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Microwave tomographic imaging is an inexpensive, noninvasive modality of media dielectric properties reconstruction which can
be utilized as a screening method in clinical applications such as breast cancer and brain stroke detection. For breast cancer
detection, the iterative algorithm of structural inversion with level sets provides well-defined boundaries and incorporates an
intrinsic regularization, which permits to discover small lesions. However, in case of brain lesion, the inverse problem ismuchmore
difficult due to the skull, which causes low microwave penetration and highly noisy data. In addition, cerebral liquid has dielectric
properties similar to those of blood, which makes the inversion more complicated. Nevertheless, the contrast in the conductivity
and permittivity values in this situation is significant due to blood high dielectric values compared to those of surrounding grey
and white matter tissues.We show that using brainMRI images as prior information about brain’s configuration, along with known
brain dielectric properties, and the intrinsic regularization by structural inversion, allows successful and rapid stroke detection even
in difficult cases. The method has been applied to 2D slices created from a database of 3D real MRI phantom images to effectively
detect lesions larger than 2.5 × 10−2m diameter.

1. Introduction

A stroke or “brain attack” occurs when the blood flow to an
area of the brain is interrupted by a blocked (ischemic stroke)
or burst (hemorrhagic stroke) blood vessel. As a consequence,
brain cells begin to die, and the abilities controlled by that part
of the brain are lost. Stroke is a major cause of adult disability
and death in the world, and the appropriate response to brain
attack is emergency action: every minute people lose getting
treatment increases the chances of them experiencing stroke-
related disabilities or death. The symptoms of a stroke are
varied and include weakness, clumsiness, altered feeling on
one side of the body, speech disturbance, loss of vision, or
dizziness [1]. Clinical diagnosis typically relies on medical
imaging methods such as computed tomography (CT) and
magnetic resonance imaging (MRI). Although these tech-
niques are effective for identifying the location and type of
a stroke, they are not suitable for being used in emergencies
because of their high cost and lack of rapidity and portability.

Recently, the authors in [2] proposed a method based
on microwave tomography (MWT), to supplement these
medical imaging techniques, and focused on stroke detection.
The authors used the nonlinear Newton reconstruction to
obtain biologically meaningful images of the brain, including
images of strokes. One of their important conclusions is
that a multifrequency approach significantly improves the
detection. Since it has been shown that the tissue malig-
nancies, blood supply, hypoxia, acute ischemia, and chronic
infarction present dielectric contrast compared with healthy
tissues [3–6], MWT is a potentially good alternative to the
medical imaging methods mentioned above. However, the
results reported by [2] only provide an initial guidance to
stroke diagnosis, which does not take into account dispersion
of tissue dielectric properties or any particulars of head
geometry.

Later, the authors in [7, 8] presented their simulation
results of wave propagation in an anatomic realistic head
phantom to detect brain matter affected by a simulated
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stroke, using a finite-difference time domainmethod (FDTD)
to calculate the electromagnetic fields. Nevertheless, the
detection of strokes in those articles is restricted to large
dimension lesions situated close to the skull and does not
provide accurate information about stroke location or size,
their location errors varying from 5.68×10−3m to 4×10−2m.

In this paper, we propose a method to detect strokes
based on the propagation of microwaves in brain tissues.
As in [8], our approach makes use of a (numerical) finite-
difference method, but in the frequency-domain (FDFD), to
estimate the electromagnetic fields as predicted by Maxwell’s
equations, supplied by the Sommerfeld boundary condition,
and solves the associated inverse problem, which consists in
minimizing the mismatch between the signal of the scattered
microwaves and the one simulated with a numerical model.
This technique has been successfully applied in the early
detection of breast cancer [9]; however, the breast does not
present the difficulty found when exposing the brain to
microwaves, as it is surrounded by a skin layer, whereas
the skull represents a dielectric shield within which the
brain is confined. Moreover, the interior cephalic liquid has
dielectric properties similar to those of blood, which reduces
the contrast. Thus, high microwave frequencies, which lead
to better resolution, are not able to penetrate into the brain,
and consequently lower frequencies should be used instead,
which leads to a loss of sensitivity to dielectric changes.
To reconstruct the brain image, we take advantage of a
multifrequency approach [2] and two well-known strategies
that act like regularization methods: (1) the use of prior
information, namely, known dielectric properties of brain
tissues [10] and brain structure data, obtained from an MRI
database [11], and (2) the level set technique for shape
reconstruction [9]. On the other hand, detection in 2D is
more computationally efficient than 3D models and allows
rapidly detecting a potential stroke by varying the height at
which microwave measurements are carried out.

Our study numerically demonstrates the potential use of
microwaves for rapid discovery of brain lesions of sizes larger
than 2.5 × 10−2m, using a realistic model derived from real
MRI images, despite the low penetration of microwaves into
the brain.The use of the constant average map as initial guess
leads to unsatisfactory stroke detection, and to overcome
this difficulty, it is essential to obtain a good initial guess.
Thus, we make use of an existing database of MRI images
from normal brains and introduce two methods to build
appropriate initial guesses; the first one is based on computing
an “average brain configurationmap” from theMRI database,
and the second one is derived from the statistics of this set of
images. In our experiments, once the initial guess is chosen,
the next step consists in introducing and evolving the level
set function, which estimates the location of potential lesions.
The combination of both regularization techniques provides
an imaging of the brain in which stroke location is well
estimated in a high percentage of cases, even for strokes of
diameter 3 × 10−2m profoundly situated in the brain.

Additionally, to compare these methods to traditional
techniques, we also consider the average dielectric constant
map to which we apply the classical pixel by pixel adjoint

scheme, as in [9], to obtain an alternative initial guess;
however, our techniques are faster and provide better quality
brain images, which facilitate clinical diagnosis.

This paper is organized as follows. In Section 2, we
describe the theoretical basement of the direct problem
related with stroke detection and the brain models used
in this study; in Section 3, we underline the measurement
details, the choices of the initial guesses, and the results of the
numerical experiments; finally, in Section 4, we summarize
the main results of our study.

2. Methods

2.1. Direct Problem. Many interesting physical phenomena in
electromagnetism can be described by a scalar approximation
ofMaxwell’s equations. In our application, for example, rather
than solving the three dimensional problems for brain, which
is computationally expensive, we use a 2D domain at different
brain axial cross-sections when searching for a stroke. The
measurement is carried out by 50 equidistant receivers and
transmitters set around the phantom head, which, respec-
tively, measure and create electromagnetic fields. In the
case described above, the scalar Helmholtz equation in the
domainΩ

Δ𝑢 (x) + 𝜅 (x) 𝑢 (x) = −𝑞 (x) (1)

is a good approximation for describing the nonzero compo-
nent of the electric field 𝑢. To solve it, we use the standard
Sommerfeld radiation condition in twodimensions at infinity

lim
|x|→∞
√|x| ( 𝜕𝑢
𝜕 |x|
− 𝑖𝜅𝑢) = 0 (2)

as boundary condition. In (1), 𝑞(x) is the active source, and
𝜅(x) is the squared complex wavenumber, which is related
to the complex relative permittivity through formula 𝜅 =
𝜔
2

𝜇
0

𝜖
0

𝜖
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𝑟

. Here, 𝜔 is the angular frequency of the testing
waves, and 𝜇

0

and 𝜖
0

are the vacuum permeability and
permittivity, respectively. Since we use a Sommerfeld radia-
tion condition as a boundary condition, the computational
domain Ω is discretized including appropriate boundary
layers (PMLs) which absorb the radiation providing that
no waves are coming from outside. With the Sommerfeld
radiation condition, the Helmholtz equation has a unique
solution.

Since we assume that the stroke area and the surrounding
tissues are separated by sharp interfaces, we introduce the
level set function 𝜙(x) to characterize the location and shape
of possible lesions. The inclusion of the shape description
based on the level set function acts as a potential regularizing
factor, stabilizing the inverse reconstruction. Our goal is
to minimize iteratively the residual operator 𝑅(𝜅), which
describes the mismatch between the physically measured
data and those corresponding to the guessed distribution of
𝜅 in the domain of interest.

We start with 𝜙(x) constant in all the domains. To evolve
it, we define the forcing term 𝑓(x) by

𝑓
(𝑛)

(x, 𝑡) = −𝐶[Re (𝑅(𝜅)∗𝑅 (𝜅)) 𝜕𝜅
𝜕𝜙

] . (3)
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Here, 𝑅(𝜅)∗𝑅(𝜅) is the Fréchet derivative of the residual
operator𝑅(𝜅)with respect to 𝜅, and the forcing termpoints in
the descent direction of the least squares cost; 𝑡 is the artificial
iteration time, and 𝐶 is a conveniently chosen constant.
The Fréchet derivative can be calculated efficiently using the
adjoint formulation (see [9, 12]). Numerically discretizing,
we arrive at the following iteration rule for level function
updates:

𝜙
(𝑛+1)

= 𝜙
(𝑛)

+ 𝛿𝑡𝑓
(𝑛)

. (4)

2.2. Head Model. It is well known that the interaction
between biological tissues and electromagnetic radiation
is strongly influenced by the variation in water content
(e.g., blood contains mostly water molecules). The complex
permittivity 𝜖∗

𝑟

of a dielectric medium is defined as

𝜖
∗

𝑟

= 𝜖
𝑟

+ 𝑖

𝜎

𝜔𝜖
0

, (5)

where 𝜖
𝑟

denotes the relative permittivity, 𝜖
0

the vacuum per-
mittivity, 𝜎 the conductivity, and the symbol 𝑖 the imaginary
unit. The efficient microwave frequencies, that is, those for
which microwaves can penetrate inside the brain through
the skull, are in the range of (0.5–1) × 109Hz [8]. The values
of the relative permittivity and conductivity of brain tissues
for this range of frequencies are well known [10, 13] and
can be efficiently used as prior information. The maximal
permittivity and conductivity values correspond to cerebral
spin fluid (𝜖

𝑟

= 68, 𝜎 = 2.46) and blood (𝜖
𝑟

= 61, 𝜎 = 1.58),
while the minimal values are for skull and fat inclusions (𝜖

𝑟

=

12, 𝜎 = 0.16 and 𝜖
𝑟

= 5, 𝜎 = 0.05, correspondingly).
A second source of prior information consists in sta-

tistical summary brain configurations, extracted from an
arbitrary normal brain image database. In the preparation of
this paper, we obtained a collection of 100 three-dimensional
MRI scans, corresponding to normal (control) patients
from the Parkinson’s Progression Markers Initiative (PPMI)
database (http://www.ppmi-info.org/data), at the Image Data
Archive at the Laboratory of Neuro Imaging (IDA) [11].
Each 3D image comprised around 250 two-dimensional slices
corresponding to views of the brain acquired in the sagittal
plane, at different positions. We used those 2D images to
obtain realistic numerical phantoms and also to obtain data
for simulated brain stroke patients. Figure 1 illustrates the
three-dimensional configuration of these MRI brain images,
visualized bymeans of the noncommercial medical visualiza-
tion software Mango (http://ric.uthscsa.edu/mango/).

After collecting theMRI images of 100 control patients, at
similar heights, we labelled them with indices 𝑖 = 1, . . . , 100
and assigned dielectric properties to the axial cross-sections
by mapping the real MRI image intensities to known dielec-
tric parameter ranges [10]. Finally, hemorrhagic strokes were
simulated by including ellipses of different sizes. The stroke
dielectric properties correspondent to blood lesions were
taken from [10, 13].

3. Numerical Experiments

3.1. Measurement Configuration. In our experiments, the
imaging domain is 0.26 × 0.26m2. The antennas are sit-
uated equidistantly on a circle of 0.11m radius, emitting
microwaves of frequencies (0.3–1) × 109Hz by steps of 0.1 ×
10
9Hz, and receiving the scattered signal. Since the shape

of the skull can be averaged for patients of similar age and
approximated using the structural inversion algorithm from
the scattered waves [9], we can assume at this stage of the
study that the configuration of the patient skull is known.The
surrounding media are supposed to be air atmosphere. For
the reconstruction, we use a mesh of 160 × 160 pixels, where
each pixel is a square of (1.625×1.625)×10−6m2. A Gaussian
noise of 5% is added to the numerically simulated “true” data.

3.2. Brain Initial Guesses. Given the difficulty of the inverse
problem for brain reconstruction because of ill-posedness,
the use of the appropriate initial guess is decisive. We have
used three different initial guesses. Firstly, we consider the
ADCmap, which is commonly used [9], applying afterwards
the classical pixel by pixel reconstruction (PPS).

Secondly, we have derived two new initial guesses from
a collection of 100 real clinical MRI images from control
patients. It is logical to suppose that brain tissues of different
patients have generally similar dielectric properties. Never-
theless, this internal brain tissue distribution cannot be recov-
ered from microwave data because of low penetration. Thus,
to obtain the second initial guess, we propose the average
map method (AMM), consisting in computing an “average
brain configuration” deduced from the average distribution
of MRI intensities and, consequently, tissues densities, which
are directly related to the average distributions of dielectric
properties. To calculate the AMM initial guess for a given
patient, the MRI skull dimensions are resized to the size of
our patient’s skull.

The other new technique is the representative method
(RM), where the initial guess is obtained as follows. Given
the 𝑛 permittivity maps of the reference brains, which are
resized as in the AMM method, all the pairwise differences
are calculated (𝑛 = 100 in our experiments). Consequently,
the maximal singular values of such difference maps are
found using the matrix spectral norm, ‖ ⋅ ‖

2

, which provides
a vector 𝐷

𝑖

of length 𝑛 − 1 for each of the 𝑛 brains in
our prior data set. The mean value 𝐷

𝑖

, 𝑖 = 1, 2, . . . , 𝑛, of
the components of such vectors can be seen as an average
distance between the 𝑖th brain configuration and the rest of
brain maps. Figure 2(a) depicts the distance distributions of
the 10 brains with the lowest values of 𝐷

𝑖

. Moreover, since
they have different dispersions, we calculated the variances
of 𝐷
𝑖

, 𝜎2
𝑖

, for all brains; the distributions of those with the
10 lowest values of 𝜎2

𝑖

are shown in Figure 2(b). Finally, the
brain chosen as the one that best represents the collection of
𝑛 brain maps (the most representative map) is the one with
the smallest 𝐷

𝑖

, provided that the corresponding dispersion
is also small. In our experiments, the brain map with label
𝑖 = 86 has both one of the smallest means and variances, and
therefore this is the one used as the third initial guess.
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(a) (b)

Figure 1: (a) Three-dimensional configuration of brain MRI images from the database used to obtain prior information for the proposed
initial guesses. The head surface is rendered using the medical visualization software Mango. (b) Axial (left), coronal (upper right), and
sagittal (lower right) views of the brain.
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Figure 2: (a) Singular value distributions of the pairwise differences of the permittivity maps, 𝐷
𝑖

, corresponding to the 10 maps with the
smallest mean value, 𝐷

𝑖

. (b) Singular value distributions of the pairwise differences of the permittivity maps, 𝐷
𝑖

, corresponding to the 10
maps with the smallest variance, 𝜎2

𝑖

.

3.3. Stroke Location Results. After one of the initial guesses
described above is selected, the location of the stroke is
obtained by introducing the level set function with initial
value equal to a positive constant in all the domains, where
the domain is represented by either: the ADC, followed by
pixel by pixel reconstruction (we name this the ADC-PPS
map), the AMMmap, or the RM map. The level set function
is evolved using (3) and (4), implicitly representing the shape
of the brain lesion. In our experiments, different locations
and sizes of brain strokes have been analysed for detection.
For example, the AMM algorithm has a probability of 0.96 of
detecting profound strokes (for 96 out of 100 patients with a
lesion of size 3×10−2mthe detectionwas successful), whereas
for the RM technique, this probability is 0.82.

The results of brain lesion detection for the same patient
with different stroke positions are shown in Figure 3. Each
row represents a different method of detection, depending
on which initial guess is used: the first one shows the ADC-
PPS case, the second one the RM case, and the third one

the AMM case. The largest diameter of the stroke, which is
situated deeply inside the brain, varies from 2.5 × 10−2m to
4.5 × 10

−2m. The left column in Figure 3 plots the patient’s
“real” brain configuration, and the central column shows
the results of the reconstruction. Finally, the right column
illustrates the evolution of the residuals in the algorithm. In
the first case (ADC-PPS), this evolution presents a small jump
when the level set function is introduced after the PPS stage;
note that with this method, the detection process needs more
iterations compared to the other two. In all the experiments,
the stroke is successfully detected and located. Small areas of
cephalic liquid are detected as well, but they can be ruled out
as “stroke candidate” since their location is characteristically
close to the skull.

To assess the effectiveness of the fastest methods, that is,
with the AMM and RM initial guesses, Figure 4 shows the
results of the detection for different patients and positions
of the lesion. The rows are ordered from upper to lower
according to decreasing sizes of the simulated stroke, with
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Figure 3: Comparison of the results obtained with the proposed initial guesses.The left column is the patient’s brain configuration, the central
column depicts the results of reconstruction, and the right column shows the residuals evolution.The rows correspond, from upper to lower,
to the ADC-PPS, RM, and AMM initial guesses.

the largest diameter of the ellipse varying from 6.27 × 10−2m
to 2.5 × 10−2m. In particular, the first row corresponds to
the detection of a stroke as in [8]. Again, the first column
represents the patient’s brain configuration, and the second
one shows the RM reconstruction results, while the third one
corresponds to the AMM results. The detection and location
have been successful and precise in all the cases, even for
profoundly situated strokes.

Finally, in Figure 5, we show that in case of healthy brain,
the resulting maps do not present areas of abnormality. The
left panel corresponds to the patient’s brain map, the middle
panel is the result of the reconstruction using the RM initial
guess, and the right panel displays the results with the AMM
initial guess. Few “ghosts” appear in the RM case, which can
be ruled out because of clear symmetry.

As mentioned before, the main advantage of using the
AMM and RM initial guesses, which are obtained from the
MRI database, is that the detection is rapid compared to
the ADC-PPS case. Using a standard PC (2.66GHz and
3.25GB RAM), the detection for those initial guesses takes
only a few minutes, whereas in the ADC-PPS case, the
number of iterations is roughly ten times larger, which for
a multifrequency approach turns out to be computationally
expensive, specially in the case of stroke detection, where a
rapid diagnosis is crucial. In Table 1, we show the time (in
seconds) needed for stroke detection; in all the cases, the
stopping criterium is that the variance of the residuals of the
last three iterations is within given limit values.

An additional benefit of the AMM and RM techniques
is that the brain map they provide is more realistic than
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Figure 4: Reconstruction for different stroke locations and sizes, using RM (central column) and AMM (right column) initial guesses. The
left column shows the patient’s brain configuration.
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Figure 5: Reconstruction in the absence of stroke.The left panel is the patient’s brain map; the middle panel is the result of the reconstruction
using the RM initial guess; the right panel shows the reconstruction using the AMM initial guess.

Table 1: Time needed for stroke detection for the three cases of
initial guesses, in a PC with 2.66GHz and 3.25GB RAM.

Method AMM RM ADC-PPS
Time (s) 540 660 4500

that obtained with the ADC-PPS, which allows the medical
personnel to provide an accurate diagnosis of the brain stroke.

4. Conclusions

We present a technique for brain stroke detection, whose
key feature is the use of an appropriate initial guess for the
iterative algorithm of structural inversion. The significant
difficulty of this detection bymicrowaves is due to the barrier
of the skull and to the similarity between cerebral fluid
dielectric properties and those of blood. We show that the
detection problem, however, can be rapidly and successfully
solved if the interior of the brain is approximated by either
the AMM or the RM initial guesses, which are derived
from a 2D brain map database. In both cases, the detection
takes only a few minutes and is much faster than using, as
initial guess, the domain map constructed with the mean
value of the dielectric parameters. The location of the stroke
is exact, even for lesions profoundly situated in the brain,
although the size is not well approximated in all the cases.
The results confirm that the multifrequency approach using
the microwaves in the range of (0.3–1) × 109Hz and an
appropriate initial guess are effective for stroke detection,
proving that the microwave imaging has a high potential as
a rapid, cost effective, and noninvasive system. Moreover,
the quality of the final reconstruction image facilitates to the
medical personnel an accurate diagnosis of brain stroke.
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