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Due to the recent rapid growth of advanced sensing and production technologies, the monitoring and diagnosis of multivariate
process operating performance have drawn increasing interest in process industries. The multivariate statistical process control
(MSPC) chart is one of the most commonly used tools for detecting process faults. However, an out-of-control MSPC signal only
indicates that process faults have intruded the underlying process. Identifying which of the monitored quality variables is responsi-
ble for theMSPC signal is fairly difficult. Pinpointing the responsible variable is vital for process improvement because it effectively
determines the root causes of the process faults. Accordingly, this identification has become an important research issue concerning
recentmultivariate process applications. In contrast with the traditional single classifier approach, the present study proposes hybrid
modeling schemes to address problems that involve a large number of quality variables in a multivariate normal process. The
proposed scheme includes multivariate adaptive regression splines (MARS), logistic regression (LR), and artificial neural network
(ANN). By applying MARS and LR techniques, we may obtain fewer but more significant quality variables, which can serve as
inputs to the ANN classifier. The performance of our proposed approaches was evaluated by conducting a series of experiments.

1. Introduction

A multivariate process monitors two or more quality vari-
ables.When a signal is triggered by themultivariate statistical
process control (MSPC) chart, process personnel are typically
only aware that the underlying process is in an unstable state.
Identifying which of themonitored quality characteristics (or
variables) is responsible for this MSPC signal is challenging.
Accordingly, effective determination of the source of process
faults becomes an important and challenging issue in MSPC
applications, because these sources are associated with spe-
cific assignable causes that adversely affect the process.

Typically, a literature review has shown that there are
different kinds of approaches to investigate on source iden-
tification of faults in a multivariate process. The first type of
approach uses various graphical techniques, such as polygo-
nal charts [1], line charts [2], multivariate profile charts [3],
and boxplot charts [4] to assist in determining the quality
variables at fault in a process. However, the operations of
these graphical approaches are tedious and subjective.

The second type of approach uses the statistical decom-
position techniques to interpret the contributors to anMSPC
signal. Mason et al. [5] proposed the method to decompose
the 𝑇
2 statistic into independent parts, each of which reflects

the contribution of an individual quality variable. Since the
decomposition of the 𝑇

2 statistic into 𝑝 independent 𝑇
2

components is not unique, Mason et al. [6] provided a
computing scheme that can reduce the computational effort.
The same concept to decompose the 𝑇

2 statistics has been
proposed by the studies [7, 8]. However, these approaches
have not been analyzed in terms of the percentage of success
in the classification of the variables that have actually shifted
in the process [9, 10]. The study [11] investigated the method
of principal components analysis (PCA) to determine the
quality variables at fault in a multivariate process. The 𝑇

2

statistic is expressed in terms of normalized principal com-
ponents scores of the multinormal variables. The normalized
score with high values are detected when an MSPC signal
is triggered. The contribution plots can then be used to
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determine the variables which are responsible for the signal.
In addition, the contribution plots were used by the studies
[12, 13]. However, the PCA approach can be argued that
the dimensionality of data may not be efficiently reduced by
linear transformation. Also, the problem of the PCA consists
in the fact that the directions maximizing variance do not
always maximize information. More recently, the study [14]
developed a statistical decomposition method to estimate
the sources of process variance shifts in a multivariate
normal process. Although the performance of the approach
was acceptable, the decomposition method requires a large
sample size, which may not be feasible for some practical
applications.

The third type of approach employs the machine learning
(ML) mechanisms, such as artificial neural networks (ANN)
and support vector machine (SVM), to identify the quality
variables which are responsible for the MSPC signal. A
comparative study has been conducted by the studies [9, 10].
While the study [9] made a comparison between neural
network approaches with the method of Mason et al. [5], the
study [10] made a comparison between ANN and SVM with
themethod of Runger et al. [8]. Both studies [9, 10] concluded
that ML methods are in general better than those obtained
using the decomposition approach. The study [15] proposed
a backpropagation-net based model which can identify the
group of quality variables at faults and can classify the
magnitude of the process shifts. The study [16] developed a
two level-basedmodel using𝑇

2 control chart for detecting the
signals and an ANN for identifying the sources of the signals.
The study [17] proposed anANN-basedmodel to identify and
quantify the mean shifts in bivariate processes. The authors
[18] developed a neural-network-based identifier to detect
the mean shifts and simultaneously to identify the sources
of the shifts for a multivariate autocorrelated processes. They
benchmarked the run-length performance of the proposed
method against the Hotelling 𝑇

2, the MEWMA, and the
Z control charts. The authors [19] investigated the sources
of process variance faults with the use of ANN and SVM;
however, their considerations of process variance shifts were
large. The authors [20] proposed a hybrid model for online
analysis of MSPC signals in multivariate manufacturing
processes.Theirmodel consisted of twomodules inwhich the
first module used a SVM to recognize the unnatural pattern,
and then, the magnitude of different shifts can be determined
by using the secondmodule, theNNmodels.The authors [21]
also proposed a hybrid model for online analysis of MSPC
signals in multivariate manufacturing processes. They also
used the SVM to recognize the mean and variance shifts
in the first module. In the second module, they employed
two neural network models to recognize the magnitude
of shifts for each variable simultaneously. The study [22]
proposed a hybrid schemewhich is composed of independent
component analysis (ICA) and SVM to decide the fault
quality variables when a step change disturbance existed in
a multivariate process.

The literature review has shown that most of the existing
studies are concerned with the determination of which
variable or group of variables has caused the signal through

single step modeling. However, there is a difficulty that may
not have been addressed yet. When the number of quality
characteristics is large, the existing decomposition methods
and/or machine learning methods may lack the capability to
handle such a situation. In addition, because process faults
are typically attributed to mean shifts and the multivariate
normal process is one of the most widely used applications,
the present study is motivated by addressingmean shift faults
for a multivariate normal process with a large number of
quality variables. A review of relevant literature also indicates
that the application of ANN for process fault determination
is promising; however, it suffers from the requirement of
a large number of controlling parameters and the risk of
model overfitting [23–25]. Consequently, contrary to the
existing approaches, the present study proposes two-stage
hybrid schemes to identify which quality variable or group
of variables is responsible for process mean shift faults. The
proposed schemes integrate multivariate adaptive regression
splines (MARS), logistic regression (LR), and artificial neural
networks, which are referred to as the MARS-ANN and
LR-ANN schemes, respectively. The performance of the
proposed approaches was examined by a series of computer
simulations.

The rest of this paper is organized as follows. Section 2
provides brief overviews of process models and the proposed
schemes. The various experimental conditions are addressed
in Section 3. This study is concluded in Section 4.

2. Process Models and Methodologies

The structure of the process model is addressed. The pro-
posed hybrid schemes are also described in this section.

2.1. Structure of the Process and the Mean Shift. This study
considers the situation of process mean shifts and assumes
that the multivariate process is initially in a normal state and
the sample observations are derived from a 𝑘-dimensional
multivariate normal distribution 𝑁(𝜇
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Let
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, 𝑗 = 1, 2, . . . , 𝑛 (4)

be a 𝑘 × 1 vector that represents 𝑘 characteristics on the 𝑗th
observation in subgroup 𝑖. The resulting sample mean vector
is as follows:

𝑋

̃
𝑖

=
1

𝑛

𝑛

∑

𝑗=1

𝑋

̃
𝑖𝑗

. (5)

To detect a multivariate process mean shift, Hotelling [26]
proposed the following chi-square statistic

𝜒
2

𝑖
= 𝑛(𝑋

̃
𝑖

− 𝜇

̃
0

)

 −1

∑

0

(𝑋
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𝑖

− 𝜇

̃
0

) . (6)

This statistic is asymptotically distributed as a chi-square
distribution with 𝑘 degrees of freedom.The control chart that
uses 𝜒

2 as a monitoring statistic in (6) has the upper control
limit

UCL = 𝜒
2

𝛼
(𝑘) , (7)

where 𝜒
2

𝛼
(𝑘) is the upper 𝛼th percentile of the chi-square

distribution with 𝑘 degrees of freedom. If the plotted statistic
𝜒
2

𝑖
falls outside the UCL, the process is considered to be in

an abnormal state, and our proposed method can be applied
to identify the source of mean shifts.The proposed two-stage
hybrid methods integrate the framework of MARS, LR, and
ANN. In the initial stage, influencing variables are selected
using multivariate adaptive regression splines or logistic
regression. In the second stage, the significant influencing
variables selected are taken as the input variables of the ANN.
The following sections address these three components.

2.2. Logistic Regression. The purpose of performing logistic
regression modeling in stage I was to identify important
influencing variables and refine the entire set of input vari-
ables. The structure of the logistic regression model can be
briefly described as follows. Let 𝑌

1
, 𝑌
2
, . . . , 𝑌

𝑛
represent the

dependent variables (𝑌
𝑖
= 1 denotes “the abnormal state” and

𝑌
𝑖
= 0 denotes “the normal state”) and let

𝑃
𝑖
= Pr [𝑌

𝑖
= 1 | 𝑥

𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑘
] (8)

be the conditional probability of event {𝑌
𝑖
= 1} with a given

series of independent variables (𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑘
), where 𝑥

𝑖𝑚

is the sample mean of the 𝑚th characteristic. The logistic
regression model is then defined as follows:

ln(
𝑃
𝑖

1 − 𝑃
𝑖

) = 𝛽
0
+

𝑘

∑

𝑗=1

𝛽
𝑗
𝑥
𝑖𝑗
. (9)

Before screening significant independent variables, we
performed the collinearity diagnosis procedure to exclude
variables that exhibited high collinearity. After this diagnosis,
the remaining variables served as independent variables for

logistic regression modeling and testing. The Wald forward
method was applied to identify independent variables with
significant influence on an abnormal state probability. These
significant independent variables and the dependent variable
were then substituted into the ANN to construct a two-stage
model.

2.3. Multivariate Adaptive Regression Splines. The superior
performance of the MARS has been reported in many
applications [27–32]. MARS is typically capable of revealing
important data patterns and relationships for the complex
data structure that is often concealed in high-dimensional
data [28, 31]. The MARS model can be represented as [33]

𝑓 (𝑥) = 𝑏
0
+

𝑀

∑

𝑚=1

𝑏
𝑚

𝐾
𝑚

∏

𝑘=1

[𝑆
𝑘𝑚

(𝑥](𝑘,𝑚) − 𝑡
𝑘𝑚

)] , (10)

where 𝑏
0
and 𝑏

𝑚
are the parameters, 𝑀 is the number of

basis functions (BF), 𝐾
𝑚
is the number of knots, 𝑆

𝑘𝑚
takes

on values of either 1 or −1 and indicates the right or left
sense of the associated step function, ](𝑘,𝑚) is the label of
the independent variable, and 𝑡

𝑘𝑚
is the knot location. The

optimalMARSmodel is obtained in two steps.Thepurpose of
the first step is to construct a large number of basis functions
that initially fit the data. The purpose of the second step is to
delete basis functions in order of least contribution using the
generalized cross-validation (GCV) criterion. The variable
importance measure was obtained by observing the decrease
in the calculated GCV values when a variable was removed
from the model. The GCV is described as

GCV (𝑀) =

1/𝑁∑
𝑁

𝑖=1
[𝑦
𝑖
− 𝑓
𝑀

(𝑥
𝑖
)]
2

[1 − 𝐶 (𝑀) /𝑁]
2

, (11)

where 𝑁 is the number of observations and 𝐶(𝑀) is the cost
penalty measure of a model containing 𝑀 basis functions.

2.4.The Artificial Neural Network. TheANNhas been widely
used inmany SPC applications [34, 35].TheANN is a parallel
system comprised of highly interconnected processing ele-
ments that are based on neurobiological models. The ANN
processes information through the interactions of a large
number of simple processing elements called neurons.

Figure 1 illustrates that neurons in networks take inputs
from the previous layer and send outputs to the next layer.
Typically, ANN nodes consist of three layers: the input,
output, and hidden layers. The nodes in the input layers
receive input signals from an external source and the nodes
in the output layers generate the target output signals. The
output of each neuron in the input layer is the same as the
input to that neuron. For each neuron 𝑗 in the hidden layer
and neuron 𝑘 in the output layer, the net inputs are given by

net
𝑗
= ∑

𝑖

𝑤
𝑗𝑖

× 𝑜
𝑖
, net

𝑘
= ∑

𝑗

𝑤
𝑘𝑗

× 𝑜
𝑗
, (12)
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Figure 1: Structure of ANN model.

where 𝑖(𝑗) is a neuron in the previous layer, 𝑜
𝑖
(𝑜
𝑗
) is the output

of node 𝑖(𝑗), and 𝑤
𝑗𝑖
(𝑤
𝑘𝑗
) is the connection weight from

neuron 𝑖(𝑗) to neuron 𝑗(𝑘). The neuron outputs are given by

𝑜
𝑖
= net
𝑖
, (13)

𝑜
𝑗
=

1

1 + exp−(net𝑗+𝜃𝑗)
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𝑗
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𝑘
(net
𝑘
, 𝜃
𝑘
) ,

(14)

where net
𝑗
(net
𝑘
) is the input signal from the external source

to the node 𝑗(𝑘) in the input layer and 𝜃
𝑗
(𝜃
𝑘
) is a bias. The

transformation function shown in (14) is called a sigmoid
function and is the most commonly utilized function to date.
As a result, this study used the sigmoid function.

3. Experiments and Analysis

3.1. The Parameter Settings. To evaluate the performance of
the proposed approach, a series of simulations were con-
ducted. Without loss of generality, this study assumed that
each quality characteristic was initially sampled from a nor-
mal distribution with zero mean and one standard deviation.
In addition, we assumed that twenty quality characteristics
were monitored simultaneously (i.e., 𝑘 = 20), and the
covariance matrix was defined as in (2).

Because we considered 20 quality characteristics for the
multivariate normal process, there are 2

20
− 1 possible

types of mean shifts. They are represented by (1, 0, . . . , 0),
(0, 1, 0, . . . , 0), . . . , and (1, 1, . . . , 1), where 1 denotes a quality
characteristic that is at fault and 0 denotes a quality character-
istic that is not at fault. For an abnormal mean vector struc-
ture, we considered three types of mean shifts for demonstra-
tion: (1, 0, . . . , 0), (1, 0, 1, 0, . . . , 0) and (1, 0, 1, 0, 1, 0, . . . , 0).
This study also considered three different values of 𝜌: 0.1, 0.5,
and 0.9. The sample size was assumed to be 10. Two values of
𝛿
𝑖
were considered: 0.5 and 1.0. We repeated the simulation

500 times for each data structure. The structure of the ANN

is established as follows. When applying ANN in the single
stage in this study, we had 20 input nodes and one output
node in the ANN structure.The hidden nodes were set to the
range 𝑖 − 2 to 𝑖 + 2, where 𝑖 is the number of input variables.
Thus, in the initial phase, the hidden nodes were 18, 19, 20, 21,
and 22.

According to the suggestions of the study [36], the learn-
ing rates were set to 0.01, 0.005, and 0.001. After performing
ANNmodeling, we obtained the {20 − 20 − 1} topology with
a learning rate of 0.01, which provides the best result with
the minimum test RMSE. Here, {𝑛

𝑖
− 𝑛
ℎ

− 𝑛
𝑜
} denotes the

number of neurons in the input layer, number of neurons in
the hidden layer, and number of neurons in the output layer,
respectively.

3.2. The Results. For the hybrid LR-ANN model, this study
calculated the variance inflation factor (VIF) to examine
the presence of collinearity, used a 0.05 significance level,
and employed logistic regression analysis to select important
influencing variables in the initial stage. Values of VIFs
greater than 10 were considered large enough to suspect
serious multicollinearity [37–39]. As shown in Table 1, all
of the VIFs are less than 10. Consequently, collinearity was
not too high among the independent variables. The analysis
results of LR modeling are summarized in Table 2. The
significant variables selected in this stage served as the input
variables of the ANN.

For the hybrid MARS-ANN model, we obtained the
selection results of the variables after performing the MARS
procedure. Tables 3, 4, 5, 6, 7, and 8 list the selection results for
theMARSmodels for 6 different combinations of 𝜌 and 𝛿

𝑖
. In

this selection procedure, the important explanatory variables
were chosen; their relative importance indicators are listed in
the last column of Tables 3 to 8.

When the first stage of hybrid modeling was completed,
the ANN topology settings were established. Table 9 displays
the corresponding ANN topologies for various types of
hybridmodels.The network topology with theminimum test
RMSEwas again considered as the optimal network topology.
The learning rate of 0.01 was used for all of those models.

This study used the classical single stage of anANNmodel
and the proposed two-stage of MARS-ANN and LR-ANN
models to determine the source of mean shift faults in a
multivariate process. The experimental results are displayed
in Table 10.

Table 10 reveals that the two-stage MARS-ANN and
LR-ANN approaches exhibit better performance than the
classical single-stage ANNmethod in many situations. Based
on the results shown in Table 10, it is noted that when the type
of mean shift is (1, 0, 1, 0, 1, 0, . . . , 0), the LR-ANN approach
exhibits the best performance in terms of accurate identifi-
cation rates (AIR) for all (𝜌, 𝛿

𝑖
) combinations. The MARS-

ANN approach was preferable to the single stage of the ANN
in almost every case. The last two rows of Table 10 list the
average and standard errors of the accurate identification
rates.The proposed hybrid approaches, LR-ANN andMARS-
ANN, outperformed the classical method, which is the single
stage of the ANN. The proposed MARS-ANN approach had
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Table 1: Collinearity diagnosis for LR models.

Variables 𝜌 = 0.1 𝜌 = 0.5 𝜌 = 0.9

𝛿
𝑖
= 0.5 𝛿

𝑖
= 1.0 𝛿

𝑖
= 0.5 𝛿

𝑖
= 1.0 𝛿

𝑖
= 0.5 𝛿

𝑖
= 1.0

𝑥
1

1.11 1.23 1.65 1.56 3.66 2.26
𝑥
2

1.09 1.09 1.95 1.95 9.85 9.85
𝑥
3

1.21 1.54 1.80 1.97 3.98 2.89
𝑥
4

1.07 1.07 1.91 1.91 9.54 9.54
𝑥
5

1.21 1.55 1.81 2.00 4.03 2.91
𝑥
6

1.07 1.07 1.88 1.88 9.31 9.31
𝑥
7

1.13 1.28 1.69 1.63 3.78 2.33
𝑥
8

1.11 1.11 1.98 1.98 9.82 9.82
𝑥
9

1.07 1.07 1.89 1.88 9.21 9.21
𝑥
10

1.05 1.05 1.81 1.80 9.21 9.19
𝑥
11

1.07 1.07 1.90 1.90 9.43 9.41
𝑥
12

1.07 1.07 1.89 1.89 9.60 9.59
𝑥
13

1.07 1.07 1.91 1.90 9.84 9.83
𝑥
14

1.06 1.06 1.83 1.82 9.13 9.11
𝑥
15

1.08 1.08 1.92 1.92 9.62 9.60
𝑥
16

1.07 1.06 1.93 1.92 9.95 9.93
𝑥
17

1.07 1.07 1.84 1.83 8.93 8.92
𝑥
18

1.09 1.09 1.96 1.96 9.78 9.78
𝑥
19

1.09 1.09 1.94 1.93 9.69 9.68
𝑥
20

1.09 1.09 1.97 1.96 9.64 9.63

Table 2: Significant variables selected by LR analysis.

Correlation 𝜌 Shift value 𝛿
𝑖

Significant explanatory variables

0.1
0.5 𝑥

1
, 𝑥
3
, 𝑥
5
, 𝑥
9
, 𝑥
12
, 𝑥
17
, 𝑥
18
, 𝑥
20

1.0 𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
5
, 𝑥
6
, 𝑥
11
, 𝑥
12
, 𝑥
13
,

𝑥
16
, 𝑥
17
, 𝑥
20

0.5
0.5 𝑥

1
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
8
, 𝑥
9
, 𝑥
11
, 𝑥
12
, 𝑥
13
,

𝑥
16

1.0 𝑥
1
, 𝑥
3
, 𝑥
6
, 𝑥
8
, 𝑥
12
, 𝑥
13
, 𝑥
15
, 𝑥
16
,

𝑥
20

0.9 0.5 𝑥
1
, 𝑥
3
, 𝑥
8
, 𝑥
9
, 𝑥
12
, 𝑥
13
, 𝑥
16
, 𝑥
20

1.0 𝑥
1
, 𝑥
13

the smallest standard error, which implies the robustness of
themechanism.After comparing the performances of the LR-
ANN and MARS-ANN approaches, we determined that the
MARS-ANN approach is superior. The reason may be that
population stratification in logistic regression analysis can
lead to bias in estimates and test statistics. As a result, the
results of the LR-ANN approach were somewhat unstable.

Table 11 summarizes the AIR with consideration of three
different correlations, namely, the low, the moderate, and
the strong correlations, respectively. The standard deviations
for those AIR values are listed in parentheses. By observing
Table 11, one is able to observe that the performance of the
proposed hybrid models almost completely outperforms the
classical single-stage ANNmodel. In particular, the proposed

MARS-ANN has the best and the most robust performance
among those three modeling approaches.

Table 12 shows the overall improvement percentage of
the proposed model in comparison with the classical single-
stage model. The AIR improvements of the proposed LR-
ANN model over the classical ANN model for three types
of correlations are 18.73%, 10.67%, and −2.50%, respectively.
Although there is a poor improvement for the case of 𝜌 =

0.9, the average AIR improvement is 8.97%. In addition,
the AIR improvements of the proposed MARS-ANN model
over the classical ANN model for three types of correlations
are 14.39%, 15.85%, and 6.96%, respectively. Accordingly, the
average AIR improvement reaches 12.73%.

One important result is that our proposed approach is
useful in dealing with difficulties of the smaller shifts for a
multivariate process. The case of the smaller shift value (i.e.,
𝛿
𝑖
= 0.5) drew particular attention from industries because it

is very difficult to identify the sources of small mean shifts.
Considering all the cases of 𝛿

𝑖
= 0.5, Table 10 illustrates

that the 21.12% and 17.00% improvement in identification can
be achieved when the proposed LR-ANN and MARS-ANN
schemes are used. The improvements in identification are
significant.

4. Conclusions

The ANN has been criticized for its long training process;
however, the combination of LR/MARS and ANN is a good
alternative for performing classification tasks. Accordingly,
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Table 3: Basis functions and important explanatory variables for the MARS model with (𝜌, 𝛿
𝑖
) = (0.1, 0.5).

Function Std. dev. Cost of omission Number of BF Variable Relative importance (%)
1 0.501 1.070 1 𝑥

3
100.000

2 0.500 1.065 3 𝑥
5

98.993
3 0.339 0.963 1 𝑥

1
70.614

4 0.332 0.957 1 𝑥
7

68.366
5 0.131 0.873 1 𝑥

13
26.827

6 0.104 0.867 1 𝑥
16

20.879
7 0.099 0.866 1 𝑥

14
19.621

8 0.093 0.865 1 𝑥
17

18.071

Table 4: Basis functions and important explanatory variables for the MARS model with (𝜌, 𝛿
𝑖
) = (0.1, 1.0).

Function Std. dev. Cost of omission Number of BF Variable Relative importance (%)
1 0.517 0.372 3 𝑥

5
100.000

2 0.519 0.370 2 𝑥
3

99.356
3 0.395 0.328 2 𝑥

1
85.740

4 0.369 0.310 1 𝑥
7

79.157
5 0.066 0.211 1 𝑥

20
15.440

Table 5: Basis functions and important explanatory variables for the MARS model with (𝜌, 𝛿
𝑖
) = (0.5, 0.5).

Function Std. dev. Cost of omission Number of BF Variable Relative importance (%)
1 0.596 0.871 2 𝑥

3
100.000

2 0.582 0.864 2 𝑥
5

98.281
3 0.380 0.764 2 𝑥

7
68.774

4 0.369 0.763 1 𝑥
1

68.220
5 0.245 0.702 1 𝑥

13
40.739

6 0.234 0.700 1 𝑥
16

39.271
7 0.203 0.692 2 𝑥

17
33.836

8 0.195 0.691 1 𝑥
14

32.728
9 0.188 0.688 1 𝑥

20
30.632

10 0.186 0.688 1 𝑥
6

30.530

Table 6: Basis functions and important explanatory variables for the MARS model with (𝜌, 𝛿
𝑖
) = (0.5, 1.0).

Function Std. dev. Cost of omission Number of BF Variable Relative importance (%)
1 0.540 0.352 1 𝑥

3
100.000

2 0.535 0.344 2 𝑥
5

97.416
3 0.389 0.306 1 𝑥

1
83.637

4 0.380 0.294 1 𝑥
7

78.935
5 0.174 0.217 2 𝑥

13
35.183

6 0.167 0.216 2 𝑥
16

33.487
7 0.149 0.212 1 𝑥

20
29.230

8 0.143 0.211 1 𝑥
14

29.042

the proposed combination of the LR-ANN and MARS-ANN
schemes was proven to be useful for determining the mean
shift faults in a multivariate process.

The rationale behind the proposed schemes was initially
to obtain fewer important explanatory variables by perform-
ing LR orMARSmodeling.The resulting significant variables
served as inputs to the designed ANNmodels. The proposed

LR-ANN andMARS-ANNmodels not only have fewer input
variables but also possess better classification capabilities.

The proposed hybrid two-stage models in this study are
not the only combination techniques; other artificial intelli-
gence techniques, such as decision tree or genetic algorithms,
can be integrated with neural networks or a support vector
machine to further refine the structure of the classifiers and



Abstract and Applied Analysis 7

Table 7: Basis functions and important explanatory variables for the MARS model with (𝜌, 𝛿
𝑖
) = (0.9, 0.5).

Function Std. dev. Cost of omission Number of BF Variable Relative importance (%)
1 0.789 0.363 2 𝑥

5
100.000

2 0.761 0.356 2 𝑥
3

98.013
3 0.570 0.304 2 𝑥

1
79.033

4 0.531 0.289 2 𝑥
7

72.994
5 0.412 0.225 1 𝑥

13
35.419

6 0.402 0.225 1 𝑥
16

34.692
7 0.349 0.221 1 𝑥

14
30.760

8 0.315 0.218 1 𝑥
6

27.641
9 0.317 0.218 1 𝑥

10
27.426

10 0.306 0.217 1 𝑥
17

26.965

Table 8: Basis functions and important explanatory variables for the MARS model with (𝜌, 𝛿
𝑖
) = (0.9, 1.0).

Function Std. dev. Cost of omission Number of BF Variable Relative importance (%)
1 0.579 0.179 2 𝑥

5
100.000

2 0.565 0.176 2 𝑥
3

98.746
3 0.450 0.160 2 𝑥

1
91.803

4 0.434 0.151 2 𝑥
7

87.535
5 0.295 0.072 2 𝑥

13
31.978

6 0.293 0.072 2 𝑥
16

31.287
7 0.249 0.069 1 𝑥

14
26.538

8 0.222 0.067 1 𝑥
6

23.337

Table 9: ANN topology settings for different hybrid LR-ANN and MARS-ANNmodels.

Correlation 𝜌 Shift value 𝛿
𝑖

Type of mean shifts ANN topology for LR-ANN ANN topology for MARS-ANN

0.1

0.5
(1, 0, . . ., 0) {8-8-1} {8-9-1}

(1, 0, 1, 0, . . ., 0) {8-8-1} {8-7-1}
(1, 0, 1, 0, 1, 0, . . ., 0) {8-8-1} {8-10-1}

1.0
(1, 0, . . ., 0) {11-13-1} {5-5-1}

(1, 0, 1, 0, . . ., 0) {11-12-1} {5-6-1}
(1, 0, 1, 0, 1, 0, . . ., 0) {11-12-1} {5-7-1}

0.5

0.5
(1, 0, . . ., 0) {10-10-1} {10-10-1}

(1, 0, 1, 0, . . ., 0) {10-10-1} {10-10-1}
(1, 0, 1, 0, 1, 0, . . ., 0) {10-10-1} {10-10-1}

1.0
(1, 0, . . ., 0) {9-9-1} {8-9-1}

(1, 0, 1, 0, . . ., 0) {9-7-1} {8-8-1}
(1, 0, 1, 0, 1, 0, . . ., 0) {9-11-1} {8-9-1}

0.9

0.5
(1, 0, . . ., 0) {8-9-1} {10-9-1}

(1, 0, 1, 0, . . ., 0) {8-10-1} {10-10-1}
(1, 0, 1, 0, 1, 0, . . ., 0) {8-9-1} {10-11-1}

1.0
(1, 0, . . ., 0) {2-2-1} {8-6-1}

(1, 0, 1, 0, . . ., 0) {2-2-1} {8-8-1}
(1, 0, 1, 0, 1, 0, . . ., 0) {2-2-1} {8-7-1}

improve classification accuracy. The applications of other
process faults, such as variance shift faults, for a multivariate
process should be further investigated.

The data-driven methods of multivariate statistical pro-
cess control have been the subject of considerable interest
from both the academic community and industry as an

important implement in the process monitoring area. Since
the practical systems become more and more complicated
and the physical models become extremely hard to obtain,
considering the related topics within data-driven framework
seems more meaningful in the current and future work to
achievemore industrial oriented results [40–44]. In addition,
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Table 10: Comparison of classification accuracy among the ANN, LR-ANN, and MARS-ANNmodels.

Correlation 𝜌 Shift value 𝛿
𝑖

Type of mean shifts ANN LR-ANN MARS-ANN

0.1

0.5
(1, 0, . . ., 0) 60.80% 61.20% 58.40%

(1, 0, 1, 0, . . ., 0) 60.80% 59.20% 62.40%
(1, 0, 1, 0, 1, 0, . . ., 0) 56.00% 70.40% 58.80%

1.0
(1, 0, . . ., 0) 58.00% 80.40% 85.60%

(1, 0, 1, 0, . . ., 0) 86.40% 84.80% 81.20%
(1, 0, 1, 0, 1, 0, . . ., 0) 56.00% 92.80% 86.00%

0.5

0.5
(1, 0, . . ., 0) 38.80% 66.00% 59.60%

(1, 0, 1, 0, . . ., 0) 46.00% 55.60% 62.00%
(1, 0, 1, 0, 1, 0, . . ., 0) 46.40% 70.80% 64.80%

1.0
(1, 0, . . ., 0) 90.40% 91.60% 94.00%

(1, 0, 1, 0, . . ., 0) 94.40% 63.60% 94.40%
(1, 0, 1, 0, 1, 0, . . ., 0) 85.20% 96.40% 94.00%

0.9

0.5
(1, 0, . . ., 0) 82.40% 93.20% 81.30%

(1, 0, 1, 0, . . ., 0) 94.40% 82.80% 94.40%
(1, 0, 1, 0, 1, 0, . . ., 0) 56.00% 96.80% 92.00%

1.0
(1, 0, . . ., 0) 98.80% 44.00% 100.00%

(1, 0, 1, 0, . . ., 0) 100.00% 100.00% 100.00%
(1, 0, 1, 0, 1, 0, . . ., 0) 98.40% 100.00% 99.20%

Average of accurate identification rates 72.73% 78.31% 81.57%
Standard error of accurate identification rates 0.05007 0.04092 0.03767

Table 11: AIR comparison of the classical-single stage and the
proposed models.

ANN Proposed Proposed
LR-ANN MARS-ANN

𝜌 = 0.1
63.00% 74.80% 72.07%
(0.1166) (0.1344) (0.1354)

𝜌 = 0.5
66.87% 74.00% 78.13%
(0.2565) (0.1632) (0.1760)

𝜌 = 0.9
88.33% 86.13% 94.48%
(0.1711) (0.2161) (0.0725)

Table 12: AIR improvement of the proposed models in comparison
with classical ANN model.

Proposed Proposed
LR-ANN MARS-ANN

𝜌 = 0.1 18.73% 14.39%
𝜌 = 0.5 10.67% 16.85%
𝜌 = 0.9 −2.50% 6.96%
Average improvement 8.97% 12.73%

real-time implementation of fault tolerant control system
with performance optimization is an important issue inmod-
ern industries [45]. Extensions of the proposed procedures
to data-driven design or real-time implementation of fault
tolerant control system are possible. Such works deserve
further research and are our future concern.
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