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An equation is proposed to unify the yield surface of granular materials by incorporating the fabric and its evolution. In microlevel
analysis by employing a Fourier series that was developed to model fabric, it is directly included in the strength of granular
materials. Inherent anisotropy is defined as a noncoaxiality between deposition angle and principal compressive stress. Stress-
induced anisotropy is defined by the degree of anisotropy 𝛼 and the major direction of the contact normals.The difference between
samples which have the same density (or void ratio) but different bedding angles is attributed to this equation. The validity of the
formulation is verified by comparison with experimental data.

1. Introduction

There are numerous experimental observations showing that
the shape of the failure surface for soils is influenced by the
microstructural arrangement (or fabric) (e.g., [1–3]). It has
long been known that the failure condition is influenced by
the microstructural arrangement of the constituent particles.
Several expressions for failure criteria have been proposed to
include the effect of fabric and its evolution. Baker and Desai
[4] proposed the so-called joint isotropic invariants of stress
and appropriate anisotropic tensorial entities. Pastor [5], by
using this method, proposed a constitutive model to account
for fabric anisotropy.

Pietruszczak and Mroz [6] related inherent anisotropy
to the microstructural arrangement within the representative
volume of material. They used a second-order tensor whose
eigenvectors specify the orientation of the axes of thematerial
symmetry. The failure criteria proposed by Pietruszczak and
Mroz [6] were formulated in terms of the stress state and a
microstructure tensor. Lade [3], by using the method pro-
posed by Pietruszczak and Mroz [6], related the loading
directions to the principal directions of the cross-anisotropic
microstructure arrangement of the particles.

In order to connect themicroscopic character of the gran-
ular materials with overall macroscopic anisotropy, various
quantities have been proposed; for example, Oda [1], Oda
et al. [2], and Oda [7] defined the fabric of anisotropy by
using the distribution of the unit contact normals.Mehrabadi
et al. [8] defined another microstructural arrangement and
connected these parameters to the overall stress and other
mechanical characteristics of granularmaterials. Gao et al. [9]
and Gao and Zhao [10] proposed a generalized anisotropic
failure criterion through developing an isotropic failure
criterion by introducing two variables to account for fabric
anisotropy. The first one is the fabric anisotropy that was
proposed by Oda and Nakayama [11] and the second one is
the joint invariants of the deviatoric stress tensor and the
deviatoric fabric tensor to characterize the relative orien-
tation between stress direction and fabric anisotropy. They
related the frictional coefficient 𝜂𝑝 to the anisotropic variable
𝐴. Fu and Dafalias [12] showed that there is a difference
between friction angle in the isotropic and anisotropic cases.
In the isotropic case, friction angle would be a direction-
independent constant, while in the anisotropic case, it is a
function of the bedding angle with respect to the shear plane
(in theMohr-Coulomb failure criterion). Fu andDafalias [13]
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by using discrete element method (DEM) investigated the
effect of fabric on the shear strength of granular materials.
They proposed an anisotropic shear failure criterion on the
basis of noncoaxiality between the bedding plane orientation
and the shear plane.The inherent fabric anisotropy was taken
into account by considering the orientation of the bedding
plane with respect to the principal stress axes.

The specification of the condition at failure for anisotropic
granular soils constitutes an important problem and numer-
ous criteria have been proposed in the past. In this paper, we
endeavor to incorporate the effect of inherent and induced
anisotropy in the yield surface. The inherent and induced
anisotropies are expressed as explicit functions of the bedding
angle𝛽 and themagnitude of anisotropy𝛼 (in the distribution
of contact normals). These two elements (inherent and
induced anisotropy) are combined, and the Mohr-Coulomb
yield surface which is modified to account for the kinematic
yield surface [14–16] is developed by including the fabric and
its evolution. The equation of the yield surface that is pro-
posed for granular soils is compared with the experimental
results fromOda et al. [17]. It shows that the equation is able to
capture the shearing behavior of soils with different bedding
angles.

2. Definition of Inherent Anisotropy

Inherent anisotropy is attributed to the deposition and orien-
tation of the long axes of particles [1, 2, 7]. Oda et al. [17] and
Yoshimine et al. [18] showed that the drained and undrained
response of sand and approaching the critical state failure
are actually affected by the direction of the principal stress
relative to the orientation of the soil sample. Pietruszczak
and Mroz [6] included the effect of fabric by the following
equation:

𝐹 = 𝜏 − 𝜂𝑔 (𝜃) 𝑝𝑜, (1)

where 𝜏 = 𝐽1/2
2

is the second invariant of the stress tensor,
𝑝𝑜 = tr𝜎/3 is first invariant of the stress tensor, 𝑔(𝜃) is Lode’s
angle, and 𝜂 is a constant for isotropic materials and defined
by the following equation for anisotropic materials:

𝜂 = 𝜂𝑜 (1 + Ω𝑖𝑗𝑙𝑖𝑙𝑗) , (2)

where 𝜂𝑜 is the constant material parameter, Ω𝑖𝑗 describes
the bias in material microstructure spatial distribution, and
𝑙𝑖 and 𝑙𝑗 are the loading directions. Lade [3] by using these
formulations proposed a failure criterion for anisotropic
materials. Wan and Guo [19] accounted for the effect of
inherent anisotropy in microlevel analysis by the ratio of
projection of major-to-minor principal values of the fabric
tensor along the direction of the principal stresses. Li and
Dafalias [20, 21] incorporated this effect by the fabric tensor
which was proposed by Oda and Nakayama [11]. These
two methods used the same basic approach; they used the
principal values of the fabric tensor in their formulations.
However, micromechanical studies [2, 11] have shown that in
the shearing process, the preferred orientation of the particles
in a granular mass may undergo only small changes. Its value

may well endure after the onset of the critical state; hence,
the fabric anisotropy renders the locus of the critical state
line. In this paper, cos 2(𝛽𝑖 − 𝛽∘) is used to model the effect
of inherent anisotropy. 𝛽𝑖 indicates the variation of the long
axes of particles with respect to the major principal stress; 𝛽∘
is the angle of deposition with respect to the major principal
stress. Hence,

(

𝜎1

𝜎2

)

𝑓

∝ cos 2 (𝛽𝑖 − 𝛽∘) . (3)

3. Definition of Stress-Induced Anisotropy

With increasing shear loads, the contact normals tend to
concentrate in the direction of the major compressive stress.
Contacts are generated in the compressive direction and dis-
rupted in the tensile direction. These disruption and genera-
tion of the contact normals are themain causes of the induced
anisotropy in the granular materials [2]. In order to include
the fabric evolution (or induced anisotropy), a function in
which changes of the contact normals are included must be
defined. Wan and Guo [19] used the following equation:

𝐹̇𝑖𝑗 = 𝑥 ̇𝜂𝑖𝑗, (4)

where 𝐹̇𝑖𝑗 shows the evolution of fabric anisotropy, 𝑥 is a
constant, and ̇𝜂𝑖𝑗 is the ratio of the shear stress to the confining
pressure, or 𝜂 = (𝑞/𝑝). Dafalias and Manzari [22] related the
evolution of fabric to the volumetric strain in the dilatancy
equation. The evolution of fabric comes to play only after
dilation. Based on DEM simulation presented by Fu and
Dafalias [12], Li and Dafalias [23] developed an earlier model
(yield surface) to account for fabric and its evolution in a new
manner by considering the evolution of fabric tensor towards
its critical value.

By using Fourier series, Rothenburg and Bathurst [24]
showed that the contact normals distribution, 𝐸(𝑛), can be
presented as follows:

𝐸 (𝑛) = (

1

2𝜋

) (1 + 𝛼 cos 2 (𝜃 − 𝜃𝑓)) , (5)

where 𝛼 is the magnitude of anisotropy and 𝜃𝑓 is the major
principal direction of the fabric tensor. The variations of the
parameters 𝛼 and 𝜃𝑓 represent the evolution of anisotropy
in the granular mass. Experimental data shows that the
shear strength of the granular material is a function of the
magnitude of 𝛼 and 𝜃𝑓 [1, 17, 25]. The following equation is
used to consider the effect of the induced anisotropy:

(

𝜎1

𝜎2

)

𝑓

∝ (1 + (

1

2

) 𝛼 cos 2 (𝜃𝜎 − 𝜃𝑓)) . (6)

As previouslymentioned, the shear strength in the granu-
lar medium is a function of inherent and induced anisotropy.
The equation can predict the difference between samples due
to the fabric which is a combination of the inherent and
induced anisotropy as follows [26]:

(

𝜎1

𝜎2

)

𝑓

∝ [(1 + (

1

2

) 𝛼 cos 2 (𝜃 − 𝜃𝑓)) cos 2 (𝛽𝑖 − 𝛽∘)] .

(7)
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Another parameter that must be added to the above
relation is the rolling strength of the granularmaterial. Oda et
al. [25] and Bardet [27] showed the importance of the rolling
strength of the particles, especially in a 2D case. This effect is
incorporated in the following form [26]:

(

𝜎1

𝜎2

)

𝑓

∝ [(1 + (

1

2

) 𝛼 cos 2 (𝜃 − 𝜃𝑓))

× cos 2 (𝛽𝑖 − 𝛽∘)𝑚 exp (cos 2 (𝛽𝑖 − 𝛽∘)) ] ,
(8)

where 𝑚 is a constant that depends on the interparticle fric-
tion angle 𝜙𝜇 and the shape of the particles. When the
samples with equal densities are subjected to the shear loads,
the difference in the shear strength due to the fabric can be
attributed to (8).

4. Verification of (8) with
the Experimental Data

In order to show the ability of (8) to represent the effect of
the fabric on the shear strength, the predictions are compared
with the experimental tests presented by Konishi et al. [25].
They conducted an experimental study on biaxial deforma-
tion of two-dimensional assemblies of rod-shaped photoelas-
tic particle with oval cross section.The samples were confined
laterally by a constant force of 0.45 kgf and then compressed
vertically by incremental displacement. Two types of particle
shapes were used; one was 𝑟1/𝑟2 = 1.1 and the other was
𝑟1/𝑟2 = 1.4, in which 𝑟1 and 𝑟2 are the major and minor
axes of cross section respectively. To consider the influence of
friction, two sets of experimentswere performed on these two
particle shapes, one with nonlubricated particles of average
friction angle of 52∘ and the other with particles which had
been lubricated with an average friction angle of 26∘. The
magnitude of the degree of anisotropy 𝛼 and the major
direction of the fabric 𝜃𝑓 are calculated by the following
equations:

𝐴 = ∫

2𝜋

0

𝐸 (𝜃) sin 2𝜃 𝑑𝜃, (9)

𝐵 = ∫

2𝜋

0

𝐸 (𝜃) cos 2𝜃 𝑑𝜃, (10)

𝜃𝑓 = (
1

2

) arc tan(𝐴
𝐵

) . (11)

To show the ability of (8), the proportion of fabricwith the
shear strength variations is shown in Figure 1.The differences
in the shear strength ratio at failure for different bedding
angles are attributed to the differences in the developed
anisotropic parameters. In other words, the combination of
anisotropic parameters (for inherent and induced anisotropy)
is proportional to the shear strength. The variation of right-
hand side of (8) is proportional to the variation of shear
strength ratio for different bedding angles. The right-hand
side of (8) is shown by fabric anisotropy in Figure 1.The effect
of bedding angle on stress ratio at failure for the different
interparticle friction angle 𝜙𝜇 is also shown in Figure 1.

5. Incorporation of the Fabric and Its
Evolution in the Yield Surface

Muir Wood et al. [14] proposed the kinematic version of the
Mohr-Coulomb yield surface as follows:

𝑓 = 𝑞 − 𝜂
𝑓

𝑦
𝑝𝑜, (12)

where 𝑞 is the deviatoric stress and 𝜂𝑓
𝑦
is the size of the yield

surface. Muir Wood et al. [14] and Muir Wood [16] assumed
that the soil is a distortional hardening material; hence, the
current yield surface 𝜂𝑓

𝑦
is a function of the plastic distortional

strain 𝜀𝑝
𝑞
, and, hence,

𝜂
𝑓

𝑦
=

𝜀
𝑝

𝑞

𝑐 + 𝜀
𝑝

𝑞

𝜂
𝑝
, (13)

where 𝜂𝑝 is a limit value of stress ratio which is equal to𝑀 at
the critical state, 𝜂𝑝 = 𝑀 = 𝑞/𝑝; 𝑐 is a soil constant.

Wood et al. [14] and Gajo andMuirWood [15] developed
the above equation to include the effect of state parameter𝜓 =
𝑒 − 𝑒cr, in which 𝑒 is the void ratio and 𝑒cr is the magnitude of
the void ratio on the critical-state line, as follows:

𝜂
𝑓

𝑦
=

𝜀
𝑝

𝑞

𝑐 + 𝜀
𝑝

𝑞

(𝑀 − 𝑘𝜓) , (14)

where 𝑘 is a constant.
Li andDafalias [20] modified the effect of state parameter

𝜓 to account for a wide range of stress and void ratio as
follows:

𝜂
𝑝
= 𝑀 exp (−𝑛𝑏𝜓) , (15)

where 𝑛𝑏 is a material constant. Equation (7) can be modified
as follows:

𝜂
𝑓

𝑦
=

𝜀
𝑝

𝑞

𝑐 + 𝜀
𝑝

𝑞

𝑀 exp (−𝑛𝑏𝜓) . (16)

In the previous section, the shear strength was shown to
be a function of inherent and induced anisotropy (see (8)).
Thus, the effect of inherent and induced fabric anisotropy for
triaxial case can be expressed as follows:

𝜂
𝑓

𝑦
=

𝜀
𝑝

𝑞

𝑐 + 𝜀
𝑝

𝑞

(1 + (

1

2

) 𝛼 cos 2 (𝜃𝑓 − 𝜃𝜎))

× cos 2 (𝛽𝑖 − 𝛽∘)𝑀 exp (−𝑛𝑏𝜓) .

(17)

The magnitudes of 𝛼 and 𝜃𝑓 approach a constant value in
large shear strain [26, 28, 29]. The parameter cos 2(𝛽𝑖 − 𝛽∘) is
easily obtained by back calculation but as a rough estimation,
its value is close to the magnitude of the bedding angle cos 𝛿
(for bedding angle 𝛿 between 15∘ and 45∘).

Equation (10) can be shown in the following form formul-
tiaxial direction (or in the general form):

𝑓 = 𝜏 − 𝜂
𝑓

𝑦
𝑔 (𝜃) 𝑝𝑜. (18)

It is similar to the equation proposed by Pietruszczak and
Mroz [6] and Lade [3] but in this formulation, another func-
tion is used for fabric and its evolution.
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Figure 1: Samples with 𝜙𝜇 = 52
∘ and 𝑟1/𝑟2 = 1.1 (a), 𝜙𝜇 = 26

∘ and 𝑟1/𝑟2 = 1.1 (b), 𝜙𝜇 = 52
∘ and 𝑟1/𝑟2 = 1.4 (c), and 𝜙𝜇 = 26

∘ and 𝑟1/𝑟2 = 1.4
(d).

6. Fabric Evolution

The parameters 𝛼 and 𝜃𝑓 show the status of the fabric and
its evolution. These parameters have a great influence on
the behavior of the dilatancy equation. Shaverdi et al. [29]
proposed an equation which can predict the magnitude of 𝛼
and 𝜃𝑓 in the presence of the noncoaxiality between stress and
fabric.This equation is obtained from themicrolevel analysis.
To calculate the 𝛼 parameter, the magnitude of the shear to
normal stress ratio on the spatially mobilized plane (SMP)
must be determined. In the triaxial case, for example, 𝜏/𝑝may
be obtained from the following equation [30]:

𝜏

𝑝

= √

𝜎1

𝜎3

− √

𝜎3

𝜎1

. (19)

The parameters 𝛼 and 𝜃𝑓 may be obtained from the fol-
lowing equations in the presence of noncoaxiality [29]:

𝛼 =

(𝜏/𝑝) cos𝜙𝜇mob − sin𝜙𝜇mob

sin (2𝜃𝑓 + 𝜙𝜇mob) − ((𝜏/𝑝) cos (2𝜃𝑓 + 𝜙𝜇mob))
,

(20)

̇
𝜃𝑓 =

̇
𝜃𝜎 + (

1

2

) ⋅ 𝑑𝜂 ⋅ (𝜃𝜎 − 𝜃𝑓) , (21)

where the dot over 𝜃 shows the variation.Themost important
parameter in the above equation is the interparticlemobilized
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Figure 2: Comparison between experimental data and simulation by using (16) for the confining pressure 0.5 kg/cm2.

friction angle, 𝜙𝜇mob. This parameter is obtained from the
following equation:

tan−1 ( 𝜏
𝑝

) =

𝜃𝜎 − 𝜃𝑓

𝑧

+ 𝜆(

̇𝜀V

̇𝜀𝑞

) + 𝜙𝜇mob, (22)

where 𝑧 and 𝜆 arematerial constants. Kuhn [28] and Shaverdi
et al. [29] showed that the variation of 𝛼 with the shear strain
is similar to the variation of shear to normal stress ratio with
shear strain.

7. Verification of (16) with Experimental Data

Oda et al. [17] conducted some experimental tests on Toyoura
sand with an initial void ratio 0.67-0.68 and the confining
pressures 0.5 kg/cm2 and 2 kg/cm2 to study the effect of

bedding angle with tilting angles 𝛿 = 0∘, 30∘, 60∘, and 90∘. For
better modeling, the constant 𝑐 for the plastic shear strain less
than 1% must be modified as follows:

𝑐 = 0.001 + 0.001 ⟨1 − 𝑚
󸀠
𝜀
𝑝

𝑞
⟩ , (23)

where 𝑚󸀠 is a constant which depends on confining pres-
sure and ⟨⋅ ⋅ ⋅ ⟩ stands for the positive values only. In this
simulation, 𝑚󸀠 = 1 is taken into account for the confining
pressure 0.5 kg/cm2, and 𝑚󸀠 = 6.5 for the confining pressure
2.0 kg/cm2.

Equation (17) can model the different behavior of the
granular soils with the same confining pressure and initial
void ratio (density) in which the only difference is due to the
fabric and its evolution, as shown in Figures 2 and 3.
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Figure 3: Comparison between experimental data and simulation by using (16) for the confining pressure 2.0 kg/cm2.

8. Conclusion

An equation was proposed to include the effect of inher-
ent and induced anisotropy. This relation was obtained by
combining the effect of inherent and induced anisotropy.
Rolling resistance is also included in this equation. The
differences between the samples due to inherent and induced
anisotropy were well captured by applying (8). Verifying the
experimental data shows that this equation can predict the
ratio of the shear strength at failure of granular materials in
the presence of inherent anisotropy as good as possible. The
effect of inherent anisotropy was incorporated by a single
term cos 2(𝛽𝑖 − 𝛽∘). Induced anisotropy was also included by
a simple term (1 + (1/2)𝛼 cos 2(𝜃𝑓 − 𝜃𝜎)) in which 𝛼 and 𝜃𝑓
can be easily calculated and obtained. The extended Mohr-
Coulomb was developed to incorporate the effect of fabric

and its evolution. Verification with the experimental tests
demonstrated the validity of this formulation.
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