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This paper investigates dynamical behaviors of the stochastic Hopfield neural networks with mixed time delays. The mixed time
delays under consideration comprise both the discrete time-varying delays and the distributed time-delays. By employing the theory
of stochastic functional differential equations and linear matrix inequality (LMI) approach, some novel criteria on asymptotic
stability, ultimate boundedness, and weak attractor are derived. Finally, a numerical example is given to illustrate the correctness
and effectiveness of our theoretical results.

1. Introduction

The well-known Hopfield neural networks were firstly intro-
duced by Hopfield [1, 2] in early 1980s. Since then, both the
mathematical analysis and practical applications of Hopfield
neural networks have gained considerable research attention.
The Hopfield neural networks have already been successfully
applied in many different areas such as combinatorial opti-
mization, knowledge acquisition, and pattern recognition,
see, for example, [3–5]. In both the biological and artificial
neural networks, the interactions between neurons are gen-
erally asynchronous, which give rise to the inevitable signal
transmission delays. Also, in electronic implementation of
analog neural networks, time delay is usually time-varying
due to the finite switching speed of amplifiers. Note that con-
tinuously distributed delays have gained particular attention,
since a neural network usually has a spatial nature due to the
presence of an amount of parallel pathways of a variety of
axon sizes and lengths.

Recently, it has been well recognized that stochastic dis-
turbances are ubiquitous and inevitable in various systems,
ranging from electronic implementations to biochemical sys-
tems, which are mainly caused by thermal noise and envi-
ronmental fluctuations as well as different orders of ongoing
events in the overall systems [6, 7]. Therefore, considerable

attentions have been paid to investigate the dynamics of
stochastic neural networks, and many results on stochastic
neural networks with delays have been reported in the litera-
ture, see, for example, [8–30] and references therein. Among
which, some sufficient criteria on the stability of uncertain
stochastic neural networks were derived in [8–10]. Almost
sure exponential stability of stochastic neural networks was
discussed in [11–15]. In [16–22], mean square exponential
stability and pth moment exponential stability of stochastic
neural networks were investigated; Some sufficient criteria
on the exponential stability for impulsive stochastic neural
networks were established in [23–26]. In [27], the stability
of discrete-time stochastic neural networks was analyzed,
while exponential stability of stochastic neural networks with
Markovian jump parameters is investigated in [28–30].These
references mainly considered the stability of equilibrium
point of stochastic neural networks. What do we study when
the equilibrium point does not exist?

Except for stability property, boundedness and attractor
are also foundational concepts of dynamical systems. They
play an important role in investigating the uniqueness of
equilibrium, global asymptotic stability, global exponential
stability, the existence of periodic solution, its control and
synchronization [31, 32], and so on. Recently, ultimate bound-
edness and attractor of several classes of neural networks



2 Abstract and Applied Analysis

with time delays have been reported. Some sufficient cri-
teria were derived in [33, 34], but these results hold only
under constant delays. Following, in [35], the globally robust
ultimate boundedness of integrodifferential neural networks
with uncertainties and varying delays was studied. After that,
some sufficient criteria on the ultimate boundedness of neural
networks with both varying and unbounded delays were
derived in [36], but the concerned systems are deterministic
ones. In [37, 38], a series of criteria on the boundedness,
global exponential stability, and the existence of periodic
solution for nonautonomous recurrent neural networks were
established. In [39–41], the ultimate boundedness and attrac-
tor of the stochastic Hopfield neural networks with time-
varying delays were discussed. To the best of our knowledge,
for stochastic neural networks with mixed time delays, there
are few published results on the ultimate boundedness and
weak attractor.Therefore, the arising questions about the ulti-
mate boundedness, weak attractor, and asymptotic stability
of the stochastic Hopfield neural networks with mixed time
delays are important yet meaningful.

The left of the paper is organized as follows and some
preliminaries are in Section 2, Section 3 presents our main
results, a numerical example and conclusions will be in
Sections 4 and 5, respectively.

2. Preliminaries

Consider the following stochastic Hopfield neural networks
with mixed time delays:

𝑑𝑥 (𝑡) = [ − 𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜏(𝑡)

𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝐽] 𝑑𝑡

+ [𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))] 𝑑𝑤 (𝑡) ,

(1)

where 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇 is the state vector associated with

the neurons, 𝐶 = diag{𝑐
1
, . . . , 𝑐

𝑛
}, 𝑐
𝑖

> 0 represents the
rate with which the 𝑖th unit will reset its potential to the
resting state in isolation when being disconnected from
the network and the external stochastic perturbation; 𝐴 =

(𝑎
𝑖𝑗
)
𝑛×𝑛

, 𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑛

and 𝐷 = (𝑑
𝑖𝑗
)
𝑛×𝑛

represent the con-
nection weight matrix; 𝐽 = (𝐽

1
, . . . , 𝐽

𝑛
)
𝑇, 𝐽
𝑖
denotes the

external bias on the 𝑖th unit; 𝑓
𝑗
and 𝑔

𝑗
denote activation

functions, 𝑓(𝑥(𝑡)) = (𝑓
1
(𝑥
1
(𝑡)), . . . , 𝑓

𝑛
(𝑥
𝑛
(𝑡)))
𝑇, 𝑔(𝑥(𝑡)) =

(𝑔
1
(𝑥
1
(𝑡)), . . . , 𝑔

𝑛
(𝑥
𝑛
(𝑡)))
𝑇; 𝜎
1
, 𝜎
2

∈ 𝑅
𝑛×𝑛 are the diffu-

sion coefficient matrices; 𝑤(𝑡) is one-dimensional Brownian
motion defined on a complete probability space (Ω,F, 𝑃)

with a natural filtration {F
𝑡
}
𝑡≥0

generated by {𝑤(𝑠) : 0 ≤ 𝑠 ≤

𝑡}; there exists a positive constant 𝜏 such that the transmission
delay 𝜏(𝑡) satisfies

0 ≤ 𝜏 (𝑡) ≤ 𝜏. (2)

The initial conditions are given in the following form:

𝑥 (𝑠) = 𝜉 (𝑠) , −𝜏 ≤ 𝑠 ≤ 0, 𝑗 = 1, . . . , 𝑛, (3)

where 𝜉(𝑠) = (𝜉
1
(𝑠), . . . , 𝜉

𝑛
(𝑠))
𝑇 is 𝐶([−𝜏, 0]; 𝑅𝑛)-valued func-

tion, F
0
-measurable 𝑅

𝑛-valued random variable satisfying
‖𝜉‖
2

𝜏
= sup

−𝜏≤𝑠≤0
𝐸‖𝜉(𝑠)‖

2
< ∞, ‖ ⋅ ‖ is the Euclidean norm,

and 𝐶([−𝜏, 0]; 𝑅
𝑛
) is the space of all continuous 𝑅𝑛-valued

functions defined on [−𝜏, 0].
Let 𝐹(𝑥

𝑡
, 𝑡) = −𝐶𝑥(𝑡) + 𝐴𝑓(𝑥(𝑡)) + 𝐵𝑓(𝑥(𝑡 − 𝜏(𝑡))) +

𝐷∫
𝑡

𝑡−𝜏(𝑡)
𝑔(𝑥(𝑠))𝑑𝑠+𝐽,𝐺(𝑥

𝑡
, 𝑡) = 𝜎

1
𝑥(𝑡)+𝜎

2
𝑥(𝑡−𝜏(𝑡)), where

𝑥
𝑡
= {𝑥 (𝑡 + 𝜃) : −𝜏 ≤ 𝜃 ≤ 0, 𝑡 ≥ 0} = 𝜑 (𝜃) . (4)

Then system (1) can be written by

𝑑𝑥 (𝑡) = 𝐹 (𝑥
𝑡
, 𝑡) 𝑑𝑡 + 𝐺 (𝑥

𝑡
, 𝑡) 𝑑𝑤 (𝑡) . (5)

Throughout this paper, the following assumption will be
considered.

(A1) There exist constants 𝑙−
𝑖
, 𝑙+
𝑖
,𝑚−
𝑖
and𝑚

+

𝑖
such that

𝑙
−

𝑖
≤
𝑓
𝑖
(𝑥) − 𝑓

𝑖
(𝑦)

𝑥 − 𝑦
≤ 𝑙
+

𝑖
,

𝑚
−

𝑖
≤
𝑔
𝑖
(𝑥) − 𝑔

𝑖
(𝑦)

𝑥 − 𝑦
≤ 𝑚
+

𝑖
,

∀𝑥, 𝑦 ∈ 𝑅. (6)

Remark 1. It follows from [42] that under the assumption
(A1), system (1) has a global solution on 𝑡 ≥ 0. Moreover,
under assumption 1, it is not difficult to prove that 𝐹(𝑥

𝑡
, 𝑡)

and 𝐺(𝑥
𝑡
, 𝑡) satisfy the local Lipschitz condition in [43].

Remark 2. We note that assumption (A1) is less conservative
than that in [8, 9, 39], since the constants 𝑙−

𝑖
, 𝑙+
𝑖
, 𝑚−
𝑖
and 𝑚

+

𝑖

are allowed to be positive, negative numbers, or zeros.

The notation 𝐴 > 0 (resp., 𝐴 ≥ 0) means that matrix
𝐴 is symmetric positive definite (resp., positive semidefinite).
𝐴
𝑇 denotes the transpose of the matrix𝐴. 𝜆min(𝐴) represents

the minimum eigenvalue of matrix 𝐴. Denote by 𝐶(𝑅
𝑛
×

[−𝜏,∞); 𝑅
+
) the family of continuous functions from 𝑅

𝑛
×

[−𝜏,∞) to 𝑅
+

= [0,∞). Let 𝐶
2,1
(𝑅
𝑛
× [−𝜏,∞); 𝑅

+
) be

the family of all continuous nonnegative functions 𝑉(𝑥, 𝑡)
defined on 𝑅

𝑛
× [−𝜏,∞) such that they are continuously

twice differentiable in 𝑥 and once in 𝑡. Given 𝑉 ∈ 𝐶
2,1
(𝑅
𝑛
×

[−𝜏,∞); 𝑅
+
), we define the functional L𝑉 : 𝐶([−𝜏, 0]; 𝑅

𝑛
) ×

𝑅
+
→ 𝑅 by

L𝑉 (𝜑, 𝑡) = 𝑉
𝑡
(𝜑 (0) , 𝑡) + 𝑉

𝑥
(𝜑 (0) , 𝑡) 𝐹 (𝜑, 𝑡)

+
1

2
trace [𝐺𝑇 (𝜑, 𝑡) 𝑉

𝑥𝑥
(𝜑 (0) , 𝑡) 𝐺 (𝜑, 𝑡)] ,

(7)

where 𝑉
𝑥
(𝑥, 𝑡) = (𝑉

𝑥
1

(𝑥, 𝑡), . . . , 𝑉
𝑥
𝑛

(𝑥, 𝑡)) and 𝑉
𝑥𝑥
(𝑥, 𝑡) =

(𝑉
𝑥
𝑖
𝑥
𝑗

(𝑥, 𝑡))
𝑛×𝑛

.
The following lemmas will be used in establishing our

main results.

Lemma 3 (see [44]). For any positive definite matrix 𝑃 > 0,
scalar 𝛾 > 0, vector function 𝑓 : [0, 𝛾] → 𝑅

𝑛 such that
the integrations concerned are well defined, and the following
inequality holds:

(∫

𝛾

0

𝑓 (𝑠) 𝑑𝑠)

𝑇

𝑃(∫

𝛾

0

𝑓 (𝑠) 𝑑𝑠) ≤ 𝛾∫

𝛾

0

𝑓
𝑇
(𝑠) 𝑃𝑓 (𝑠) 𝑑𝑠. (8)
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Lemma 4 (see [43]). Suppose that system (5) satisfies the local
Lipschitz condition and the following assumptions hold.

(A2) There are two functions𝑉 ∈ 𝐶
2,1
(𝑅
𝑛
×[−𝜏,∞); 𝑅

+
) and

𝑈 ∈ 𝐶(𝑅
𝑛
×[−𝜏,∞); 𝑅

+
) and two probability measures

𝜇(⋅) and 𝜇(⋅) on [−𝜏, 0] such that

lim
‖𝑥‖→∞

inf
0≤𝑡≤∞

𝑉 (𝑥, 𝑡) = ∞, (9)

while for all (𝜑, 𝑡) ∈ 𝐶([−𝜏, 0]; 𝑅
𝑛
) × 𝑅
+,

L𝑉 (𝜑, 𝑡) ≤ 𝛼
1
− 𝛼
2
𝑉 (𝜑 (0) , 𝑡)

+ 𝛼
3
∫

0

−𝜏

𝑉 (𝜑 (𝜃) , 𝑡 + 𝜃) 𝑑𝜇 (𝜃)

− 𝑈 (𝜑 (0) , 𝑡)

+ 𝛼∫

0

−𝜏

𝑈(𝜑 (𝜃) , 𝑡 + 𝜃) 𝑑𝜇 (𝜃) ,

(10)

where 𝛼
1
≥ 0, 𝛼

2
> 𝛼
3
≥ 0 and 𝛼 ∈ (0, 1).

(A3) If there is a pair of positive constants 𝑐 and 𝑝 such that

𝑐‖𝑥‖
𝑝
≤ 𝑉 (𝑥, 𝑡) , ∀ (𝑥, 𝑡) ∈ 𝑅

𝑛
× [−𝜏,∞) . (11)

Then the unique global solution 𝑥(𝑡) to system (5) obeys

lim sup
𝑡→∞

𝐸‖𝑥 (𝑡)‖
𝑝
≤
𝛼
1

𝑐𝜀
, (12)

where 𝜀 = min{𝜀
1
, 𝜀
2
} while 𝜀

2
= − ln(𝛼)/𝜏 and 𝜀

1
> 0

is the unique root to the following equation:

𝛼
2
= 𝜀
1
+ 𝛼
3
𝑒
𝜀
1
𝜏
. (13)

If, furthermore, 𝛼
1
= 0, then

lim sup
𝑡→∞

1

𝑡
ln (𝐸‖𝑥 (𝑡)‖𝑝) ≤ −𝜀,

lim sup
𝑡→∞

1

𝑡
ln (‖𝑥 (𝑡)‖) ≤ −

𝜀

𝑝
almost surely.

(14)

3. Main Results

Theorem 5. Suppose that there exist some matrices 𝑃 > 0,
𝑈
𝑖
= diag{𝑢

𝑖1
, . . . , 𝑢

𝑖𝑛
} ≥ 0 (𝑖 = 1, 2, 3) and positive constants

𝛾
1
, 𝛾
2
, 𝜆 such that 𝜆−1𝜏𝛾−1

2
∈ (0, 1) and

Σ = (

Δ
1

0 𝑃𝐴 + 𝐿
2
𝑈
1

𝑃𝐵 𝑈
3
𝑀
2

∗ Δ
2

0 𝐿
2
𝑈
2

0

∗ ∗ Δ
3

0 0

∗ ∗ ∗ Δ
4

0

∗ ∗ ∗ ∗ Δ
5

) < 0, (15)

where Δ
1
= (𝛾
1
+ 2𝜆)𝑃 + 2𝜎

𝑇

1
𝑃𝜎
1
− 𝑃𝐶 − 𝐶𝑃 + 𝑈

1
(𝜆𝐼 −

2𝐿
1
) + 𝑈
3
(𝜆𝐼 − 2𝑀

1
), Δ
2
= 2𝜎
𝑇

2
𝑃𝜎
2
+ (𝜆𝐼 − 2𝐿

1
)𝑈
2
, Δ
3
=

2(𝜆 − 1)𝑈
1
, Δ
4
= 2(𝜆 − 1)𝑈

2
, Δ
5
= 2(𝜆 − 1)𝑈

3
+ 𝛾
2
𝐷
𝑇
𝑃𝐷,

𝐿
1
= diag{𝑙−

1
𝑙
+

1
, . . . , 𝑙

−

𝑛
𝑙
+

𝑛
}, 𝐿
2
= diag{𝑙−

1
+ 𝑙
+

1
, . . . , 𝑙

−

𝑛
+ 𝑙
+

𝑛
},𝑀
1
=

diag{𝑚−
1
𝑚
+

1
, . . . , 𝑚

−

𝑛
𝑚
+

𝑛
},𝑀
2
= diag{𝑚−

1
+ 𝑚
+

1
, . . . , 𝑚

−

𝑛
+ 𝑚
+

𝑛
},

∗means the symmetric terms.

Then, the following results hold.

(i) System (1) is stochastically ultimately bounded; that is,
for any 𝛿 ∈ (0, 1), there exists a positive constant 𝐶 =

𝐶(𝛿) such that the solution 𝑥(𝑡) of system (1) satisfies

lim sup
𝑡→∞

𝑃 {‖𝑥 (𝑡)‖ ≤ 𝐶} ≥ 1 − 𝛿. (16)

(ii) If 𝛼
1
= 0, where 𝛼

1
= max(𝛾

3
, 0), 𝜀 > 0 is the same as

defined in Lemma 4,

𝛾
3
= 𝜆
−1
𝐽
𝑇
𝑃𝐽

+

𝑛

∑

𝑖=1

(𝑢
1𝑖
+ 𝑢
2𝑖
)

× { − 2𝑓
2

𝑖
(0) + 2𝜆

−1
𝑓
2

𝑖
(0)

+ 𝜆
−1
(𝑙
+

𝑖
+ 𝑙
−

𝑖
)
2

𝑓
2

𝑖
(0) }

+

𝑛

∑

𝑖=1

𝑢
3𝑖
{ − 2𝑔

2

𝑖
(0) + 2𝜆

−1
𝑔
2

𝑖
(0)

+ 𝜆
−1
(𝑚
+

𝑖
+ 𝑚
−

𝑖
)
2

𝑔
2

𝑖
(0) } ,

(17)

then

lim sup
𝑡→∞

1

𝑡
ln (𝐸‖𝑥 (𝑡)‖2) ≤ −𝜀,

lim sup
𝑡→∞

1

𝑡
ln (‖𝑥 (𝑡)‖) ≤ −

𝜀

2
almost surely.

(18)

Proof. Let the Lyapunov function 𝑉(𝑥, 𝑡) = 𝑥
𝑇
(𝑡)𝑃𝑥(𝑡).

Applying Itô’s formula in [42] to 𝑉(𝑡) along with system (1),
one may obtain the following:

𝑑𝑉 (𝑥, 𝑡) = 2𝑥
𝑇
(𝑡) 𝑃 [𝜎

1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))] 𝑑𝑤 (𝑡)

+ L𝑉 (𝜑, 𝑡) 𝑑𝑡,

(19)

where

L𝑉 (𝜑, 𝑡) = 2𝑥
𝑇
(𝑡) 𝑃 [− 𝐶𝑥 (𝑡)+𝐴𝑓 (𝑥 (𝑡))+𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜏(𝑡)

𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝐽]

+ [𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))]

𝑇

× 𝑃 [𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))]

≤ 2𝑥
𝑇
(𝑡) 𝑃 [−𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡))

+ 𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))]
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+ 2𝜆𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡)

+ 𝜆
−1
𝐽
𝑇
𝑃𝐽 + 𝜆

−1
(∫

𝑡

𝑡−𝜏(𝑡)

𝐷𝑔 (𝑥 (𝑠)) 𝑑𝑠)

𝑇

× 𝑃(∫

𝑡

𝑡−𝜏(𝑡)

𝐷𝑔 (𝑥 (𝑠)) 𝑑𝑠)

+ 2 [𝑥
𝑇
(𝑡) 𝜎
𝑇

1
𝑃𝜎
1
𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) 𝜎

𝑇

2
𝑃𝜎
2
𝑥 (𝑡 − 𝜏 (𝑡))] .

(20)

From Lemma 3, it follows that

𝜆
−1
(∫

𝑡

𝑡−𝜏(𝑡)

𝐷𝑔 (𝑥 (𝑠)) 𝑑𝑠)

𝑇

𝑃(∫

𝑡

𝑡−𝜏(𝑡)

𝐷𝑔 (𝑥 (𝑠)) 𝑑𝑠)

≤ 𝜆
−1
(∫

𝑡

𝑡−𝜏

𝐷𝑔 (𝑥 (𝑠)) 𝑑𝑠)

𝑇

𝑃(∫

𝑡

𝑡−𝜏

𝐷𝑔 (𝑥 (𝑠)) 𝑑𝑠)

≤ 𝜆
−1
𝜏∫

𝑡

𝑡−𝜏

𝑔
𝑇
(𝑥 (𝑠))𝐷

𝑇
𝑃𝐷𝑔 (𝑥 (𝑠)) 𝑑𝑠

= 𝜆
−1
𝜏∫

0

−𝜏

𝑔
𝑇
(𝑥 (𝑡 + 𝜃))𝐷

𝑇
𝑃𝐷𝑔 (𝑥 (𝑡 + 𝜃)) 𝑑𝜃

= 𝜆
−1
𝜏∫

0

−𝜏

𝑔
𝑇
(𝜑 (𝜃))𝐷

𝑇
𝑃𝐷𝑔 (𝜑 (𝜃)) 𝑑𝜃.

(21)

From (A1), it follows that for 𝑖 = 1, . . . , 𝑛,

0 ≤ − 2

𝑛

∑

𝑖=1

𝑢
1𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑓

𝑖
(0) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡)]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑓

𝑖
(0) − 𝑙

−

𝑖
𝑥
𝑖
(𝑡)]

= − 2

𝑛

∑

𝑖=1

𝑢
1𝑖
{𝑓
2

𝑖
(𝑥
𝑖
(𝑡)) − (𝑙

+

𝑖
+ 𝑙
−

𝑖
) 𝑥
𝑖
(𝑡) 𝑓
𝑖
(𝑥
𝑖
(𝑡))

+ 𝑙
+

𝑖
𝑙
−

𝑖
𝑥
2

𝑖
(𝑡) + 𝑓

2

𝑖
(0) − 2𝑓

𝑖
(0) 𝑓
𝑖
(𝑥
𝑖
(𝑡))

+ (𝑙
+

𝑖
+ 𝑙
−

𝑖
) 𝑥
𝑖
(𝑡) 𝑓
𝑖
(0) }

= − 2

𝑛

∑

𝑖=1

𝑢
1𝑖
{𝑓
2

𝑖
(𝑥
𝑖
(𝑡)) − (𝑙

+

𝑖
+ 𝑙
−

𝑖
) 𝑥
𝑖
(𝑡) 𝑓
𝑖
(𝑥
𝑖
(𝑡))

+𝑙
+

𝑖
𝑙
−

𝑖
𝑥
2

𝑖
(𝑡)}

+

𝑛

∑

𝑖=1

𝑢
1𝑖
[ − 2𝑓

2

𝑖
(0) + 4𝑓

𝑖
(0) 𝑓
𝑖
(𝑥
𝑖
(𝑡))

− 2 (𝑙
+

𝑖
+ 𝑙
−

𝑖
) 𝑥
𝑖
(𝑡) 𝑓
𝑖
(0) ]

≤ − 2

𝑛

∑

𝑖=1

𝑢
1𝑖
{𝑓
2

𝑖
(𝑥
𝑖
(𝑡)) − (𝑙

+

𝑖
+ 𝑙
−

𝑖
) 𝑥
𝑖
(𝑡) 𝑓
𝑖
(𝑥
𝑖
(𝑡))

+ 𝑙
+

𝑖
𝑙
−

𝑖
𝑥
2

𝑖
(𝑡)}

+

𝑛

∑

𝑖=1

𝑢
1𝑖
{ − 2𝑓

2

𝑖
(0) + 2 [𝜆𝑓

2

𝑖
(𝑥
𝑖
(𝑡)) + 𝜆

−1
𝑓
2

𝑖
(0)]

+ [𝜆𝑥
2

𝑖
(𝑡) + 𝜆

−1
(𝑙
+

𝑖
+ 𝑙
−

𝑖
)
2

𝑓
2

𝑖
(0)] }

= 2 (𝜆 − 1) 𝑓
𝑇
(𝑥 (𝑡)) 𝑈

1
𝑓 (𝑥 (𝑡)) + 2𝑓

𝑇
(𝑥 (𝑡)) 𝑈

1
𝐿
2
𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡) 𝑈
1
(𝜆𝐼 − 2𝐿

1
) 𝑥 (𝑡)

+

𝑛

∑

𝑖=1

𝑢
1𝑖
{−2𝑓
2

𝑖
(0) + 2𝜆

−1
𝑓
2

𝑖
(0) + 𝜆

−1
(𝑙
+

𝑖
+ 𝑙
−

𝑖
)
2

𝑓
2

𝑖
(0)} .

(22)

Similarly, one derives that

0 ≤ − 2

𝑛

∑

𝑖=1

𝑢
2𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑓

𝑖
(0) − 𝑙

+

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑓

𝑖
(0) − 𝑙

−

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

≤ 2 (𝜆 − 1) 𝑓
𝑇
(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑈

2
𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 2𝑓
𝑇
(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑈

2
𝐿
2
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑈

2
(𝜆𝐼 − 2𝐿

1
) 𝑥 (𝑡 − 𝜏 (𝑡))

+

𝑛

∑

𝑖=1

𝑢
2𝑖
{−2𝑓
2

𝑖
(0) + 2𝜆

−1
𝑓
2

𝑖
(0) + 𝜆

−1
(𝑙
+

𝑖
+ 𝑙
−

𝑖
)
2

𝑓
2

𝑖
(0)} ,

0 ≤ − 2

𝑛

∑

𝑖=1

𝑢
3𝑖
[𝑔
𝑖
(𝑥
𝑖
(𝑡)) − 𝑔

𝑖
(0) − 𝑚

+

𝑖
𝑥
𝑖
(𝑡)]

× [𝑔
𝑖
(𝑥
𝑖
(𝑡)) − 𝑔

𝑖
(0) − 𝑚

−

𝑖
𝑥
𝑖
(𝑡)]

≤ 2 (𝜆 − 1) 𝑔
𝑇
(𝑥 (𝑡)) 𝑈

3
𝑔 (𝑥 (𝑡)) + 2𝑔

𝑇
(𝑥 (𝑡)) 𝑈

3
𝑀
2
𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡) 𝑈
3
(𝜆𝐼 − 2𝑀

1
) 𝑥 (𝑡)

+

𝑛

∑

𝑖=1

𝑢
3𝑖
{−2𝑔
2

𝑖
(0) + 2𝜆

−1
𝑔
2

𝑖
(0) + 𝜆

−1
(𝑚
+

𝑖
+ 𝑚
−

𝑖
)
2

𝑔
2

𝑖
(0)} .

(23)

Further from (20)–(23), one derives

L𝑉 (𝜑, 𝑡) ≤ 2𝑥
𝑇
(𝑡)𝑃 [−𝐶𝑥 (𝑡)+𝐴𝑓 (𝑥 (𝑡))+𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))]

+ 2𝜆𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡)

+ 𝜆
−1
𝜏∫

0

−𝜏

𝑔
𝑇
(𝜑 (𝜃))𝐷

𝑇
𝑃𝐷𝑔 (𝜑 (𝜃)) 𝑑𝜃
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+ 2 [𝑥
𝑇
(𝑡) 𝜎
𝑇

1
𝑃𝜎
1
𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) 𝜎

𝑇

2
𝑃𝜎
2
𝑥 (𝑡 − 𝜏 (𝑡))]

+ 2 (𝜆 − 1) 𝑓
𝑇
(𝑥 (𝑡)) 𝑈

1
𝑓 (𝑥 (𝑡))

+ 2𝑓
𝑇
(𝑥 (𝑡)) 𝑈

1
𝐿
2
𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡) 𝑈
1
(𝜆𝐼 − 2𝐿

1
) 𝑥 (𝑡)

+ 2 (𝜆 − 1) 𝑓
𝑇
(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑈

2
𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 2𝑓
𝑇
(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑈

2
𝐿
2
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑈

2
(𝜆𝐼 − 2𝐿

1
) 𝑥 (𝑡 − 𝜏 (𝑡))

+ 2 (𝜆 − 1) 𝑔
𝑇
(𝑥 (𝑡)) 𝑈

3
𝑔 (𝑥 (𝑡))

+ 2𝑔
𝑇
(𝑥 (𝑡)) 𝑈

3
𝑀
2
𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡) 𝑈
3
(𝜆𝐼 − 2𝑀

1
) 𝑥 (𝑡)

+ 𝛾
3
+ 𝛾
1
𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡) − 𝛾

1
𝑉 (𝜑 (0) , 𝑡)

+ 𝛾
2
𝑔
𝑇
(𝑥 (𝑡))𝐷

𝑇
𝑃𝐷𝑔 (𝑥 (𝑡))

− 𝛾
2
𝑔
𝑇
(𝜑 (0))𝐷

𝑇
𝑃𝐷𝑔 (𝜑 (0))

≤ 𝜂
𝑇
(𝑡) Σ𝜂 (𝑡) − 𝛾

1
𝑉 (𝜑 (0) , 𝑡)

− 𝛾
2
𝑔
𝑇
(𝜑 (0))𝐷

𝑇
𝑃𝐷𝑔 (𝜑 (0)) + 𝛾

3

+ 𝜆
−1
𝜏∫

0

−𝜏

𝑔
𝑇
(𝜑 (𝜃))𝐷

𝑇
𝑃𝐷𝑔 (𝜑 (𝜃)) 𝑑𝜃

≤ 𝛾
3
− 𝛾
1
𝑉 (𝜑 (0) , 𝑡) − 𝑈 (𝜑 (0) , 𝑡)

+ 𝜆
−1
𝜏𝛾
−1

2
∫

0

−𝜏

𝑈(𝜑 (𝜃) , 𝑡 + 𝜃) 𝑑𝜃,

(24)

where 𝜂(𝑡) = (𝑥
𝑇
(𝑡), 𝑥𝑇(𝑡 − 𝜏(𝑡)), 𝑓𝑇(𝑥(𝑡)), 𝑓𝑇(𝑥(𝑡 − 𝜏(𝑡))),

𝑔
𝑇
(𝑥(𝑡)))

𝑇, 𝜑(0) = 𝑥(𝑡), 𝑈(𝑥, 𝑡) = 𝛾
2
𝑔
𝑇
(𝑥)𝐷
𝑇
𝑃𝐷𝑔(𝑥),

𝛾
3
= 𝜆
−1
𝐽
𝑇
𝑃𝐽

+

𝑛

∑

𝑖=1

(𝑢
1𝑖
+ 𝑢
2𝑖
)

× {−2𝑓
2

𝑖
(0) + 2𝜆

−1
𝑓
2

𝑖
(0) + 𝜆

−1
(𝑙
+

𝑖
+ 𝑙
−

𝑖
)
2

𝑓
2

𝑖
(0)}

+

𝑛

∑

𝑖=1

𝑢
3𝑖
{ − 2𝑔

2

𝑖
(0) + 2𝜆

−1
𝑔
2

𝑖
(0)

+ 𝜆
−1
(𝑚
+

𝑖
+ 𝑚
−

𝑖
)
2

𝑔
2

𝑖
(0) } .

(25)

Let 𝛼
1
= max(𝛾

3
, 0), 𝛼

2
= 𝛾
1
, 𝛼
3
= 0, 𝛼 = 𝜆

−1
𝜏𝛾
−1

2
, 𝑐 =

𝜆min(𝑃). Then it follows from Lemma 4 that

lim sup
𝑡→∞

𝐸‖𝑥 (𝑡)‖
2
≤

𝛼
1

𝜆min (𝑃) 𝜀
≤

𝛾
4

𝜆min (𝑃) 𝜀
, (26)

where 𝜀 > 0 is the same as defined in Lemma 4,

𝛾
4
= 𝜆
−1
𝐽
𝑇
𝑃𝐽

+

𝑛

∑

𝑖=1

(𝑢
1𝑖
+ 𝑢
2𝑖
) {2𝜆
−1
𝑓
2

𝑖
(0) + 𝜆

−1
(𝑙
+

𝑖
+ 𝑙
−

𝑖
)
2

𝑓
2

𝑖
(0)}

+

𝑛

∑

𝑖=1

𝑢
3𝑖
{2𝜆
−1
𝑔
2

𝑖
(0) + 𝜆

−1
(𝑚
+

𝑖
+ 𝑚
−

𝑖
)
2

𝑔
2

𝑖
(0)} .

(27)

Therefore, for any 𝛿 > 0, it follows from Chebyshev’s
inequality that

lim sup
𝑡→∞

𝑃{‖𝑥 (𝑡)‖ > √
𝛾
4

𝛿𝜆min (𝑃) 𝜀
}

≤ lim sup
𝑡→∞

𝐸‖𝑥 (𝑡)‖
2

𝛾
4
/𝛿𝜆min (𝑃) 𝜀

≤ 𝛿.

(28)

If, furthermore, 𝛼
1
= 0, then it follows from Lemma 4 that

(ii) holds.

Theorem 5 shows that there exists 𝑡
0
> 0 such that for any

𝑡 ≥ 𝑡
0
, 𝑃{‖𝑥(𝑡)‖ ≤ 𝐶} ≥ 1 − 𝛿. Let 𝐵

𝐶
denote by

𝐵
𝐶
= {𝑥 ∈ 𝑅

𝑛
| ‖𝑥 (𝑡)‖ ≤ 𝐶, 𝑡 ≥ 𝑡

0
} . (29)

Clearly, 𝐵
𝐶
is closed, bounded, and invariant. Moreover,

lim sup
𝑡→∞

inf
𝑦∈𝐵
𝐶

𝑥 (𝑡) − 𝑦
 = 0, (30)

with no less than probability 1 − 𝛿, which means that 𝐵
𝐶

attracts the solutions infinitely many times with no less than
probability 1−𝛿, so wemay say that 𝐵

𝐶
is a weak attractor for

the solutions.

Theorem 6. Suppose that all conditions of Theorem 5 hold,
then there exists a weak attractor 𝐵

𝐶
for the solutions of system

(1).

Remark 7. Compared with [39–41], assumption (A1) is less
conservative than that in [39] and system (1) includes mixed
time delays, which is more complex than that in [39–41]. In
addition, Lemma 4 is firstly used to investigate the dynamical
behaviors of stochastic neural networks with mixed time
delays. The bound for L𝑉 may be in a much weaker form.
Our results do not only deal with the asymptotic moment
estimation but also the path wise (almost sure) estimation.
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Figure 1: Time trajectories (a) as well as the set 𝐵
𝐶
and several typical phase portraits (b) for the system in Example 8 (color online). Where

initial values for 𝑡 < 0 are chosen as 𝑥(𝑡) = (50, 80). For (b), only phase portraits for 𝑡 ≥ 0 are shown.

4. Numerical Example

In this section, a numerical example is presented to demon-
strate the validity and effectiveness of our theoretical results.

Example 8. Consider the following stochastic Hopfield neu-
ral networks with mixed time delays:

𝑑𝑥 (𝑡) = [ − 𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜏(𝑡)

𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝐽] 𝑑𝑡

+ [𝜎
1
𝑥 (𝑡) + 𝜎

2
𝑥 (𝑡 − 𝜏 (𝑡))] 𝑑𝑤 (𝑡) ,

(31)

where 𝐽 = (0.01, 0.01)
𝑇, 𝜏(𝑡) = 0.2| sin 𝑡|,

𝐴 = (
−0.2 0.3

0.2 −0.5
) , 𝐵 = (

0.5 −1

−1.4 0.8
) ,

𝐶 = (
1.2 0

0 1.2
) , 𝐷 = (

0.3 −0.1

0.1 0.4
) ,

𝜎
1
= (

0.2 0.1

0.3 0.2
) , 𝜎

2
= (

0.1 −0.2

−0.2 0.3
) ,

(32)

and 𝑓(𝑥) = 𝑔(𝑥) = tanh(𝑥), 𝑤(𝑡) is one-dimensional Brown-
ian motion. Then 𝐿

1
= 𝑀
1
= 0, 𝐿

2
= 𝑀
2
= diag{1, 1}. By

using theMatlab LMIControl Toolbox [45], for 𝛾
1
= 𝛾
2
= 𝜆 =

0.5, 𝜏 = 0.2, based onTheorem 5, such system is stochastically

ultimately bounded when 𝑃, 𝑈
1
, 𝑈
2
and 𝑈

3
are chosen as

follows:

𝑃 = (
0.3278 0.2744

0.2744 0.3567
) , 𝑈

1
= (

0.0668 0

0 0.2255
) ,

𝑈
2
= (

0.1263 0

0 0.1218
) , 𝑈

3
= (

0.0901 0

0 0.1031
) .

(33)

For 𝛿 = 0.01, 𝛾
1
= 𝛾
2
= 𝜆 = 0.5, 𝜏 = 0.2, we obtain

𝜀 = 0.5 and constant 𝐶 = 𝐶(𝛿) = √𝐽𝑇𝑃𝐽/𝜆min(𝑃)𝛿𝜆𝜀 =

√0.1141/0.0675 = 1.3001. Then 𝐵
𝐶
= {𝑥 ∈ 𝑅

2
| ‖𝑥(𝑡)‖ ≤

1.3001, 𝑡 ≥ 𝑡
0
}, 𝑃(𝑥 ∈ 𝐵

𝐶
) ≥ 0.99. For the system in

Example 8 (color online), Figure 1(a) shows time trajectories,
and Figure 1(b) shows the set 𝐵

𝐶
and several typical phase

portraits, where initial value for 𝑡 < 0 is chosen as 𝑥(𝑡) =

(50, 80). In Figure 1(b), only phase portraits for 𝑡 ≥ 0

are shown. From Figure 1, one can easily find that these
trajectories are almost all attracted by the set 𝐵

𝐶
.

5. Conclusion

In this paper, by using the theory of stochastic functional dif-
ferential equations and linear matrix inequality, new results
and sufficient criteria on the asymptotic stability, ultimate
boundedness, and attractor of stochastic Hopfield neural
networkswithmixed time delays are established. Anumerical
example is also presented to demonstrate the correctness of
our theoretical results.
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