V ∈ 𝐾,

⟨𝐴𝑢
2
, V − 𝑢

2
⟩
𝑋

+ Φ (𝜂, V) − Φ (𝜂, 𝑢
2
)

+ 𝐽
0

(𝜂; V − 𝑢
2
) ≥ ⟨𝑓, V − 𝑢

2
⟩
𝑋
, ∀V ∈ 𝐾.

(21)

Letting V = 𝑢
2
in the first inequality and V = 𝑢

1
in the second

one and then adding the obtained relations, we arrive at

⟨𝐴𝑢
1
− 𝐴𝑢

2
, 𝑢

2
− 𝑢

1
⟩
𝑋

+ 𝐽
0

(𝜂; 𝑢
2
− 𝑢

1
)

+ 𝐽
0

(𝜂; 𝑢
1
− 𝑢

2
) ≥ 0.

(22)

By assumption (𝐻
3
), we conclude that 𝑢

1
= 𝑢

2
. The proof is

complete.

Denote by 𝑢
𝜂

∈ 𝐾 the unique solution of problem (13)
corresponding to 𝜂 ∈ 𝐾. Lemma 6 guarantees that 𝑢

𝜂
exists

and is unique. We define 𝜋 : 𝐾 → 𝐾 by

𝜋 (𝜂) = 𝑢
𝜂
, ∀𝜂 ∈ 𝐾. (23)

Lemma7. Assume that hypotheses (𝐻
1
)–(𝐻

3
) are fulfilled and

that the closed, convex set 𝐾 is bounded in 𝑋. Then, the map
𝜋 : 𝐾 → 𝐾 given in (23) is sequentially weakly continuous.

Proof. Let a sequence {𝜂
𝑛
}
𝑛≥1

⊂ 𝐾 such that 𝜂
𝑛

⇀ 𝜂 in 𝑋

for some 𝜂 ∈ 𝐾. We need to show that 𝜋(𝜂
𝑛
) ⇀ 𝜋(𝜂) as

𝑛 → ∞. To do this, it suffices to check that, for any relabeled
subsequence {𝜂

𝑛
}
𝑛≥1

, there is a subsequence of {𝜋(𝜂
𝑛
)}

𝑛≥1

weakly converging to 𝜋(𝜂).
By the compactness of the embedding of𝑋 in 𝑌, we have

that 𝜂
𝑛

→ 𝜂 in 𝑌. Denote, for simplicity, 𝜋(𝜂
𝑛
) = 𝑢

𝑛
. The

definition of 𝜋 yields (𝜂
𝑛
, 𝑢

𝑛
) ∈ 𝐷(Φ) and

⟨𝐴𝑢
𝑛
, 𝑢

𝑛
− V⟩

𝑋

≤ Φ (𝜂
𝑛
, V) − Φ (𝜂

𝑛
, 𝑢

𝑛
) + 𝐽

0

(𝜂
𝑛
; V − 𝑢

𝑛
)

+ ⟨𝑓, 𝑢
𝑛
− V⟩

𝑋
, ∀V ∈ 𝐾.

(24)

Since 𝐾 is bounded, {𝑢
𝑛
}
𝑛≥1

⊂ 𝐾 and 𝑋 is reflexive, we
know that along a subsequence, denoted again by {𝑢

𝑛
}
𝑛≥1

, we
have

𝑢
𝑛
⇀ 𝑤 in 𝑋 as 𝑛 → ∞, (25)

for some 𝑤 ∈ 𝑋. The first part of (𝐻
2
) yields (𝜂, 𝑤) ∈ (𝐾 ×

𝐾) ∩ 𝐷(Φ). Moreover, the compactness of the embedding of
𝑋 in𝑌 implies that 𝑢

𝑛
→ 𝑤 in 𝑌. Letting 𝑛 → ∞ in (24), by

means of (𝐻
1
), (𝐻

2
), the convergences 𝜂

𝑛
→ 𝜂 and 𝑢

𝑛
→ 𝑤

in 𝑌, and the upper semicontinuity of 𝐽0(⋅; ⋅) on 𝑌×𝑌, we get

⟨𝐴𝑤,𝑤 − V⟩
𝑋

≤ lim sup
𝑛→∞

⟨𝐴𝑢
𝑛
, 𝑢

𝑛
− V⟩

𝑋

≤ lim sup
𝑛→∞

(Φ (𝜂
𝑛
, V) − Φ (𝜂

𝑛
, 𝑢

𝑛
))

+ lim sup
𝑛→∞

𝐽
0

(𝜂
𝑛
; V − 𝑢

𝑛
) + ⟨𝑓, 𝑤 − V⟩

𝑋

≤ Φ (𝜂, V) − Φ (𝜂, 𝑤) + 𝐽
0

(𝜂; V − 𝑤)

+ ⟨𝑓,𝑤 − V⟩
𝑋
, ∀V ∈ 𝐾.

(26)

Thismeans that𝑤 ∈ 𝐾 is a solution of problem (13). Lemma 6
ensures that 𝑤 is the unique solution of (13). Thus, by (23),
we have 𝜋(𝜂) = 𝑤. Taking into account (25), it follows
that 𝜋(𝜂

𝑛
) ⇀ 𝜋(𝜂) as 𝑛 → ∞ up to a subsequence. This

completes the proof.

Remark 8. As noted in the proof of Lemma 6, the closed,
bounded, convex subset 𝐾 ⊂ 𝑋 is metrizable for the
weak topology. Therefore, Lemma 7 implies that 𝜋 is weakly
continuous.

We need the following version of the Schauder fixed point
theorem (see [10, page 452]).

Theorem 9. Suppose that

(i) 𝑋 is a reflexive, separable Banach space;
(ii) the map 𝑇 : 𝑀 ⊂ 𝑋 → 𝑀 is sequentially weakly

continuous;
(iii) the set 𝑀 is nonempty, closed, bounded, and convex.

Then 𝑇 has a fixed point.
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We are now in position to prove Theorem 2.

Proof of Theorem 2. In view of Lemma 7 and the assumptions
on 𝑋 and 𝐾, we may apply Theorem 9 which shows that the
map 𝜋 : 𝐾 → 𝐾 admits a fixed point 𝑢 ∈ 𝐾; that is, 𝜋(𝑢) = 𝑢.
Using the definition of 𝜋 (see (23)), we deduce that 𝑢 ∈ 𝐾 is
a solution of problem (1).

3. Proof of Theorem 4

It suffices to prove Theorem 4 when the set 𝐾 is unbounded
because for a bounded set 𝐾 the result is true according to
Theorem 2. Let 𝐾

𝑚
= {𝑥 ∈ 𝐾 : ‖𝑥‖

𝑋
≤ 𝑚}. Let 𝑚

0
≥ 1

be an integer such that ‖V
0
‖
𝑋

≤ 𝑚
0
, where V

0
is the element

entering (𝐻
4
). We claim that Theorem 2 can be applied with

𝐾 replaced by 𝐾
𝑚
whenever 𝑚 ≥ 𝑚

0
.

Note that V
0

∈ 𝐾
𝑚
0

, so V
0

∈ 𝐾
𝑚

∩ 𝐷(Φ(𝜂, ⋅)) for all
𝜂 ∈ 𝐾, all 𝑚 ≥ 𝑚

0
(using the first part of (𝐻

4
)). Thus,

𝐾
𝑚

∩ 𝐷(Φ(𝜂, ⋅)) ̸= 0 for all 𝜂 ∈ 𝐾
𝑚
, all 𝑚 ≥ 𝑚

0
. Since 𝐾 is

convex and closed in𝑋, it turns out that𝐾
𝑚
is convex, closed,

and bounded in 𝑋, for all 𝑚 ≥ 𝑚
0
.

We check that assumptions (𝐻
1
)–(𝐻

3
) of Theorem 2

remain validwhen𝐾 is replaced by𝐾
𝑚
with𝑚 ≥ 𝑚

0
. Towards

this, we fix some𝑚 ≥ 𝑚
0
. If {(𝜂

𝑛
, 𝑢

𝑛
)}

𝑛≥1
⊂ (𝐾

𝑚
×𝐾

𝑚
)∩𝐷(Φ)

satisfies 𝜂
𝑛
⇀ 𝜂 in𝑋 and 𝑢

𝑛
⇀ 𝑢 in𝑋, then assumption (𝐻

2
)

(for 𝐾) implies (𝜂, 𝑢) ∈ (𝐾 × 𝐾) ∩ 𝐷(Φ). On the other hand,
the weak convergences ensure that

𝜂
𝑋

≤ lim inf
𝑛→∞

𝜂𝑛
𝑋

≤ 𝑚, ‖𝑢‖
𝑋

≤ lim inf
𝑛→∞

𝑢𝑛

𝑋
≤ 𝑚.

(27)

Hence, (𝜂, 𝑢) ∈ (𝐾
𝑚
×𝐾

𝑚
)∩𝐷(Φ).The second part of (H

2
) for

𝐾
𝑚
and conditions (H

1
) and (H

3
) for 𝐾

𝑚
hold because (H

1
),

(H
2
), and (H

3
) have been imposed for𝐾, which contains𝐾

𝑚
.

Thus it is permitted to applyTheorem 2 for𝐾
𝑚
in place of𝐾,

with any 𝑚 ≥ 𝑚
0
.

Applying Theorem 2, we find a sequence {𝑢
𝑚
}
𝑚≥𝑚
0

in 𝑋

such that 𝑢
𝑚

∈ 𝐾
𝑚
, (𝑢

𝑚
, 𝑢

𝑚
) ∈ 𝐷(Φ), and

⟨𝐴𝑢
𝑚
, V − 𝑢

𝑚
⟩
𝑋

+ Φ (𝑢
𝑚
, V) − Φ (𝑢

𝑚
, 𝑢

𝑚
)

+ 𝐽
0

(𝑢
𝑚
; V − 𝑢

𝑚
) ≥ ⟨𝑓, V − 𝑢

𝑚
⟩
𝑋

(28)

for all V ∈ 𝐾
𝑚
, all 𝑚 ≥ 𝑚

0
. Letting V = V

0
(see (𝐻

4
)) in (28),

we obtain

⟨𝐴𝑢
𝑚
, 𝑢

𝑚
− V

0
⟩
𝑋

≤ Φ (𝑢
𝑚
, V

0
) − Φ (𝑢

𝑚
, 𝑢

𝑚
)

+ 𝐽
0

(𝑢
𝑚
; V

0
− 𝑢

𝑚
) + ⟨𝑓, 𝑢

𝑚
− V

0
⟩
𝑋

(29)

for all𝑚 ≥ 𝑚
0
. By the definition of the convex subdifferential

𝜕Φ(𝑢
𝑚
, ⋅), we have

Φ(𝑢
𝑚
, V

0
) − Φ (𝑢

𝑚
, 𝑢

𝑚
)

≤ ⟨𝑧, V
0
− 𝑢

𝑚
⟩
𝑋
, ∀𝑧 ∈ 𝜕Φ (𝑢

𝑚
, ⋅) (V

0
) , ∀𝑚 ≥ 𝑚

0
.

(30)

Then, invoking the growth condition for 𝜕Φ(𝑢
𝑚
, ⋅)(V

0
) in

(𝐻
5
), we see that

Φ(𝑢
𝑚
, V

0
) − Φ (𝑢

𝑚
, 𝑢

𝑚
) ≤ 𝑐

0
(1 +

𝑢𝑚



𝑝

𝑋
) , ∀𝑚 ≥ 𝑚

0
.

(31)

Recall that

𝐽
0

(𝑢; V) = max
𝑤∈𝜕𝐽(𝑢)

⟨𝑤, V⟩
𝑌
, ∀𝑢, V ∈ 𝑌 (32)

(see [1, Proposition 2.1.2(b)]). This fact combined with the
growth condition for the generalized gradient 𝜕𝐽(𝑢

𝑚
) as

stated in (𝐻
5
) enables us to write

𝐽
0

(𝑢
𝑚
; V

0
− 𝑢

𝑚
) = max

𝑤∈𝜕𝐽(𝑢
𝑚
)

⟨𝑤, V
0
− 𝑢

𝑚
⟩
𝑌

≤ 𝑐
0
(1 +

𝑢𝑚



𝑝−1

𝑌
)
V0 − 𝑢

𝑚

𝑌

(33)

for all 𝑚 ≥ 𝑚
0
. By the continuity of the embedding 𝑋 ⊂ 𝑌,

the inequality above leads to

𝐽
0

(𝑢
𝑚
; V

0
− 𝑢

𝑚
)

≤ 𝑐
1
(1 +

𝑢𝑚



𝑝−1

𝑋
)
V0 − 𝑢

𝑚

𝑋
, ∀𝑚 ≥ 𝑚

0
,

(34)

where 𝑐
1

> 0 is a constant. Combining (29), (31), and (34)
yields

⟨𝐴𝑢
𝑚
, 𝑢

𝑚
− V

0
⟩
𝑋

≤𝑐
0
(1 +

𝑢𝑚



𝑝

𝑋
)+[𝑐

1
(1 +

𝑢𝑚



𝑝−1

𝑋
)+

𝑓
𝑋∗

]
V0 − 𝑢

𝑚

𝑋

(35)

for all 𝑚 ≥ 𝑚
0
. Relation (35) ensures that the sequence

{𝑢
𝑚
}
𝑚≥𝑚
0

is bounded in𝑋; indeed, if we suppose that we have
‖𝑢

𝑚
‖
𝑋

→ +∞ along a (relabeled) subsequence, then it is
seen from (35) that there is a constant 𝑐 > 0 such that

lim sup
𝑚→∞

⟨𝐴𝑢
𝑚
, 𝑢

𝑚
− V

0
⟩
𝑋

𝑢𝑚



𝑝

𝑋

≤ 𝑐, (36)

which contradicts hypothesis (𝐻
4
).

By the reflexivity of 𝑋, there exists a subsequence of
{𝑢

𝑚
}
𝑚≥𝑚
0

, denoted again by {𝑢
𝑚
}
𝑚≥𝑚
0

, such that

𝑢
𝑚

⇀ 𝑢 in 𝑋 as 𝑚 → ∞, (37)

for some 𝑢 ∈ 𝑋. Using hypothesis (𝐻
2
) with 𝜂

𝑚
= 𝑢

𝑚
, we

derive that (𝑢, 𝑢) ∈ (𝐾 × 𝐾) ∩ 𝐷(Φ).
It remains to show that 𝑢 verifies the inequality in

problem (1). Let an arbitrary element V ∈ 𝐾 and let 𝑚
1

=

𝑚
1
(V) ∈ N such that 𝑚

1
≥ max{𝑚

0
, ‖V‖

𝑋
}. Then V ∈ 𝐾

𝑚
for

each 𝑚 ≥ 𝑚
1
and so from (28), we have that

⟨𝐴𝑢
𝑚
, 𝑢

𝑚
− V⟩

𝑋
≤ Φ (𝑢

𝑚
, V) − Φ (𝑢

𝑚
, 𝑢

𝑚
)

+ 𝐽
0

(𝑢
𝑚
; V − 𝑢

𝑚
) + ⟨𝑓, 𝑢

𝑚
− V⟩

𝑋
.

(38)
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The compactness of the embedding𝑋 ⊂ 𝑌 and (37) guarantee
that 𝑢

𝑚
→ 𝑢 in 𝑌 as 𝑚 → ∞. Then the upper

semicontinuity of 𝐽0(⋅; ⋅) on 𝑌 × 𝑌 implies

lim sup
𝑚→∞

𝐽
0

(𝑢
𝑚
; V − 𝑢

𝑚
) ≤ 𝐽

0

(𝑢; V − 𝑢) . (39)

Assumptions (𝐻
1
) and (𝐻

2
) ensure that

⟨𝐴𝑢, 𝑢 − V⟩
𝑋

≤ lim sup
𝑚→∞

⟨𝐴𝑢
𝑚
, 𝑢

𝑚
− V⟩

𝑋
,

lim sup
𝑚→∞

(Φ (𝑢
𝑚
, V) − Φ (𝑢

𝑚
, 𝑢

𝑚
)) ≤ Φ (𝑢, V) − Φ (𝑢, 𝑢) .

(40)

Passing to the lim sup as 𝑚 → ∞ in (38) and using (39)
and (40), we get that 𝑢 ∈ 𝐾 satisfies the inequality in (1).
Since V was chosen arbitrarily in𝐾, we conclude that 𝑢 solves
problem (1). The proof of Theorem 4 is complete.
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