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We consider the multiquadratic functional equation. We establish its general solution and provide a characterization for this
functional equation. Finally, we prove the Hyers-Ulam-Rassias stability of this functional equation.

1. Introduction

In 1940, Ulam [1] gave a talk before the Mathematics Club of
the University of Wisconsin, in which he discussed a number
of unsolved problems. The stability of a functional equation
originated from a question raised by Ulam: “when is it true
that the solution of an equation differing slightly from a
given one must of necessity be close to the solution of the
given equation?” This question was solved by Hyers [2] in
the case of the approximately additive functions between
Banach spaces. In 1978, Rassias [3] provided a generalized
version of Hyers’ result by allowing the Cauchy difference to
be unbounded. The paper of Rassias [3] has provided a lot of
influence in the development of the stability of functional
equations, and this new concept is known as generalized
Hyers-Ulam-Rassias stability or Hyers-Ulam-Rassias stabil-
ity. Since then, the stability problems have been widely
studied and extensively developed by many authors for a
number of functional equations; see, for example, [4-10] and
the books [11-14].
The functional equation

fle+y)+fx-y)=2f(x)+2f(y) 6))

is called the quadratic functional equation, and every solution
of the quadratic functional equation is said to be a quadratic

function. It is well known that a quadratic function f: E;, —
E, between vector spaces can be expressed by a symmetric
biadditive (i.e., additive for each fixed one variable) function
B: E, x E; — E,.On the other hand, the stability problem
for the quadratic functional equation has been studied by
many mathematicians under various degrees of generality
imposed on the equation or on the underlying space; see, for
example, [15-20] and the references therein.

In [21], Park and Bae obtained the general solution
and the generalized Hyers-Ulam-Rassias stability of the
biquadratic functional equation. Let X and Y be vector
spaces. Recall from [21] that a mapping f : X x X — Y is
called biquadratic if f satisfies the system of equations

flx+p2)+ f(x—-yz)=2f(x2)+2f (y.2)
floy+z)+ flxy—2)=2f(xy)+2f (x2)

for all x, y,z € X; thatis, f is quadratic for each fixed one
variable.

A general version of the biquadratic functional equation
is the multiquadratic functional equation. Recall from [22]
that a mapping f : V" — W, where V is a commutative
group, W is a linear space, and n > 2 is an integer, is called
multiquadratic if it is quadratic in each variable. On the other
hand, for more details about the multiadditive (resp., the



multi-Jensen mappings) (i.e., mappings satisfying Cauchy’s
(resp., Jensen’s) functional equation in each variable) and the
stability for them, one can see [23-28] and the references
given there.

The stability of the multiquadratic functional equation
was also studied by some authors. For example, Park [29]
proved the stability of the multiquadratic functional equation
in Banach spaces. Cieplinski [22] proved the stability of this
functional equation in complete non-Archimedean spaces as
well as in Banach spaces but using the fixed point method.
However, to our knowledge, not many results are known
about the solution of this functional equation.

In the present paper, we establish the general solution
of the multiquadratic functional equation and provide a
sufficient and necessary condition for a mapping to be multi-
quadratic. Finally, we prove its Hyers-Ulam-Rassias stability.

2. General Solution

Throughout this section, let V and W be vector spaces, and
let n be a positive integer. We begin with the following useful
proposition.

Proposition 1 (see [11]). A function f:V — W is quadratic
if and only if there exists a unique symmetric biadditive
function B: VxV — W such that f(x) = B(x, x) for any x €
V. The biadditive function B is given by

Bry)=; [f(x+0)-fx-p)] Veyev. ©

In the following, we give the general solution of the multi-
quadratic functional equation.

Theorem 2. A mapping f: V" — W is multiquadratic if and
only if there exists a multiadditive mapping M : V" — W
such that

f (x5 % s %) = M (X9, X0, %0, X500 o5 X X)) (4)

forallx,,...,x, €V, and M satisfies the following symmetric
condition
M (X175 X125+ > Xj1s Xigs « + - Xy X))
)
= M (X175 X125 > Xjps Xigs ++ o5 X1> X))

for all x;; €V, wherei € {1,2,...,n} and j € {1,2}. Moreover,
the mapping M is given by

M (xu’ X12> X215 X225+« > X1 an)

1
:4_nz

iy €{1,—1}

(i i) f (o0 + i1 X0 Xy + X))
(6)
wherexij eV,ief{l,2,...,n}, je{l,2}.

Proof. We prove this theorem by using induction on n.
Clearly, Theorem 2 is true for n = 1 thanks to Proposition 1.
Now, we assume that the present theorem is true for some
n > 2, and we consider the case for n + 1.
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We first assume that there exists a multiadditive mapping
M : VD W such that

f(xl’xZ"'

= M (x1, X1, X5, X35 - -«

"xn’xn+1) (7)

> Xps Xps X 1> xn+1)

for all x,,...,x,,x,,; € V,and M satisfies the following
symmetric condition:

M (x17, X155 - - -

> Xil> Xi2s + o o5 X1 Xpos Xy 1,15 xn+1,2)

= M(xll’X12>"' ’xnl’an’xn+l,l>xn+1,2)

(8)

,xiz,xil,. ..

for all x;; € V, wherei € {1,2,...,n,n+ 1} and j € {1,2}.
Then, for eachi € {1,2,...,n,n+ 1}, we have that

!
f(xl,...,x,-,l,x,» + xi,x,-H,...,xn,an)
!
F X s X X = Xy Xy 1+ o Xpp Xy
=M ! !
= M (%0, X155 X1 Xi_ps X + X5 X5 + X X1

xi+1’ AR xn’ xn’ xn+1’ xn+1)

!
+M(x1,x1,... X;— X;5

!
> X X1 X = X i

i’

Xit1> Xig 1o+ o5 Xps Xy Xy 15 xn+1)

€)
= 2M (X, X15 -+ o> Xj_1> Xi_ps Xi> Xjp Xiy 1
xi+1’ AR xn’ xn’ xn+1’ xn+1)

! !
+2M (xl,xl,...,xi,l,xi,l,xi,xi,x,-ﬂ,

Kigloe oo Xy Xy Xy 15 xn+1)

=21 (xp,...

!
+2f(x1,...,xi_l,xi,xm,...

s Xi 1o Xy X1+ > Xopp X 1)

> Xy xn+1)

forall x,,x,,...,X,, X1, x; € V. Thus, f is multiquadratic.
Conversely, we assume that f : V"' — W is a multi-
quadratic function. We need to find the desired multiadditive
function M : V2™ — W, For this, we give the following
notations.
For each fixed z € V, define the mapping g, : V"' — W

by

g, (x50 x,) = f(xp5ees%p2)  Vxp,e..,x, €V.
(10)

Then g, is a multiquadratic mapping (as f : V"' — W is
multiquadratic). By induction, we let M, : V*" — W denote
the corresponding multiadditive mapping for g,; that is, M,
satisfies the symmetric condition (5) and

VX)) = M, (%1, %0, %5, X550, X, x,) (1)

g, (x1,...
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for all x,,...,x, € V. Moreover, the mapping M, : V*" —
W is given by

M, (xn’xlz’xzp X225+ -5 Xp1> xnz)

Ly

ip5eniy €1,-1}

(i 1,) Gy (01 + 11 X155 0005 Xy + 8, X,)

(12)

for all x;; € V,wherei € {1,2,...,n}and j € {1,2}.

On the other hand, for any fixed elements x;;, x5, ...,
Xp1> X €V, define h : V. —» Wby

X115X12>00X 15X

’xnl’an) (13)

for all x € V. It can be verified that h, , . . isa
quadratic mapping. Thus, it follows from Proposition 1 that
there exists a symmetric biadditive mapping T,

V xV — W such that

X115X12500Xp1 X2 (x) = Mx (xll’ X120

10X 1250X 15Xy

X115X125000X 15X (.X) T XX e X1 X (X, x) (14)

for all x € V. The mapping T, is given by

115X12505Xp15X2

Txn,xlz,...,x,ﬂ,xn2 (x’ )’)

1
- ‘_1 [hx“’x“""’x”l‘xnl (X + )/) B hxll’XIZ""’xnl’an (x - y)]
(15)
forallx,y € V.
Now, we define the mapping M : V2" — W by
M (%115 X125+ > X1 X2 X 1,1 X1 ,2)
=1 [Mxm,ﬁxm,z (%115 X125 -+ o5 Xpp> X)) (16)

Xn+1,1 " Xn+1,2 ( X1 an)]

for all x; € Voi € {1,2,...,n+ 1}, j € {1,2}. In the
following, we will show that M is the desired function for f:
V™l _, W. First, we show that M is multiadditive. Indeed,
by the definition of M (see (16)) and noting that for any
z € V the function M, is multiadditive, one can obtain that
foreachi € {1,2,...,n},

X115 X125+

!
M (x”, Xy e Xjp X5 Xigs o o5 X1 Xpps X115 xn+1,2)

!
X115 X125 0005 Xy xil"xiZ""’xnl’an)

[ Xpi1,1 T X041, (

e

Mxn+1,1fxn+1,2 (xll’ X12> -5 X

!
+Xj1> Xigs -+ > xnl,xnz)]

’xil’xi2"">xnl’xn2)

[Mxn+l,1+xn+l,2 ('xll’ X12>- -

[l M

+ M

!
X1, X112 (xll’ X125 X Xigs oo o5 X xnz)

>xi1’xi2""’xnl’xn2)

Mxn+1,1*xn+1,2 (xll’ X125

!
’xil’xiZ""’xnl’an)]

Xn1,1 " Xn+1,2 (xll’ X125

’xi1>xi2""’xnl’xn2)

= Z [Mxn+1,1+xn+l,2 (xll’ X125+ -

> Xi1s Xigs e oo xnl’an)]

_Mxn+1,l_xn+1,2 (xll’ X120

1 ,
+ 1 [Mxm,ﬁxm,z (xu,xlz, e X Xigs e e ,xnl,xnz)

!
x11>x12""’xil’xiZ""’xnl’an)]

Xn+1,1"Xn+1,2 (

=M (xn’ X125 Xi Xigs o+ o5 X5 Xyos X115 xn+1,2)
> X1 Xp2> X110 xn+1,2)

17)

!
+M(x11,x12,...,xil,xiz,...

for all xlfl,xn,xlz, ces X115 X1, € V. Moreover, by the
definition of M in (16) and the notations we gave in (13) and
(15), we have that

!
M (xn’ X125+ X1 Xpos X110 T Xy 1 xn+1,2)

[Mxn+1,1+x' X1 (xll’ X125+ X1 an)

n+l,

o

_Mxn+1,l+xr’1+l,l_xn+l,2 (xll’ X125+ 05> Xp1> x"2) ]

1

!
= Z [hx“,xlz,...,xnl,xn2 (xn+1,1 T X1 T xn+1,2)

!
_I/lxu,xlz,...,x,,l,xn2 (xn+1,1 T X1~ xn+1,2)]
T !
T XX 120Xy X xn+1,1 + xn+1,1>xn+1,2
X115X125m 00X 15X (xn+1,1’ xn+1,2)

!
+ Txll’xIZ""’xnl’an ('x"*’l:l’ x""'l:z)

- Z [hx“,xlz,...,xm,xnz (xn+1,1 + xn+1,2)
_]/lx“,xlz,...,xnl,xn2 (xn+1,1 - xn+1,2)]

!
+ 1 [hxn,xu,...,xm,xnz (xn+1,1 + xn+1,2)

/
_hxll,xlz’”.,xnl,xnz (xn+1,1 - xn+1,2)]

- 4 [Mxnﬂll-*—xnﬂ’z (xll’ X125+ 5 Xp1> an)

X110~ Xni12 (xn’ X125 -5 Xy an)]

1
+ 1 [Mximyﬁxmg (X115 X120+ Xps Xp2)

_Mx;ﬂ,l—xmm (X100 X125+ o> X1 an)]
=M (X11> X125+ X X> X1, xn+1,2)

M !
+ (xll’xIZ"'"xnl’an’xn+1,1’xn+l,2)

(18)



! ..
for all x|, X115 X125+« o5 Xp15 X205 Xy 1,15 Xy € V. Simi-
larly, we can see that M is additive in the other variables. Thus,
we have shown that M is multiadditive.

Furthermore, since f is multiquadratic, we obtain that

f (x5, %3...,%,,0) =0,
(19)
f (Xl> s Xy 2xn+1) = 4f (xl’ tee xn’xn+1)
for all x,,...,x,,x,,, € V. Thus, by the definition of M in

(16) and the notations we gave in (10) and (11), one has

’xn’xnﬂ)

f(xxy, ...

= L G 28,00) = (5135, 0)]
1
! [gzx,,+1 (%15 %5+, %) = o (xl,xz,...,x,,)]

> Mo

1
= [MZXM (%1, X1 Xg Xy v v o5 Xy Xyy)

=My (%1, X1, X3, Xgy v v+ » Xy Xyy) ]

= M (%1, X1, X, X+ > Xppp Xppp Xy 15 Xpy1)
(20)

forall x,...,x,,x,,; €V.

Now, we verify the expression of the mapping M. By the
definition of M again and the notations we gave in (10) and
(12), also noting that f is multiquadratic, one can obtain that

M (x11> X125+ X Xu> X1, xn+1,2)

1

4 [Mxn+1’1+xn+1’2 (xll’ X125+ X1 an)

K11~ %12 (X115 X120+ 5 Xpr» an)]

1
3

iy yeiy€{1,~1}

(i) 11 %12 (%11 + i %0050

=

Xn1 + lnan)

1 . . .
T Z (iy--+iy,) gx,,“,lfxn“,z(xll+llx12""’

i1l €{1,—1}

Xn1 + lnxnz)

X f (%9 + i1 X125+ 05 Xy

'annz’ xn+1,1 + xn+1,2)
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_ Z (iy---i,)

i15ensiy €1,-1}

X f (11 11X Xy

T X0 Xp11 ~ 'xn+1,2)

1 .
= 4n+1 Z (11 h

i1 seosipsing €11,=1}

! in : in+1)

X f (11 11X Xy

Hip Xy Xyp1 + in+1xn+1,2)
(21)

forallx,-j eV,ie{l,2,...,n+1},je{1,2}.
Finally, we check the symmetric property of M. Fix any

x;; €V, wherei € {1,2,...,n+ 1} and j € {1,2}. Since f is

multiquadratic, it follows that f is an even mapping in each
variable. Then by (21), it is easy to verify that

M (xn’ X125 X0 Xs X1, xn+1,2)

(22)
=M (xll’ X125 -+ X Xs X 1,2 Xnv1,1) -

Moreover, due to the symmetric property of M, ., and
%, 1-x,,,, and from the definition of M (see (16)) we can

get

M (xll’ X125+ X1 Xjns v o5 X1 Xy X115 xn+1,2)

= M(xu’xnw'- ’xnl’an’xn+l,l>xn+1,2)

(23)

,xiz,xﬂ,. ..

for each i € {1,2,...,n}. So the desired symmetric property
of M is proved. Thus, we have shown that M : V2" — w
is the desired multiadditive mapping for the multiquadratic
mapping f: V" — W. The proof is complete. O

3. A Characterization for the
Multiquadratic Functional Equation

The following theorem provides a sufficient and necessary
condition for a mapping to be multiquadratic.

Theorem 3. Let V be a commutative semigroup with the
identity element 0, and let W be a linear space. A mapping f :
V" — W is multiquadratic if and only if

Z f (g +i3%755 - -

> X1 + lnan)

iy €{1,-1}
(24)
_ n
=2 Z f(xljl,...,xn]-n)
Jisim€l1,2}
forall (x11,..., %) (X125 %,5) € V.

Proof. Assume that f: V" — W satisfies (24). Putting

(%1155 %p1) = (X125 - -5 %,0) = (0,...,0) (25)



Abstract and Applied Analysis

in (24) we get 2"£(0,...,0) = 2*'£(0,...,0), and conse-
quently, we have £(0,...,0) = 0. Next, fix j € {1,...,n},x;, €
V, andputxj2 = X, = 0, wherei, € {1,2},fork € {1,...,n}\
{j}. Then, by (24),

2"£(0,...,0,x1,0,...,0)
(26)

=2"2""£(0,...,0,x},,0,...,0),

and thus f(0,..., 0,x,0,..., 0) = 0. Continuing in this
fashion, we obtain that f(x) = 0 for any x € V" with at least
one component which is equal to 0.

Now, fix j € {1,..., 1}, Xy, ..., X1, X, € Vand put x;, =
Ofork e {1,...,n}\ {j} in (24). Then

2”71f(x11,...
+2"_1f(x11,...

=2" [f(xu,...
+f(x11,...

,xj1+xj2,...,xn1)

s X1 —sz,...,xnl)
(27)

’xnl)

X))

s X g5

> sz, cen
and thus

F (i Xy + X s X))
+ f (315
=2f (x5
+2f (%1,

s X1 —sz,...,xnl)
(28)

,le,...,xnl)

,sz,...,xnl),

which proves that f is multiquadratic.
Conversely, we assume that f is multiquadratic, and we
prove (24) by mathematical induction. If f : V. — W is

quadratic, then f(x;;+x,)+ f (%, —x15) = 2f(x,1)+2f(x5)
forall x,,,x,, € V. So, (24) holds for n = 1. It is easy to verify
that (24) holds for n = 2. Indeed,

£ (%11 + X120 %01 + Xp3)
+ f (%97 + X920 X1 — X0) + [ (77 — X120 X9 + Xp3)
+ f (%9 = X120 X1 — X55)
=21 (x97 + X130 X1 ) + 2 (%77 + X125 %55)
+2f (31 = %100 X)) + 2 (%11 = X120 %55)
= 4[f ey 200) + f (0120 %21)

+f (%11, 2%0) + f (%155 %)
(29)

for all x;;, x5, X,7, X5, € V. Assume that (24) holds for some
positive integer n > 2. Then,

Z F (oo +iyxs 0 X

il €{1,-1}
-annZ’ xn+1,1 + ln+1xn+1,2)

>

ip5eniy, €41,-1}

[f (e #2005 0005 Xy

iy X Xpi11 + xn+1,2)
+ f (o1 + i X105 X
Hip Xy X1 — xn+1,2)] (30)

AN
=2 Z [f (xljl"“’xnjy,’xnﬂ,l +xn+1,2)

+f (xlj1 Yt xnjn’ Xn+1,1 ~ xn+1,2)]

(21 (15> X Xer1)

+2f (xljl, o> X s xnﬂ)z)]

n+l
=2 Z f (xljl, e
Jroees o dn €{1,2

> xnjn’ xn+1jn+l ) '

Thus, (24) holds for n + 1, and this completes the proof. [

4. Stability

In this section, we give two results on the stability of the
multiquadratic functional equation. Throughout this section,
let V be a commutative semigroup with the identity element
0, and let W be a Banach space.

Theorem 4. Assume that for everyi € {1,...,n}, ¢, : V**' —
[0, 00) is a mapping such that for any (x,,...,X,,,) € V"

.,xi_2,21x,-_1,xi,...,an)

+~~+(pi(x1,..
! 2x;, 2!
+ 2 Pi\Xp o Xins & X0 S X415 Xigs -5 X

i
> Xis Xt 2 Xit2> Xig3> o> xn+1)

+(pi(x1,...

+eoootQ; (xla--'>xn’2]xn+1)] < 0.

(31)



If f: V" — W is a function satisfying
Hf(xl,...,xi_l,xi+x:,xi+1,...,xn)
+f(x1,...
=2f (x,...
—2f(x1,...

S(pi(xl,...

!
> Xi—1> X — xi’xi+1""’xn)
s Xi1> Xy Xyl o2 X)) (32)

)

!
,xi,xi,xm,...,xn)

!
s X1 X Xjpgs e

forall (xy, ..., % X}, Xpu15 -, %) € Vi€ {1,...,n}, then
for every i € {1,...,n} there exists a multiquadratic mapping
F;: V" — W such that for any (x,,...,x,) € V" one has

1

||f(x1,...,xn)——f(x1,,_'

3 X1 0, X g5 s X))

—F; (xy,...,x,) (33)

X))

,n} the function F, is given by

<@ (xp,..

Foreveryi e {l,...

.,xi,xi,xi+1,..

.1 j
F (xp,....x,) = jlgr;ozf(xl,...,x,-,l,ZJx,-,x,»H,...,xn)
(34)

forall (x,,...,x,) € V".

Proof. Fix xy,...,x, € V, j € N U{0} (where N denotes the
set of the positive integers) and i € {1,...,n}. Putting xf = X
in (32), we get

If oo X1 2% X155 X,)
+f (%o X5 0, X155 X)) = 4f (95 05%,) |
<@ (X0 s Xy Xy Xy 1505 X)) -
(35)
Hence

1
||f(x1,...,xn)— Zf(xl,...,xi_1,2x,~,xi+1,...,xn)

1
_Zf(xl,...,x,-_l,(),x,-H,...,xn) (36)
1
S Z(Pz (xl)-~-$xl‘)xi,xi+1)...,xn) .

Dividing both sides of the above inequality by 4/ and

replacing x; by 2/x;, we obtain

1 .
”Zf(xl,...,xi,1,2’xi,x,~+1,...,xn)
1 !
_Hf(xl,...,xi_l, xi,xm,...,xn)
) (37)
—Ff(xl,...,x,»_l,O,le,...,xn)

)xn))

1 . .
< H(pl (xl,.. . ,ZJx,-,2Jx,-,xi+1,. ..
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and consequently for any nonnegative integers [ and m with
I < m, we obtain

1 !
Zf(xl,...,xi_l,Z xi,xi+1,...,xn)

1

m
Tgm 2 X115 2" X X150 X)

JACTI
(38)

m—1 1
_Z Ff(xl,...,xi_l,o,xi+1,...,xn)
j=l

m—1
1 : :
< Z4j+19"i (xl,...,ZJx,-,ZJx,-,x,»H,...,xn).
=

Therefore, it follows from (31) that {1/4/ flxpeens
X1 2 X X Xp)}ieny is a Cauchy sequence. Since
the space W is complete, this sequence is convergent, and we
define F; : V" — W by (34). Putting I = 0, lettingm — oo
in (38), and using (31), we see that (33) holds.

Finally, fix also x| € V, j € N, and notice that according
to (32) we have

H‘%Jf (xl""’xi’l’zj (xi +x1{)’xi+1’-~’xn)
+ %f(xl,...,xi_l,zj (xi - xl{),xm,...,xn)
_ %f(xl,...,xi_l,zjxi,xi+1,...,xn) (39)
2

i !
—Zf(xl,...,xi_l,zjxi,xiﬂ,...,xn)
1 Jy iyt
SE‘P:’(’%-MZ X2 xi,xiﬂ,...,xn).
Next, fix k € {1,...,n}\ {i}, x,'< € V, and assume that k < i

(the same arguments apply to the case where k > 7). Then, it
follows from (32) that

1
“Zf (xl,...,xk_l,xk
/ 5
FXo> Xpey 1o+ - > Xi_ 1 xi,xm,...,xn)
1
+ Zf(xl,...,xk_l,xk

, A

—xk,xkﬂ,...,x,-,l,ZJx,-,x,»H,...,xn)
2 j

- Zf(xl,...,xi_l,Z xi,xiﬂ,...,xn)

2 '
- Zf(xl,...,xk_l,xk,xk+1,...,

i
Xi_152 xi,xm,...,xn)

%)

(40)

1 ' j
< Z(Pk (xl,...,xk,xk,xkﬂ,...,xi,l,Z Xis Xjp1s -
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Letting j — oo in the above two inequalities and using (31),
we see that the mapping F; is multiquadratic. O

Theorem 5. Assume that ¢ : V" —
such that

[0, 00) is a mapping

@(xn’xna-- Xn1> nZ)

(o]

1 4 . . .
= Z(;mq) (21x11,21x12,...,21xn1,21xn2) <00
j=

(41)

or all (%11, X193 X, %) € VIVIFf V" = Wisa
11> X12 n1> X2

function satisfying

“ Z F (%01 + X0, Xg + iy X,0)
I

i oeeni, €11,-1}

n

(42)

- 2" Z f (lel x”jn)

<@ (X1 X1z s %)

for all (x,1, X125 -+ » Xpp> X,p) € V" and letting f(x) = 0 for
any x € V" with one component which is equal to 0, then there
exists a unique multiquadratic mapping F : V" — W such
that

2 X)) = F (x5

’xnl)"

> Xnl> xnl)

[COTRS

<@ (%11 Xq05 -+

(43)

forall (xy,...,%,,) € V". The function F is given by

F(xypeearXpy) = hm Ef (2 xu,...,ijnl) (44)

forall (x1,...,%,) € V"

Proof. Fix (xyy,...,%,) € V"and j € N U {0}. Putting x;, :=

x; fori € {1,...,n} in (42), we get
”f(lel""’zxnl) —4nf(x11,...,xn1)||
(45)
< @ (X115 X115+ K> X)) -

Dividing both sides of the above inequality by 4"V and
replacing x;, by 2/x;; fori € {1,...,n}, we see that

1 j+1 i+1 1 : .
4n(j+1)f(2]+ xll""’2]+ xnl)_ Ef(zjxll""’zjxnl) ’
R SN Y
< 4n(j+1)‘P(2 X115 2 x11»-~-,2 ,,1,2 X, )
(46)

and consequently for any nonnegative integers [ and m with
I < m we obtain

1

4nmf(meH,.. 2" %) — (2 xll,...,ZIxnl)
ml ) ) ) ) (47)
< ZW(p(ﬂxu,ﬂxu,...,Zan1,2an1).
il

Therefore, it follows from (41) that {1/4”jf(2jx11,...,
ijnl)}jeN is a Cauchy sequence. Since the space W is
complete, this sequence is convergent, and we define F :
V" — W by (44). Putting I = 0, takingm — oo in (47),
and using (41), we can see that the inequality (43) holds.

Next, fix also (x1,, ..., X,,) € V", and note that according
to (42) we have

1 i .
4”1 Z f( (21 +i1x15) 500527 (30 + ’nxnz))
Wi, €{1,-1}
2" L2 2
- Yol (20 2y)
JroeJn€i1,2}

(48)

Letting j — oo in the above inequality and using (41), we
see that F satisfies (24). By Theorem 3, we obtain that F is
multiquadratic.

Finally, assume that F' : V" — W is another multi-
quadratic mapping satisfying (43). Fix k € N U {0}. Since F
and F' are multiquadratic mappings, it is easy to verify that

F(kan,...,kanl) = 4"F (x)10. 2 %) »
(49)

F (2% 0 2%, ) = 47FF (3, x,)

Then, using (41) and (43), we have

”F (X115 e s Xy ) — F' (xu,...,xnl)"

- (21125,
_4%1;’(2’%11, ,2x,)

_”%F(kau, 2%,
_ﬁf(z"x“, ,2"%,)

+ 4_ikf(2kx11, ,2%,)
_4%13’(2’%11, 2%,




IN

2 ik k k k
E(p(z X112 X5 eer2 X5 2 xnl)

(o]

1 . ) ) .
22—4n(j+1) ® (ijn, 2x105 2%, 2an1) ;
=k

(50)
hence letting k — oo we obtain F = F'. O
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